Chemical Transformations and Phytochemical Studies of Bioac- Tive Components from Extracts of Rosmarinus Officinalis L

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Transformations and Phytochemical Studies of Bioac- Tive Components from Extracts of Rosmarinus Officinalis L 2010 CHEMICAL TRANSFORMATIONS AND PHYTOCHEMICAL STUDIES OF BIOAC- TIVE COMPONENTS FROM EXTRACTS OF ROSMARINUS OFFICINALIS L. By Omobola Oluranti Okoh A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science and Agriculture at the University of Fort Hare Supervisors Professor A. P. Sadimenko Professor A. J. Afolayan TABLE OF CONTENTS Declaration ............................................................................. 8 Acknowledgements ..................................................................... 9 Dedication ................................................................................. 10 List of tables ............................................................................. 12 List of figures ............................................................................. 13 Abbreviations ............................................................................. 15 Abbreviations for journal titles ..................................................... 17 Abstract ..................................................................................... 24 I. Introduction ......................................................................... 27 II. Review of literature ................................................................. 35 A. Essential oils ..................................................................... 35 B. Secondary metabolites ......................................................... 38 C. Extraction of essential oils ................................................. 38 1. Steam distillation ......................................................... 39 2. Maceration ..................................................................... 39 3. Cold pressing ................................................................. 40 4. Solvent extraction ......................................................... 40 D. Composition of essential oils ................................................. 41 E. Factors affecting composition of essential oils ......................... 42 1. Harvest time .................................................................. 42 2. Method of extraction ...................................................... 43 3. Temperature .................................................................. 43 2 F. Methods of administration of essential oils ............................. 44 G. Properties of essential oils .................................................. 44 1. Antimicrobial properties .................................................. 44 2. Antibacterial properties .................................................. 45 3. Antiviral properties .......................................................... 46 4. Antifungal properties ...................................................... 47 5. Antioxidant properties ...................................................... 48 H. Mechanism of action of essential oils ...................................... 49 1. Mechanism of inhibition by changes in membrane function ... 50 2. Mechanism of inhibition by changes in protein content ......... 51 I. GS-MS analysis of essential oils .............................................. 51 J. Application of essential oils .................................................. 52 1. In cosmetics .................................................................. 52 2. In food .......................................................................... 53 3. In health care .................................................................. 53 K. Rosmarinus officinalis essential oils ..................................... 54 L. Plant products and their transformation ................................. 62 1. Pinenes .......................................................................... 63 2. 1,8-Cineole .................................................................. 67 3. Camphor ...................................................................... 70 4. Verbenone ...................................................................... 72 5. Bornyl acetate .................................................................. 73 M. Chemical transformations in plants ..................................... 73 3 N. Antioxidant activity .............................................................. 77 1. Definition of antioxidant .................................................. 77 2. Natural antioxidants ...................................................... 78 a. Beta carotene and carotenoids ...................................... 78 b. Ascorbic acid (Vitamin C) .............................................. 79 c. Vitamin E .................................................................. 80 d. Selenium .................................................................. 81 3. New oxidants .................................................................. 81 a. Polyphenols .............................................................. 82 b. Flavonoids .................................................................. 84 c. Free radicals .............................................................. 86 4. Diphenylpicrylhydrazyl (DPPH) free radical ......................... 87 5. Some tropical plants with antibacterial and antioxidant properties ...................................................................... 90 O. Structural elucidation and characterization of bioactive compounds isolated from Rosmarinus officinalis L. ................................. 90 III. Materials and methods .......................................................... 93 A. Cultivation .......................................................................... 93 B. Harvesting for essential oil distillation ................................. 93 C. Solvent-free microwave extraction ......................................... 93 D. Hydrodistillation .................................................................. 94 E. GC-MS analyses and identification of components ..................... 95 F. Antimicrobial activity of essential oils ..................................... 96 4 G. Time-kill assay .............................................................. 98 H. Antioxidant activity of essential oils ...................................... 99 1. DPPH radical scavenging activity ...................................... 99 2. b-Carotene bleaching assay .............................................. 99 I. Isolation and characterization of bioactive compounds from leaf extracts of Rosmarinus officinalis L. ......................... 100 1. Introduction .................................................................. 100 2. Plant collection .............................................................. 101 3. Plant preparation .......................................................... 101 4. Extraction and partitioning .............................................. 102 5. Chromatographic analysis .............................................. 102 J. Biological activity methods .................................................. 104 1. Bacterial cultures .......................................................... 104 2. Bioautographic assay of plant extracts ............................. 104 3. Vacuum liquid chromatography (VLC) ................................. 105 4. Purification of VLC fraction A ............................................. 105 K. Phytochemical screening and polyphenolic antioxidant activity of leaf extracts of Rosmarinus officinalis L ............................. 106 1. Preparation of extracts ...................................................... 106 2. Chemicals ...................................................................... 108 3. Phytochemical screening of the plant extract ..................... 108 4. Test for tannins ............................................................. 108 5. Test for alkaloids ............................................................. 109 5 6. Test for flavonoids ......................................................... 109 7. Test for saponins ............................................................. 109 8. Test for steroids ............................................................. 109 9. Determination of total phenolic composition ......................... 110 10. Estimation of total flavonoids ...................................... 110 11. Determination of total proanthocyanidins ..................... 110 12. Determination of reducing power ................................. 111 L. Antioxidant assay of plant extracts ......................................... 111 1. Ferric thiocyanate (FTC) method ...................................... 112 2. Thiobarbituric acid (TBA) method ...................................... 112 3. 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) scavenging activity .............................................. 112 4. Scavenging activity of nitric oxide ...................................... 113 5. Hydrogen peroxide scavenging activity .............................. 114 M. Spectroscopic techniques ...................................................... 114 1. Nuclear magnetic resonance .............................................. 116 2. Mass-spectroscopy .......................................................... 117 3. Infrared spectroscopy ...................................................... 117 IV. Results and Discussion .............................................................. 119 A. Essential oil yield .............................................................
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Biosynthesis of Natural Products
    63 2. Biosynthesis of Natural Products - Terpene Biosynthesis 2.1 Introduction Terpenes are a large and varied class of natural products, produced primarily by a wide variety of plants, insects, microoroganisms and animals. They are the major components of resin, and of turpentine produced from resin. The name "terpene" is derived from the word "turpentine". Terpenes are major biosynthetic building blocks within nearly every living creature. Steroids, for example, are derivatives of the triterpene squalene. When terpenes are modified, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Some authors will use the term terpene to include all terpenoids. Terpenoids are also known as Isoprenoids. Terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. Synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives. Recent estimates suggest that over 30'000 different terpenes have been characterized from natural sources. Early on it was recognized that the majority of terpenoid natural products contain a multiple of 5C-atoms. Hemiterpenes consist of a single isoprene unit, whereas the monoterpenes include e.g.: Monoterpenes CH2OH CHO CH2OH OH Myrcens
    [Show full text]
  • DIFFERENCES in Terpenoid Levels Between Plant Species Are Known To
    GENETICS OF TEP.PENES I. GENE CONTROL OF MONOTERPENE LEVELS IN PINUS MONTICOLA DOUGL. JAMES W. HANOVER Geneticist, Forestry Sciences Laboratory, lntermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Moscow, Idaho * Receivedi o.v.6 1.INTRODUCTION DIFFERENCESin terpenoid levels between plant species are known to exist but little is known about their genetic bases. The terpenes have been used extensively in biochemical systematic studies in Pinus (Mirov, 1958, 1961; Williams and Bannister, 1962; Forde, 1964), Eucalyptus (Baker and Smith, 1920; Penfold and Morrison, 1927), Cup ressacee (Erdtman, 1958),andmany other plant families and genera (Alston and Turner, 1963).Thesestudies were usually based upon the assumption that variation within a species is relatively small. Although this may be valid in some cases, Bannister et al. (1962)andothers have shown that the level of terpenes can vary with geographic origin within a species. Recent data on tree-to-tree variability in the monoterpenes of Pinus ponderosa Laws. show that such variation can be relatively large (Smith, 1964). Results of similar work in our laboratory with western white pine (Pinus monticola Dougi.) also revealed substantial qualitative and quantitative variation in the cortex monoterpenes between trees. In order to provide a basis for the use of terpenes for comparative biochemical studies, an understanding of both their variability and mode of inheritance is essential. The objective of the present study is to demonstrate the degree to which levels of six monoterpene compounds are gene-controlled in western white pine. Interrelations among the terpenes and between terpenes and growth are also considered, 2.MATERIALS AND METHODS Thematerials for this study are of three types: (i) parents—as clonal lines of grafts, () F1 progeny from crosses between the ortets (parents) represented by the clones, and () S1 progeny of the parent trees.
    [Show full text]
  • Essential Oil Characterization of Thymus Vulgaris from Various Geographical Locations
    foods Article Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations Prabodh Satyal 1,2, Brittney L. Murray 2, Robert L. McFeeters 2 and William N. Setzer 2,* 1 Alchemy Aromatic LLC, 621 Park East Blvd., New Albany, IN 47150, USA; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] (B.L.M.); [email protected] (R.L.M.) * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editor: Angel A. Carbonell-Barrachina Received: 1 September 2016; Accepted: 24 October 2016; Published: 27 October 2016 Abstract: Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%).
    [Show full text]
  • Antinociceptive Activity and Redox Profile of the Monoterpenes
    2 ISRN Toxicology well as in medicinal plants with a therapeutic property [7– 2.2. Animals. Adult male albino Swiss mice (28–34 g) were 10]. randomly housed in appropriate cages at C with a Recent works have demonstrated that monoterpenes 12/12-h light/dark cycle (light from 06:00 to 18:00),∘ with may present important pharmacological properties includ- free access to food (Purina, Brazil) and tap21 water. ± 2 We used ing antimicrobial [11], antioxidant [3], analgesic [12], and 6–8 animals in each group. Nociceptive tests were carried antitumoral [9] activities, as well as effects on cardiovascular out by the same visual observer and all efforts were made system [13] and central nervous system (CNS) [14]. (+)- to minimize the number of animals used as well as any camphene, p-cymene, and geranyl acetate (Figure 1) are discomfort. Experimental protocols were approved by the monoterpenes present in the essential oils of various plant Animal Care and Use Committee (CEPA/UFS no. 26/09) at species, such as Cypress, Origanum, and Eucalyptus oils [15, the Federal University of Sergipe. 16]. ese substances are present at signi�cant amounts in a wide variety of products derived from natural sources used as food, medicines, or other purposes in different countries. 2.3. Acetic Acid-Induced Writhing. We followed the proce- However, reports with reference to their therapeutic effects dure by Koster et al. [21]. Mice ( , per group) were by studies aiming to establish their individual characteristics, pretreated either by (+)-camphene, p-cymene, or geranyl as described in the present work, are scarce in literature.
    [Show full text]
  • Living Polymerization of Renewable Vinyl Monomers Into Bio-Based Polymers
    Polymer Journal (2015) 47, 527–536 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj FOCUS REVIEW Controlled/living polymerization of renewable vinyl monomers into bio-based polymers Kotaro Satoh1,2 In this focused review, I present an overview of our recent research on bio-based polymers produced by the controlled/living polymerization of naturally occurring or derived renewable monomers, such as terpenes, phenylpropanoids and itaconic derivatives. The judicious choice of initiating system, which was borrowed from conventional petrochemical monomers, not only allowed the polymerization to proceed efficiently but also produced well-defined controlled/living polymers from these renewable monomers. We were able to find several controlled/living systems for renewable monomers that resulted in novel bio-based polymers, including a cycloolefin polymer, an AAB alternating copolymer with an end-to-end sequence, a phenolic and high-Tg alternating styrenic copolymer, and an acrylic thermoplastic elastomer. Polymer Journal (2015) 47, 527–536; doi:10.1038/pj.2015.31; published online 13 May 2015 INTRODUCTION aliphatic olefins and styrenes,22,23 whereas the latter applies to most Bio-based polymers are attractive materials from the standpoints of unsaturated compounds bearing C = Cbonds.24–38 Controlled/living being environmentally benign and sustainable. They are usually radical polymerization can precisely control the molecular weights and derived from renewable bio-based feedstocks, such as starches, plant the terminal groups of numerous monomers and has opened a new oils and microbiota, as an alternative to traditional polymers from field of precision polymer synthesis that has been applied to the fossil resources.1 Most of the bio-based polymers produced in the production of a wide variety of functional materials based on 1990s were polyesters prepared via condensation or ring-opening controlled polymer structures.
    [Show full text]
  • Camphene, A3-Carene, Limonene, and Ot=Terpinene
    Environ. Sci. Technol. 1999, 33,4029-4033 The hydrocarbon emissions are typically divided into two Thermal Degradation of Terpenes: categories: (a) the condensed hydrocarbons of higher molecular weight that are responsible in part for the blue- Camphene, A3-Carene, Limonene, haze plume characteristic of dryer emissions and (b) the and ot=Terpinene lower molecular weight hydrocarbons (C+&), generally referred to as volatile hydrocarbons. Both nongaseous (condensed) and gaseous (volatile) hydrocarbons emitted GERALD W. MCGRAW,*,+ by wood dryers have been analyzed by a number of workers RICHARD W. HEMINGWAY,* LEONARD L. INGRAM, JR.,s (2-s). In general, the nongaseous fraction consists of a CATHERINE S. CANADY,’ AND mixture of resin acids and fatty acids and their esters as well WILLIAM B. MCGRAW+ as some sesquiterpenoid compounds and undefined oxida- tion products. The gaseous fraction is primarily made up of of Chemistry, Louisiana College, monoterpenes present in the wood and some of their Pineuille, Louisiana 71359, Southern Research Station, USDA Forest Service, 2500 Shreveport Highway, oxidation products. Comparatively little is known about the Pineuille, Louisiana 71360, and Forest Products Lab, yields, structures, and biological properties of oxidation Department of Forest Products, Mississippi State University, products of monoterpenes. Mississippi State, Mississippi 39762-9820 Cronn et al. (3) studied the gaseous emissions from a number of veneer dryers at mills in the northwest and southern U.S. From a plywood veneer dryer in the southern U.S. using a mixture of loblolly and shortleaf pines, it was Emissions from wood dryers have been of some concern found that terpenes accounted for 98.9% of the total gaseous for a number of years, and recent policy changes by the hydrocarbon emissions.
    [Show full text]
  • Salvia Officinalis L. from Italy: a Comparative Chemical And
    molecules Article Salvia officinalis L. from Italy: A Comparative Chemical and Biological Study of Its Essential Oil in the Mediterranean Context Rosa Tundis 1,* , Mariarosaria Leporini 1, Marco Bonesi 1, Simone Rovito 2 and Nicodemo G. Passalacqua 2 1 Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; [email protected] (M.L.); [email protected] (M.B.) 2 History Museum of Calabria and Botanic Garden, University of Calabria, 87036 Rende, CS, Italy; [email protected] (S.R.); [email protected] (N.G.P.) * Correspondence: [email protected]; Tel.: +39-0984-493246 Received: 21 November 2020; Accepted: 9 December 2020; Published: 10 December 2020 Abstract: Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents.
    [Show full text]
  • Terpene and Terpenoid Emissions and Secondary Organic Aerosol Production
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2013 TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION Rosa M. Flores Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons Copyright 2013 Rosa M. Flores Recommended Citation Flores, Rosa M., "TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION", Dissertation, Michigan Technological University, 2013. https://doi.org/10.37099/mtu.dc.etds/818 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Atmospheric Sciences Commons, and the Environmental Engineering Commons TERPENE AND TERPENOID EMISSIONS AND SECONDARY ORGANIC AEROSOL PRODUCTION By Rosa M. Flores A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Environmental Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2013 © Rosa M. Flores This dissertation has been approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY in Environmental Engineering. Department of Civil and Environmental Engineering Dissertation Advisor: Paul V. Doskey Committee Member : Chandrashekhar P. Joshi Committee Member : Claudio Mazzoleni Committee Member : Lynn Mazzoleni Committee Member : Judith Perlinger Department Chair: David Hand To dad
    [Show full text]
  • Toxicity of Naturally Occurring Compounds of Lamiaceae and Lauraceae to Three Stored-Product Insects
    ARTICLE IN PRESS Journal of Stored Products Research 43 (2007) 349–355 www.elsevier.com/locate/jspr Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects V. Rozmana,Ã, I. Kalinovica, Z. Korunicb aFaculty of Agriculture in Osijek, University of J. J. Strossmayer in Osijek, Trg Sv. Trojstva 3, 31000 Osijek, Croatia bDiatom Research and Consulting Inc., 14 Greenwich Dr., Guelph, Ont., Canada N1H 8B8 Accepted 18 September 2006 Abstract The compounds 1,8-cineole, camphor, eugenol, linalool, carvacrol, thymol, borneol, bornyl acetate and linalyl acetate occur naturally in the essential oils of the aromatic plants Lavandula angustifolia, Rosmarinus officinalis, Thymus vulgaris and Laurus nobilis. These compounds were evaluated for fumigant activity against adults of Sitophilus oryzae, Rhyzopertha dominica and Tribolium castaneum. The insecticidal activities varied with insect species, compound and the exposure time. The most sensitive species was S. oryzae, followed by Rhyzopertha dominica. Tribolium castaneum was highly tolerant of the tested compounds. 1,8-Cineole, borneol and thymol were highly effective against S. oryzae when applied for 24 h at the lowest dose (0.1 ml/720 ml volume). For Rhyzopertha dominica camphor and linalool were highly effective and produced 100% mortality in the same conditions. Against Tribolium castaneum no oil compounds achieved more than 20% mortality after exposure for 24 h, even with the highest dose (100 ml/720 ml volume). However, after 7 days exposure 1,8-cineole produced 92.5% mortality, followed by camphor (77.5%) and linalool (70.0%). These compounds may be suitable as fumigants because of their high volatility, effectiveness, and their safety.
    [Show full text]
  • Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases
    International Journal of Molecular Sciences Review Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases Taejoon Kim, Bokyeong Song, Kyoung Sang Cho * and Im-Soon Lee * Department of Biological Sciences, Research Center for Coupled Human and Natural Systems for Ecowelfare, Konkuk University, Seoul 05029, Korea; [email protected] (T.K.); [email protected] (B.S.) * Correspondence: [email protected] (K.S.C.); [email protected] (I.-S.L.); Tel.: +82-2-450-3424 (K.S.C.); +82-2-450-4213 (I.-S.L.) Received: 31 January 2020; Accepted: 19 March 2020; Published: 22 March 2020 Abstract: Forest trees are a major source of biogenic volatile organic compounds (BVOCs). Terpenes and terpenoids are known as the main BVOCs of forest aerosols. These compounds have been shown to display a broad range of biological activities in various human disease models, thus implying that forest aerosols containing these compounds may be related to beneficial effects of forest bathing. In this review, we surveyed studies analyzing BVOCs and selected the most abundant 23 terpenes and terpenoids emitted in forested areas of the Northern Hemisphere, which were reported to display anti-inflammatory activities. We categorized anti-inflammatory processes related to the functions of these compounds into six groups and summarized their molecular mechanisms of action. Finally, among the major 23 compounds, we examined the therapeutic potentials of 12 compounds known to be effective against respiratory inflammation, atopic dermatitis, arthritis, and neuroinflammation among various inflammatory diseases. In conclusion, the updated studies support the beneficial effects of forest aerosols and propose their potential use as chemopreventive and therapeutic agents for treating various inflammatory diseases.
    [Show full text]
  • Essential Oils Extracted from Different Species of the Lamiaceae Plant Family As Prospective Bioagents Against Several Detriment
    molecules Review Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests Asgar Ebadollahi 1,* , Masumeh Ziaee 2 and Franco Palla 3,* 1 Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-36514, Iran 2 Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran; [email protected] 3 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 38-90123, Italy * Correspondence: [email protected] (A.E.); [email protected] (F.P.) Academic Editors: Carmen Formisano, Vincenzo De Feo and Filomena Nazzaro Received: 5 March 2020; Accepted: 27 March 2020; Published: 28 March 2020 Abstract: On the basis of the side effects of detrimental synthetic chemicals, introducing healthy, available, and effective bioagents for pest management is critical. Due to this circumstance, several studies have been conducted that evaluate the pesticidal potency of plant-derived essential oils. This review presents the pesticidal efficiency of essential oils isolated from different genera of the Lamiaceae family including Agastache Gronovius, Hyptis Jacquin, Lavandula L., Lepechinia Willdenow, Mentha L., Melissa L., Ocimum L., Origanum L., Perilla L., Perovskia Kar., Phlomis L., Rosmarinus L., Salvia L., Satureja L., Teucrium L., Thymus L., Zataria Boissier, and Zhumeria Rech. Along with acute toxicity, the sublethal effects were illustrated such as repellency, antifeedant activity, and adverse effects on the protein, lipid, and carbohydrate contents, and on the esterase and glutathione S-transferase enzymes. Chemical profiles of the introduced essential oils and the pesticidal effects of their main components have also been documented including terpenes (hydrocarbon monoterpene, monoterpenoid, hydrocarbon sesquiterpene, and sesquiterpenoid) and aliphatic phenylpropanoid.
    [Show full text]