Antinociceptive Activity and Redox Profile of the Monoterpenes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biosynthesis of Natural Products
63 2. Biosynthesis of Natural Products - Terpene Biosynthesis 2.1 Introduction Terpenes are a large and varied class of natural products, produced primarily by a wide variety of plants, insects, microoroganisms and animals. They are the major components of resin, and of turpentine produced from resin. The name "terpene" is derived from the word "turpentine". Terpenes are major biosynthetic building blocks within nearly every living creature. Steroids, for example, are derivatives of the triterpene squalene. When terpenes are modified, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Some authors will use the term terpene to include all terpenoids. Terpenoids are also known as Isoprenoids. Terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. Synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives. Recent estimates suggest that over 30'000 different terpenes have been characterized from natural sources. Early on it was recognized that the majority of terpenoid natural products contain a multiple of 5C-atoms. Hemiterpenes consist of a single isoprene unit, whereas the monoterpenes include e.g.: Monoterpenes CH2OH CHO CH2OH OH Myrcens -
DIFFERENCES in Terpenoid Levels Between Plant Species Are Known To
GENETICS OF TEP.PENES I. GENE CONTROL OF MONOTERPENE LEVELS IN PINUS MONTICOLA DOUGL. JAMES W. HANOVER Geneticist, Forestry Sciences Laboratory, lntermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Moscow, Idaho * Receivedi o.v.6 1.INTRODUCTION DIFFERENCESin terpenoid levels between plant species are known to exist but little is known about their genetic bases. The terpenes have been used extensively in biochemical systematic studies in Pinus (Mirov, 1958, 1961; Williams and Bannister, 1962; Forde, 1964), Eucalyptus (Baker and Smith, 1920; Penfold and Morrison, 1927), Cup ressacee (Erdtman, 1958),andmany other plant families and genera (Alston and Turner, 1963).Thesestudies were usually based upon the assumption that variation within a species is relatively small. Although this may be valid in some cases, Bannister et al. (1962)andothers have shown that the level of terpenes can vary with geographic origin within a species. Recent data on tree-to-tree variability in the monoterpenes of Pinus ponderosa Laws. show that such variation can be relatively large (Smith, 1964). Results of similar work in our laboratory with western white pine (Pinus monticola Dougi.) also revealed substantial qualitative and quantitative variation in the cortex monoterpenes between trees. In order to provide a basis for the use of terpenes for comparative biochemical studies, an understanding of both their variability and mode of inheritance is essential. The objective of the present study is to demonstrate the degree to which levels of six monoterpene compounds are gene-controlled in western white pine. Interrelations among the terpenes and between terpenes and growth are also considered, 2.MATERIALS AND METHODS Thematerials for this study are of three types: (i) parents—as clonal lines of grafts, () F1 progeny from crosses between the ortets (parents) represented by the clones, and () S1 progeny of the parent trees. -
Living Polymerization of Renewable Vinyl Monomers Into Bio-Based Polymers
Polymer Journal (2015) 47, 527–536 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj FOCUS REVIEW Controlled/living polymerization of renewable vinyl monomers into bio-based polymers Kotaro Satoh1,2 In this focused review, I present an overview of our recent research on bio-based polymers produced by the controlled/living polymerization of naturally occurring or derived renewable monomers, such as terpenes, phenylpropanoids and itaconic derivatives. The judicious choice of initiating system, which was borrowed from conventional petrochemical monomers, not only allowed the polymerization to proceed efficiently but also produced well-defined controlled/living polymers from these renewable monomers. We were able to find several controlled/living systems for renewable monomers that resulted in novel bio-based polymers, including a cycloolefin polymer, an AAB alternating copolymer with an end-to-end sequence, a phenolic and high-Tg alternating styrenic copolymer, and an acrylic thermoplastic elastomer. Polymer Journal (2015) 47, 527–536; doi:10.1038/pj.2015.31; published online 13 May 2015 INTRODUCTION aliphatic olefins and styrenes,22,23 whereas the latter applies to most Bio-based polymers are attractive materials from the standpoints of unsaturated compounds bearing C = Cbonds.24–38 Controlled/living being environmentally benign and sustainable. They are usually radical polymerization can precisely control the molecular weights and derived from renewable bio-based feedstocks, such as starches, plant the terminal groups of numerous monomers and has opened a new oils and microbiota, as an alternative to traditional polymers from field of precision polymer synthesis that has been applied to the fossil resources.1 Most of the bio-based polymers produced in the production of a wide variety of functional materials based on 1990s were polyesters prepared via condensation or ring-opening controlled polymer structures. -
Camphene, A3-Carene, Limonene, and Ot=Terpinene
Environ. Sci. Technol. 1999, 33,4029-4033 The hydrocarbon emissions are typically divided into two Thermal Degradation of Terpenes: categories: (a) the condensed hydrocarbons of higher molecular weight that are responsible in part for the blue- Camphene, A3-Carene, Limonene, haze plume characteristic of dryer emissions and (b) the and ot=Terpinene lower molecular weight hydrocarbons (C+&), generally referred to as volatile hydrocarbons. Both nongaseous (condensed) and gaseous (volatile) hydrocarbons emitted GERALD W. MCGRAW,*,+ by wood dryers have been analyzed by a number of workers RICHARD W. HEMINGWAY,* LEONARD L. INGRAM, JR.,s (2-s). In general, the nongaseous fraction consists of a CATHERINE S. CANADY,’ AND mixture of resin acids and fatty acids and their esters as well WILLIAM B. MCGRAW+ as some sesquiterpenoid compounds and undefined oxida- tion products. The gaseous fraction is primarily made up of of Chemistry, Louisiana College, monoterpenes present in the wood and some of their Pineuille, Louisiana 71359, Southern Research Station, USDA Forest Service, 2500 Shreveport Highway, oxidation products. Comparatively little is known about the Pineuille, Louisiana 71360, and Forest Products Lab, yields, structures, and biological properties of oxidation Department of Forest Products, Mississippi State University, products of monoterpenes. Mississippi State, Mississippi 39762-9820 Cronn et al. (3) studied the gaseous emissions from a number of veneer dryers at mills in the northwest and southern U.S. From a plywood veneer dryer in the southern U.S. using a mixture of loblolly and shortleaf pines, it was Emissions from wood dryers have been of some concern found that terpenes accounted for 98.9% of the total gaseous for a number of years, and recent policy changes by the hydrocarbon emissions. -
Salvia Officinalis L. from Italy: a Comparative Chemical And
molecules Article Salvia officinalis L. from Italy: A Comparative Chemical and Biological Study of Its Essential Oil in the Mediterranean Context Rosa Tundis 1,* , Mariarosaria Leporini 1, Marco Bonesi 1, Simone Rovito 2 and Nicodemo G. Passalacqua 2 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; [email protected] (M.L.); [email protected] (M.B.) 2 History Museum of Calabria and Botanic Garden, University of Calabria, 87036 Rende, CS, Italy; [email protected] (S.R.); [email protected] (N.G.P.) * Correspondence: [email protected]; Tel.: +39-0984-493246 Received: 21 November 2020; Accepted: 9 December 2020; Published: 10 December 2020 Abstract: Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. -
Chemical Transformations and Phytochemical Studies of Bioac- Tive Components from Extracts of Rosmarinus Officinalis L
2010 CHEMICAL TRANSFORMATIONS AND PHYTOCHEMICAL STUDIES OF BIOAC- TIVE COMPONENTS FROM EXTRACTS OF ROSMARINUS OFFICINALIS L. By Omobola Oluranti Okoh A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science and Agriculture at the University of Fort Hare Supervisors Professor A. P. Sadimenko Professor A. J. Afolayan TABLE OF CONTENTS Declaration ............................................................................. 8 Acknowledgements ..................................................................... 9 Dedication ................................................................................. 10 List of tables ............................................................................. 12 List of figures ............................................................................. 13 Abbreviations ............................................................................. 15 Abbreviations for journal titles ..................................................... 17 Abstract ..................................................................................... 24 I. Introduction ......................................................................... 27 II. Review of literature ................................................................. 35 A. Essential oils ..................................................................... 35 B. Secondary metabolites ......................................................... 38 C. Extraction of essential oils ................................................ -
Gallstones' J
Gut, 1979, 20, 312-317 Gut: first published as 10.1136/gut.20.4.312 on 1 April 1979. Downloaded from Clinical trial Rowachol - a possible treatment for cholesterol gallstones' J. DORAN, M. R. B. KEIGHLEY, AND G. D. BELL From the University Department of Therapeutics, City Hospital, Nottingham, and the University Department of Surgery, General Hospital, Birmingham SUMMARY It has been claimed that Rowachol, a proprietary choleretic, is occasionally successful in the treatment of gallstones. In gallstone patients we have examined its effect on the lipid composi- tion of (1) samples of fasting gall bladder bile obtained at the time of cholecystectomy, and (2) T-tube bile on the tenth post-operative day. In a dose of two capsules, three times a day for only 48 hours, Rowachol significantly lowered the cholesterol solubility of both gall bladder (p < 0001) and T-tube bile (p < 005). Rowachol in a dose of one capsule three times a day for 48 hours did not alter bile composition, while four capsules four times a day for a similar period caused a significant (p < 0-05) deterioration in biliary lipid composition. The possible mechanisms ofaction of Rowachol and their therapeutic implications are discussed. The bile of patients with cholesterol gallstones is purified plant essential oils-for example, 1-menthol frequently saturated with cholesterol (Admirand and from Mentha piperidis, the peppermint plant or Small, 1968). It has been shown that chenodeoxy- 1-cineol from eucalyptus leaves. This particular cholic acid (CDCA) enhances the cholesterol combination of terpenes was chosen by the manu- of human bile and in suitable facturer in it a solubility patients because, the rat, was shown to have http://gut.bmj.com/ promotes dissolution of cholesterol gallstones larger and more sustained choleretic effect than (Bell et al., 1972; Danzinger et al., 1972; Thistle and equimolar quantities of any of its individual con- Hofmann, 1973; Iser et al., 1975; Thistle et al., stituents (Morsdorf, 1966). -
WO 2016/138505 Al 1 September 2016 (01.09.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/138505 Al 1 September 2016 (01.09.2016) P O P C T (51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61K 31/05 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/0 19979 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 26 February 2016 (26.02.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/126,365 27 February 2015 (27.02.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 15/055,499 26 February 2016 (26.02.2016) US DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicant: EBBU, LLC [US/US]; 35715 US Highway 40, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Units D101-103, Evergreen, Colorado 80439 (US). -
Urease Inhibitory Kinetic Studies of Various Extracts and Pure Compounds from Cinnamomum Genus
molecules Article Urease Inhibitory Kinetic Studies of Various Extracts and Pure Compounds from Cinnamomum Genus Manoj Kumar 1, Neha Sikri 1, Sulekha Chahal 1, Jitender Sharma 1, Bhavna Sharma 1, Poonam Yadav 2, Monika Bhardwaj 2, Divya Vashishth 2, Pooja Kadyan 2, Sudhir Kumar Kataria 2 and Sunita Dalal 1,* 1 Department of Biotechnology, Kurukshetra University, Kurukshetra 136119, India; [email protected] (M.K.); [email protected] (N.S.); [email protected] (S.C.); [email protected] (J.S.); [email protected] (B.S.) 2 Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; [email protected] (P.Y.); [email protected] (M.B.); [email protected] (D.V.); [email protected] (P.K.); [email protected] (S.K.K.) * Correspondence: [email protected] Abstract: Urease is an enzyme that plays a significant role in the hydrolysis of urea into carbonic acid and ammonia via the carbamic acid formation. The resultant increase in pH leads to the onset of various pathologies such as gastric cancer, urolithiasis, hepatic coma, hepatic encephalopathy, duodenal ulcers and peptic ulcers. Urease inhibitors can reduce the urea hydrolysis rate and development of various diseases. The Cinnamomum genus is used in a large number of traditional medicines. It is well established that stem bark of Cinnamomum cassia exhibits antiulcerogenic potential. The present study evaluated the inhibitory effect of seven extracts of Cinnamomum camphora, Citation: Kumar, M.; Sikri, N.; Cinnamomum verum and two pure compounds Camphene and Cuminaldehyde on urease enzyme. Chahal, S.; Sharma, J.; Sharma, B.; Kinetic studies of potential inhibitors were carried out. -
Research Article Antinociceptive Activity and Redox Pro Le of The
Hindawi Publishing Corporation ISRN Toxicology Volume 2013, Article ID 459530, 11 pages http://dx.doi.org/10.1155/2013/459530 Research Article Antinociceptive Activity and Redox Pro�le of the Monoterpenes (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models Lucindo Quintans-Júnior,1 José C. F. Moreira,2 Matheus A. B. Pasquali,2 Soheyla M. S. Rabie,2 André S. Pires,2 Rafael Schröder,2 Thallita K. Rabelo,2 João P. A. Santos,2 Pollyana S. S. Lima,3 Sócrates C. H. Cavalcanti,1 Adriano A. S. Araújo,1 Jullyana S. S. Quintans,1 and Daniel P. Gelain2 1 Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, 90035-003 Porto Alegre, RS, Brazil 2 Departamento de Fisiologia, Universidade Federal de Sergipe (DFS/UFS), Aracaju, 49100-000 São Cristovão, SE, Brazil 3 Universidade Estadual de Feira de Santana (UEFS), 44031-460 Feira de Santana, BA, Brazil Correspondence should be addressed to Daniel P. Gelain; [email protected] Received 8 November 2012; Accepted 13 December 2012 Academic Editors: T. Bahorun, M. L. Miranda Fernandes Estevinho, and E. Vilanova Copyright © 2013 Lucindo Quintans-Júnior et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To evaluate antinocicpetive and redox properties of the monoterpenes (+)-camphene, p-cymene, and geranyl acetate in in vivo and in vitro experimental models. Methods. Evaluation of the in vitro antioxidant activity of (+)-camphene, p-cymene, and geranyl acetate using different free radical-generating systems and evaluation of antinociceptive actions by acetic acid- induced writhing and formalin-induced nociception tests in mice. -
Universidade De São Paulo Instituto De Química De São Paulo Química Orgânica E Biológica
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO PAULO QUÍMICA ORGÂNICA E BIOLÓGICA MARCELO TAVARES DE OLIVEIRA QUANTUM CHEMICAL EXPLORATIONS INTO THE BIOSYNTHESIS OF PENTACYCLIC TRITERPENE FRIEDELIN TESE DE DOUTORADO SÃO CARLOS 2019 MARCELO TAVARES DE OLIVEIRA QUANTUM CHEMICAL EXPLORATIONS INTO THE BIOSYNTHESIS OF PENTACYCLIC TRITERPENE FRIEDELIN Tese apresentada ao Instituto de Química de São Carlos da Universidade de São Paulo como parte dos requisitos para a obtenção do título de doutor em ciências Área de concentração: Química Orgânica e Biológica Orientador: Prof. Dr. Albérico B. F. da Silva SÃO CARLOS 2019 To Sarah. Acknowledgments Firstly, I wish to express my sincere thanks to Prof. Albérico for facilitating “in his very own way” the work described here in the course of the past year and a half. I thank Prof. Ataualpa Braga (IQ/USP) for his most helpful discussions on methods, especially the tweaks of gaussian. Prof. Glaucius Oliva (IFSC/USP) is acknowledged for his precious contribution towards the zeitgeist workstation where most computations were carried out. Mr. Gilmar Bertollo Jr. (IFSC/USP), a very knowledgeable tech guy, for his great assistance with hardware – very appreciated. I express my gratitude to all colleagues (and a few new friends) as well as all members of the community at large in the chemistry institute (IQSC/USP) and the physics institute (IFSC/USP). To all those I came across over the past few years of postgraduate studies who had a share of contribution to make things easier somehow. The Coordination for the Improvement of Higher Education Personnel, CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) is acknowledged for an institutional studentship. -
2 – Terpenes (Terpenoid) Table of Contents –1/10
Organic Chemistry of Natural Products Table of contents –1/10– #2 – Terpenes (terpenoid) Examples of terpenes O HO H pinene limonene geraniol citral O OH H H H H HO O HO camphor menthol β-selinene cafestol OH retinol β-carotene H H H HO cholesterol Isoprene units Classifcation of terpenes Overview of terpene biosynthesis Table of contents –2/10– key starting materials and intermediates: O O OH O O O OH O OH H O P OH O P OH CoAS HO OH O OH OH O OH OH acetyl-CoA pyruvic acid glyceraldehyde 3-phosphate mevalonic acid deoxyxylulose 5-phosphate O O O O O O O P O P OH O P O P OH O P O P OH OH OH OH OH OH OH isopentenyl pyrophosphate dimethylallyl pyrophosphate geranyl pyrophosphate (IPP) (DMAPP) (GPP) Table of contents –3/10– Biosynthesis of isopentenyl pyrophosphate (IPP) via the mevalonate pathway (①) O O OH cf. × 3 CoAS HO OH acetyl-CoA mevalonic acid O O O P O P OH coenzyme A (HSCoA) OH OH IPP Table of contents –4/10– Biosynthesis of dimethylallyl pyrophosphate (DMAPP) from IPP (②) Biosynthesis of isopentenylThe pyrophosphate Mevalonate and Methylerythritol(IPP) via the non-mevalonate Phosphate Pathways: pathway Terpenoids and Steroids 191 nucleophilic attack of H enamine onto aldehyde H CO2H O OH OH O H3C OH OP H3C O CO2 OP OP OH O OH pyruvic acid R1 R1 OH E1 N S D-glyceraldehyde E1N S E1 1-deoxy-D-xylulose 5-P thiamine PP 3-P (TPP) see Figure 2.16 1 R2 R2 R N S TPP anion TPP/pyruvate-derived regenerated enamine 2 OH R N P reduction of aldehyde to alcohol; O fosmidomycin the aldehyde intermediate remains enzyme-bound reverse aldol aldol