2 – Terpenes (Terpenoid) Table of Contents –1/10
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation Over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media
Modern Research in Catalysis, 2016, 5, 1-10 Published Online January 2016 in SciRes. http://www.scirp.org/journal/mrc http://dx.doi.org/10.4236/mrc.2016.51001 Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media Racharla Krishna, Chowdam Ramakrishna, Keshav Soni, Thakkallapalli Gopi, Gujarathi Swetha, Bijendra Saini, S. Chandra Shekar* Defense R & D Establishment, Gwalior, India Received 18 November 2015; accepted 5 January 2016; published 8 January 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The efficient citral hydrogenation was achieved in aqueous media using Pd/CMS and alkali addi- tives like K2CO3. The alkali concentrations, reaction temperature and the Pd metal content were optimized to enhance the citral hydrogenation under aqueous media. In the absence of alkali, ci- tral hydrogenation was low and addition of alkali promoted to ~92% hydrogenation without re- duction in the selectivity to citronellal. The alkali addition appears to be altered the palladium sites. The pore size distribution reveals that the pore size of these catalysts is in the range of 0.96 to 0.7 nm. The palladium active sites are also quite uniform based on the TPR data. The catalytic parameters are correlated well with the activity data. *Corresponding author. How to cite this paper: Krishna, R., Ramakrishna, C., Soni, K., Gopi, T., Swetha, G., Saini, B. and Shekar, S.C. (2016) Effect of Alkali Carbonate/Bicarbonate on Citral Hydrogenation over Pd/Carbon Molecular Sieves Catalysts in Aqueous Media. -
Understanding and Managing the Transition Using Essential Oils Vs
MENOPAUSE: UNDERSTANDING AND MANAGING THE TRANSITION USING ESSENTIAL OILS VS. TRADITIONAL ALLOPATHIC MEDICINE by Melissa A. Clanton A thesis submitted in partial fulfillment of the requirements for the Diploma of Aromatherapy 401 Australasian College of Health Sciences Instructors: Dorene Petersen, Erica Petersen, E. Joy Bowles, Marcangelo Puccio, Janet Bennion, Judika Illes, and Julie Gatti TABLE OF CONTENTS List of Tables and Figures............................................................................ iv Acknowledgments........................................................................................ v Introduction.................................................................................................. 1 Chapter 1 – Female Reproduction 1a – The Female Reproductive System............................................. 4 1b - The Female Hormones.............................................................. 9 1c – The Menstrual Cycle and Pregnancy....................................... 12 Chapter 2 – Physiology of Menopause 2a – What is Menopause? .............................................................. 16 2b - Physiological Changes of Menopause ..................................... 20 2c – Symptoms of Menopause ....................................................... 23 Chapter 3 – Allopathic Approaches To Menopausal Symptoms 3a –Diagnosis and Common Medical Treatments........................... 27 3b – Side Effects and Risks of Hormone Replacement Therapy ...... 32 3c – Retail Cost of Common Hormone Replacement -
Chemical Intra-Mediterranean Variation and Insecticidal Activity of Crithmum Maritimum
Chemical Intra-Mediterranean Variation and Insecticidal Activity of Crithmum maritimum Maria Tsoukatou3, Christina Tsitsimpikoub, Constantinos Vagias 3 and Vassilios Roussis3’* a School of Pharmacy, Department of Pharmacognosy, University of Athens, Panepistimioupolis Zografou, Athens 15771, Greece. Fax: ++3017274592. E-mail: [email protected] b Doping Control Laboratory of Athens, Olympic Athletic Centre of Athens “Spiros Louis”, Kifissias 37, 15123, Maroussi, Greece * Author of correspondence and reprint requests Z. Naturforsch. 56c, 211-215 (2001); received October 27/December 7, 2000 Crithmum maritimum, Terpenes, Dillapiole, Ant Repellency The chemical composition of the volatile metabolites of Crithmum maritimum harvested from several geographic localities along the Mediterranean coasts was studied by GC and GC-MSD. The major oil constituents were found to be dillapiole, y-terpinene, sabinene, limo- nene and ß-phellandrene. The Western populations were richer in dillapiole, whereas the Southern collections were characterized by increased amounts of thymol methyl ether and y-terpinene. The Italian chemical profiles differentiated by the significant contributions of carvacrol methyl ether and isoterpinolene. The essential oils were also investigated for their insecticidal activity and their repellency against Pheidole pallidula (Nylander) ants and found to possess significant activity. Introduction Among a large set of the initially investigated Crithmum maritimum is a halophyte and chas- plants, C. maritimum, exhibited one of the highest mophyte apiaceous plant, which grows on all the antifeedant and insecticidal activities against the world’s coastlines but is particularly abundant in Pheidole pallidula ants. Other members of the the Mediterranean countries (Coiffard et al., family Apiaceae (Umbelliferae) have been re 1993). It is also referred to as rock sapphire and cently shown to exhibit antifeedant and neuro- ac was well known to sailors since ancient years for tivity against the field slug D. -
Biosynthesis of Natural Products
63 2. Biosynthesis of Natural Products - Terpene Biosynthesis 2.1 Introduction Terpenes are a large and varied class of natural products, produced primarily by a wide variety of plants, insects, microoroganisms and animals. They are the major components of resin, and of turpentine produced from resin. The name "terpene" is derived from the word "turpentine". Terpenes are major biosynthetic building blocks within nearly every living creature. Steroids, for example, are derivatives of the triterpene squalene. When terpenes are modified, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Some authors will use the term terpene to include all terpenoids. Terpenoids are also known as Isoprenoids. Terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. Synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives. Recent estimates suggest that over 30'000 different terpenes have been characterized from natural sources. Early on it was recognized that the majority of terpenoid natural products contain a multiple of 5C-atoms. Hemiterpenes consist of a single isoprene unit, whereas the monoterpenes include e.g.: Monoterpenes CH2OH CHO CH2OH OH Myrcens -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
DIFFERENCES in Terpenoid Levels Between Plant Species Are Known To
GENETICS OF TEP.PENES I. GENE CONTROL OF MONOTERPENE LEVELS IN PINUS MONTICOLA DOUGL. JAMES W. HANOVER Geneticist, Forestry Sciences Laboratory, lntermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Moscow, Idaho * Receivedi o.v.6 1.INTRODUCTION DIFFERENCESin terpenoid levels between plant species are known to exist but little is known about their genetic bases. The terpenes have been used extensively in biochemical systematic studies in Pinus (Mirov, 1958, 1961; Williams and Bannister, 1962; Forde, 1964), Eucalyptus (Baker and Smith, 1920; Penfold and Morrison, 1927), Cup ressacee (Erdtman, 1958),andmany other plant families and genera (Alston and Turner, 1963).Thesestudies were usually based upon the assumption that variation within a species is relatively small. Although this may be valid in some cases, Bannister et al. (1962)andothers have shown that the level of terpenes can vary with geographic origin within a species. Recent data on tree-to-tree variability in the monoterpenes of Pinus ponderosa Laws. show that such variation can be relatively large (Smith, 1964). Results of similar work in our laboratory with western white pine (Pinus monticola Dougi.) also revealed substantial qualitative and quantitative variation in the cortex monoterpenes between trees. In order to provide a basis for the use of terpenes for comparative biochemical studies, an understanding of both their variability and mode of inheritance is essential. The objective of the present study is to demonstrate the degree to which levels of six monoterpene compounds are gene-controlled in western white pine. Interrelations among the terpenes and between terpenes and growth are also considered, 2.MATERIALS AND METHODS Thematerials for this study are of three types: (i) parents—as clonal lines of grafts, () F1 progeny from crosses between the ortets (parents) represented by the clones, and () S1 progeny of the parent trees. -
Citral (Microencapsulated)
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF CITRAL (MICROENCAPSULATED) (CAS NO. 5392-40-5) IN F344/N RATS AND B6C3F1 MICE (FEED STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 January 2003 NTP TR 505 NIH Publication No. 03-4439 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. -
Advances in Azorella Glabra Wedd. Extract Research: in Vitro
molecules Article Advances in Azorella glabra Wedd. Extract Research: In Vitro Antioxidant Activity, Antiproliferative Effects on Acute Myeloid Leukemia Cells and Bioactive Compound Characterization 1, , 2,3, 1 1 Daniela Lamorte * y , Immacolata Faraone y , Ilaria Laurenzana , Stefania Trino , Daniela Russo 2,3 , Dilip K. Rai 4 , Maria Francesca Armentano 2,3 , Pellegrino Musto 5 , 6 7 2,3, , 7, Alessandro Sgambato , Luciana De Luca , Luigi Milella * z and Antonella Caivano z 1 Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), 85028 Rionero in Vulture, Potenza, Italy; [email protected] (I.L.); [email protected] (S.T.) 2 Department of Science, University of Basilicata, V.le dell’Ateneo Lucano 10, 85028 Rionero in Vulture, Potenza, Italy; [email protected] (I.F.); [email protected] (D.R.); [email protected] (M.F.A.) 3 Spinoff BioActiPlant s.r.l., University of Basilicata, V.le dell’Ateneo Lucano 10, 85028 Rionero in Vulture, Potenza, Italy 4 Department of Food BioSciences, Teagasc Food Research Centre Ashtown, D15KN3K Dublin, Ireland; [email protected] 5 Hematology and Stem Cell Transplantation Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), 85028 Rionero in Vulture, Potenza, Italy; [email protected] 6 Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), 85028 Rionero in Vulture, Potenza, Italy; [email protected] 7 Unit of Clinical Pathology, Centro di Riferimento Oncologico della Basilicata (IRCCS CROB), 85028 Rionero in Vulture, Potenza, Italy; [email protected] (L.D.L.); [email protected] (A.C.) * Correspondence: [email protected] (D.L.); [email protected] (L.M.); Tel.: +39-0972-726528 (D.L.); +39-0971-205525 (L.M.) These authors contributed equally to this work. -
Odor Impact of Volatiles Emitted from Marijuana, Cocaine, Heroin and Their Surrogate Scents Somchai Rice Iowa State University, [email protected]
Agricultural and Biosystems Engineering Agricultural and Biosystems Engineering Publications 12-2015 Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Somchai Rice Iowa State University, [email protected] Jacek A. Koziel Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_pubs Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Toxicology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ abe_eng_pubs/707. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Abstract Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values). -
Use of Essential Oils of the Genus Citrus As Biocidal Agents
American Journal of Plant Sciences, 2014, 5, 299-305 Published Online February 2014 (http://www.scirp.org/journal/ajps) http://dx.doi.org/10.4236/ajps.2014.53041 Use of Essential Oils of the Genus Citrus as Biocidal Agents Marcos S. Gomes1, Maria das G. Cardoso1*, Maurilio J. Soares2, Luís R. Batista3, Samísia M. F. Machado4, Milene A. Andrade1, Camila M. O. de Azeredo2, Juliana Maria Valério Resende3, Leonardo M. A. Rodrigues3 1Department of Chemistry, Federal University of Lavras, Lavras, Brazil; 2Laboratory of Cell Biology, Instituto Carlos Cha- gas/Fiocruz, Curitiba, Brasil; 3Department of Food Science, Federal University of Lavras, Lavras, Brazil; 4Department of Chemistry, Federal University of Sergipe, São Cristóvão, Brazil. Email: *[email protected] Received November 26th, 2013; revised December 28th, 2013; accepted January 18th, 2014 Copyright © 2014 Marcos S. Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor- dance of the Creative Commons Attribution License all Copyrights © 2014 are reserved for SCIRP and the owner of the intellectual property Marcos S. Gomes et al. All Copyright © 2014 are guarded by law and by SCIRP as a guardian. ABSTRACT In this study, the essential oils extracted from the peels of Citrus aurantifolia, Citrus limon and Citrus sinensis were chemically characterized and quantified. These essential oils and their standards limonene, citral and li- monene + citral were evaluated (at concentrations ranging from 500 to 3.91 mL·mL−1) regarding their anti-try- panosome, antifungal and antibacterial activities. -
Antinociceptive Activity and Redox Profile of the Monoterpenes
2 ISRN Toxicology well as in medicinal plants with a therapeutic property [7– 2.2. Animals. Adult male albino Swiss mice (28–34 g) were 10]. randomly housed in appropriate cages at C with a Recent works have demonstrated that monoterpenes 12/12-h light/dark cycle (light from 06:00 to 18:00),∘ with may present important pharmacological properties includ- free access to food (Purina, Brazil) and tap21 water. ± 2 We used ing antimicrobial [11], antioxidant [3], analgesic [12], and 6–8 animals in each group. Nociceptive tests were carried antitumoral [9] activities, as well as effects on cardiovascular out by the same visual observer and all efforts were made system [13] and central nervous system (CNS) [14]. (+)- to minimize the number of animals used as well as any camphene, p-cymene, and geranyl acetate (Figure 1) are discomfort. Experimental protocols were approved by the monoterpenes present in the essential oils of various plant Animal Care and Use Committee (CEPA/UFS no. 26/09) at species, such as Cypress, Origanum, and Eucalyptus oils [15, the Federal University of Sergipe. 16]. ese substances are present at signi�cant amounts in a wide variety of products derived from natural sources used as food, medicines, or other purposes in different countries. 2.3. Acetic Acid-Induced Writhing. We followed the proce- However, reports with reference to their therapeutic effects dure by Koster et al. [21]. Mice ( , per group) were by studies aiming to establish their individual characteristics, pretreated either by (+)-camphene, p-cymene, or geranyl as described in the present work, are scarce in literature.