Guayule (Parthenium Argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Guayule (Parthenium Argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications molecules Review Guayule (Parthenium argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications Amandine Rousset 1,2, Ali Amor 3,4, Teerasak Punvichai 5, Sandrine Perino 2, Serge Palu 4, Michel Dorget 1,3, Daniel Pioch 4,* and Farid Chemat 2,* 1 GuaTecs, 28 rue Xavier Bichat, 72000 Le Mans, France; [email protected] (A.R.); [email protected] (M.D.) 2 Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France; [email protected] 3 CTTM, Centre de Transfert de Technologie, 72000 Le Mans, France; [email protected] 4 UR BioWooEB-Biorefinery Team, CIRAD, 34398 Montpellier, France; [email protected] 5 Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus 84000, Thailand; [email protected] * Correspondence: [email protected] (D.P.); [email protected] (F.C.) Abstract: Natural rubber is an essential material, especially for plane and truck tyres but also for medical gloves. Asia ranks first in the production of natural rubber, of which the Hevea tree is currently the sole source. However, it is anticipated that this source alone will not be able to fulfill the growing demand. Guayule, a shrub native to northern Mexico and southern United States, may also contribute. This plant not only contains polyisoprene, but also resin, a mixture of lipids and terpenoids. Citation: Rousset, A.; Amor, A.; This review summarizes various aspects of this plant, from the usage history, botanical description, Punvichai, T.; Perino, S.; Palu, S.; geographical distribution and cultivation practices, down to polyisoprene and resin biosynthesis Dorget, M.; Pioch, D.; Chemat, F. Guayule (Parthenium argentatum A. including their distribution within the plant and molecular composition. Finally, the main processes Gray), a Renewable Resource for yielding dry rubber or latex are depicted, as well as the properties of the various extracts along with Natural Polyisoprene and Resin: economic considerations. The aim is to provide a wide picture of current knowledge available about Composition, Processes and this promising crop, a good feedstock candidate for a multiple-product biorefinery. Applications. Molecules 2021, 26, 664. https://doi.org/10.3390/molecules Keywords: guayule; polyisoprene; rubber; latex; green extraction; green reagents; green chemistry 26030664 Academic Editor: Thomas Rosenau Received: 22 December 2020 1. Introduction Accepted: 25 January 2021 Plant chemistry has been receiving increased interest during the last decades, now Published: 27 January 2021 becoming fully integrated to our economy. Indeed, the petrochemicals found today in most manufactured products, are being gradually replaced by products and materials derived Publisher’s Note: MDPI stays neutral from renewable resources. Elastomers are no exception to this trend, particularly rubber, with regard to jurisdictional claims in published maps and institutional affil- an essential material of the 21st century [1]. iations. Polyisoprene (PI, the polymer taken as a whole whatever its stereoisomeric structure and origin) can be used in two different forms, either as latex (the polymer being dispersed in water, as a white liquid) or dry rubber (obtained by latex coagulation) [in this review, “polyisoprene” applies to the polymer molecule, while “rubber” is used when talking about the material which is a mixture of polyisoprene and of other components like proteins Copyright: © 2021 by the authors. and small molecules]. PI is used in more than 40,000 products, like tyres, medical gloves Licensee MDPI, Basel, Switzerland. or condoms. Synthetic routes provide a large amount of PI and of similar polymers, but This article is an open access article distributed under the terms and natural rubber and latex from Hevea (NR and NL, respectively) remain irreplaceable for conditions of the Creative Commons some applications, like plane and truck tyres or medical gloves thanks to the peculiar cis Attribution (CC BY) license (https:// chemical structure of the contained PI and to the presence of other molecules [2]. Indeed creativecommons.org/licenses/by/ NR shows better dynamic properties, especially resilience (defined as the ability to undergo 4.0/). Molecules 2021, 26, 664. https://doi.org/10.3390/molecules26030664 https://www.mdpi.com/journal/molecules MoleculesMolecules2021 2020, 26, 25, 664, x; doi: FOR PEER REVIEW 2 of 232 of 22 other molecules [2]. Indeed NR shows better dynamic properties, especially resilience (bigdefined deformations as the ability without to undergo breaking big anddeformations to recover without its initial breaking form when and to the recover constraint its is initialreleased), form as when well the as veryconstraint good resistanceis released) to, as abrasion, well as very shock good and resistance tearing [3 to,4 ].abrasion, shockMore and tearing than 2000 [3,4]. plants produce PI [5]. The best-known plants for their potential commercialMore than interest 2000 areplants part produc of thee familiesPI [5]]. The of Euphorbiaceae best-known plants(Hevea, for Bentamia, their potential Manihot ), Asteraceaecommercial(Parthenium interest are argentatum, part of the Taraxacumfamilies of kok-saghyz Euphorbiaceae) and (Hevea,Sapotaceae Bentamia,(Gutta Manihot percha,) Arga-, Asteraceaenia spinosa )[(Parth6]. Theenium more argentatum, promising Taraxacum ones are Kazakhkok-saghyz dandelion) and Sapotaceae (Taraxacum (Gutta kok-saghyz) percha, and Arganiaguayule spinosa (Parthenium) [6]. argentatumThe more A.promising Gray) [ 7,ones8]. This are reviewKazakh will dandelion focus on guayule.(Taraxacum As of koktoday,-saghyz a lot) and of scientific guayule ( papersParthenium have argentatum been published A. Gray [)9 ],[7,8] on. differentThis review aspects will focus of the on plant, granginguayule. fromAs of agronomytoday, a lot to of extraction scientific papers process, have focusing been published on PI or even [9], on resin, different a mixture as- of pectcompoundss of the plant, also found ranging in from this plant. agronomy to extraction process, focusing on PI or even resin,Guayule a mixture is of therefore compound ans interestingalso found in species this plant and. it falls within the framework of the 17 UNGuayule Sustainable is therefore Development an interesting Goals species (SDGs) and (Figure it fall1s). within These the SDGs framework were adopted of the by 17all UN United Sustainable Nations Development Member States Goals in 2015 (SDGs and) (Figure represent 1). These shared SDGs guidelines were adopted “for peace by and allprosperity United Nations for people Member and theStates planet, in 2015 now and and represent into the share future”d guidelines [10]. Indeed, “for peace guayule and can prosperitybe grown onfor marginalpeople and land, the andplanet, its PInow can and be into extracted the future” under [10] latex. Indeed, form by guayule a water-based can beprocess grown to on manufacture marginal land, non-allergenic and its PI can medical be extracted gloves under and latex condoms, form by thus a water contributing-based to process to manufacture non-allergenic medical gloves and condoms, thus contributing to people’s health and safety; in addition, a range of co-products can be valorized [11,12]. The people’s health and safety; in addition, a range of co-products can be valorized [11,12]. current interest on guayule leads to large international multi-scope projects, in view of The current interest on guayule leads to large international multi-scope projects, in view setting-up a new production chain, potentially opening new jobs in agriculture, academia of setting-up a new production chain, potentially opening new jobs in agriculture, aca- and industry. demia and industry. Figure 1. UUnitednited Nations Nations SDGs SDGs app appliedlied to toguayule guayule and and their their impacts impacts.. 2. History of Guayule Molecules 2021, 26, 664 3 of 22 2. History of Guayule Guayule, also called “yerba de hule” is native to the desert of Chihuaha, located in Mexico and southern Texas in the United States. The name comes from the Nahuatl language (Aztec): quahu (wood, tree, forest) and olli (rubber). During the pre-Columbian times, it was basic knowledge that guayule contained an elastomer. The Aztecs used it to make rubber balls by mastication of the bark [13,14]. According to Lloyd [13], guayule was first documented by Bigelow, a member of the Mexican Boundary Survey party, in 1852. He submitted specimens he had collected in Texas to Harvard University, where Asa Gray named it botanically [15]. It was first presented to the public at the Centennial Exposition of 1876 in Philadelphia by the Mexican Government. On the same year, the Natural History Society of Mexico investigated the plant and reported the presence of good quality rubber [15] (Figure2). Rediscovery of the plant by J. M. Bigelow Emergency Rubber Project 1852 1942 Centennial Exposition at Philadelphia End of the World War II 1876 1945 Obtention of rubber by the Mecanical Rubber Company in New Jersey 1888 Mexican Revolution Oil Embargo - Project by Firestone and Goodyear 1910 1970 Discovery of America by Christopher Columbus Great Depression Native Latex Act 1492 1929 1978 Conquest of the Aztec Empire by Hernan Cortes Establishment of SAIGA in Italy EPOBIO & EU-PEARLS Projects 1521 1937 2005 1200 1500 1900 2000 [1220......1480] [1530......1850] Research in Europe, Australia, New Zealand, Argentina, Morocco Production
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Author Index to USDA Technical Bulletins
    USD Index to USDA United States Department of Agriculture Technical Bulletins Compiled in March 2003 by: ARS Ellen Kay Miller Agricultural D.C. Reference Center Research Service National Agricultural Library Agricultural Research Service U.S. Department of Agriculture NAL Updated November 2003 National Agricultural Library National Agricultural Library Cataloging Record: Miller, Ellen K. Index to USDA Technical Bulletins 1. United States. Dept. of Agriculture--Periodicals, Indexes. I. Title. aZ5073.I52-1993 Contents USDA Technical Bulletins by Title USDA Technical Bulletins by Number - 1-1906 Subject Index (with links to Bulletin Title) Author Index (with links to Bulletin Title) The National Agricultural Library call number of each Agriculture Information Bulletin is (1--Ag84Te-no.xxx), where xxx is the series document number of the publication. Titles held by the National Agricultural Library can be verified in the Library's AGRICOLA database. To obtain copies of these documents, contact your local or state libraries, including public libraries, land-grant university libraries, or other large research libraries. Note: An older edition of this document was published in 1993: Index to USDA Technical Bulletins, Numbers 1-1802. The current edition is an Internet-based document, and includes links to full-text USDA Technical Bulletins on the Internet. Technical Bulletins by Title Skip Navigation Bar | By Title | By Number | Subject Index | Author Index Go to: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A Accounting for the environment in agriculture. Hrubovcak, James; LeBlanc, Michael, and Eakin, B.
    [Show full text]
  • Floristic Inventory of Fort Laramie National Historic Site
    FLORISTIC INVENTORY OF FORT LARAMIE NATIONAL HISTORIC SITE Prepared for Northern Great Plains Inventory Program National Park Service and Fort Laramie National Historic Site National Park Service HC 72 Box 389 Fort Laramie, WY 82212 by Bonnie Heidel Wyoming Natural Diversity Database University of Wyoming Laramie December 2004 ABSTRACT Fort Laramie National Historic Site (FOLA) is a landmark of western history. It lies at the confluence of two major rivers, the North Platte and the Laramie, which were Rocky Mountain travel corridors and gateways to natural resources for traders, military personnel, settlers, and Native Americans alike. For all of the research on the local and regional human history and vast natural resources of the Rocky Mountains there had not been systematic documentation of natural resources as represented by the flora and fauna at many of the parks and historic sites administered by the National Park Service (NPS), such as FOLA. Baseline floristic inventory at FOLA was identified as a priority by the NPS under the Inventory and Monitoring initiative. Existing floristic information was earlier compiled and interpreted from vascular plant collections made in FOLA (Fertig 2001). From these data, a total of 177 plant species were reported. This represented 26.7% of the Goshen County flora known at that time. An additional 182 plant species were inferred as likely to be present because they were known from elsewhere in the county and occupied habitats similar to those found at the FOLA. Systematic floristic surveys conducted at FOLA from June 2003 – September 2004 more than doubled the documented flora to 376 species with the addition of 201 species (114% increase).
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]
  • A Review on Pharmaceutical Potential of Parthenium Plant
    A Review on Pharmaceutical Potential of Parthenium Plant Shabari Girish, M. Harshini, Lokesh Ravi Department of Botany, St. Joseph’s College (Autonomous), Bengaluru, Karnataka, India Abstract Parthenium plant, in general, is known to be harmful, dangerous, and invasive in nature. It causes much economic loss to farmers by affecting the cultivation of crops and considered to be a threat to primary production of crops and biodiversity as well. Parthenium hysterophorus a weed belonging to the family Asteraceae, it is an erect short-lived plant and is known for its fleshy growth along sides of abandoned places, roadsides, and uncultivated lands. This REVIEW ARTICLE REVIEW weed is found in hot and humid climates around the globe. This invasive species is known with different names in different countries such as carrot weed, star weed, congress grass, wild feverfew, ragweed, bitter weed, and white top. The spread of P. hysterophorus has been found to cause enormous loss to biodiversity by replacing natural ecosystems and sometimes known to cause total habit alternation. In this review article, we discuss P. hysterophorus as a weed, its origin, reproductive bionomics, chemical composition, and its pharmaceutical potential as antibacterial, anti-inflammatory, hypoglycemic, anti-HIV, and antitumor activity in detail. Key words: Antibacterial, Antifungal, melatonin, parthenin, Parthenium hysterophorus, pharmaceutical activities INTRODUCTION This herb is known for its vigorous growth and high fertility[8] in all climatic conditions, especially warmer climates.[9] It causes arthenium species is a highly toxic and ecological and agricultural losses every year on a large scale threateningly invasive weed found in and is considered as one of the worst weeds for its invasiveness Pmore than 30 countries.[1] This plant and environmental aspects.
    [Show full text]
  • A Publication of the Wyoming Native Plant Society
    Castilleja A Publication of the Wyoming Native Plant Society Mar 2007, Volume 26, No. 1 Posted at www.uwyo.edu/wyndd/wnps/wnps_home.htm In this issue: Pioneering Champion. 1 Coming Attractions . 2 Treatment for Plant Blindness. .3 Mountain Pine Beetles and Blister Rust in Whitebark Pine . .4 USFS Species Conservation Assessments . 7 Myxomycetes of Thunder Basin National Grassland. .8 Flora of North America Note Cards . 10 Pioneering Champion Emerging leaves of plains cottonwood (Populus deltoides var. occidentalis; P. deltoides ssp. monilifera; P. sargentii) lend green brilliance to waterways across lower elevations of Wyoming, befitting its status as the State Tree. The original State Tree designation in 1947 was inspired by a regal plains cottonwood tree near Thermopolis that burned down in 1955. Plains cottonwood still reigns in Wyoming‘s champion tree register, kept by the State Division of Forestry (http://slf-web.state.wy.us/forestry/champtree.aspx ). Plains cottonwood (Populus sargentii). In: The plains cottonwood title is held by a tree of 31 Britton, N.L., and A. Brown. 1913. Illustrated flora of the ft circumference, 64 ft height, and with a crown northern states and Canada. Vol. 1: 591. Courtesy of span of 100 ft in Albany County, the largest of all Kentucky Native Plant Society. Scanned by Omnitek Inc. Wyoming‘s plains cottonwood trees. This individual is also larger in circumference and crown spread the fastest-growing tree on the plains. This same than all other known species of champion trees in pioneering ability is a setback under altered water the state. flows, drought and competition in floodplain succession or competition from non-native species.
    [Show full text]
  • 2019 Cover Art (In Collaboration with 4-H Youth Development, University of Arizona Cooperative Extension)
    Association for the Advancement of Industrial Crops Advancing the adoption of industrial crops through innovation and technology El Conquistador Hilton Resort Tucson, Arizona USA September 8-11, 2019 Cover art (in collaboration with 4-H Youth Development, University of Arizona Cooperative Extension) PLANT MATTER MAKES THE WORLD GO ROUND Alexis Peck, Grade 11, Duncan High School, Duncan, AZ ASSOCIATION FOR THE ADVANCEMENT OF INDUSTRIAL CROPS www.aaic.org “ADVANCING THE ADOPTION OF INDUSTRIAL CROPS THROUGH INNOVATION AND TECHNOLOGY” 31st Annual Meeting September 8-11, 2019 Tucson, Arizona USA Sponsors i AAIC BOARD OF DIRECTORS President: Von Mark V. Cruz, Bridgestone Americas, Inc., Eloy, AZ, USA President-Elect: Federica Zanetti, University of Bologna, Bologna, Italy Past-President: Jim Todd, Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Simcoe, ON, Canada Secretary: Claire C. Heinitz, USDA-ARS National Arid Land Plant Genetic Resources Unit, Parlier, CA, USA Treasurer: Burton L. Johnson, North Dakota State University, Fargo, ND, USA Registrar / Valerie H. Teetor, University of Arizona, Tucson, AZ, USA Membership: Webmaster: Von Mark V. Cruz, Bridgestone Americas, Inc., Eloy, AZ, USA Division Chairs Fibers & Cellulosics: Efthymia Alexopoulou, Centre for Renewable Energy Sources and Saving (CRES), Pikermi, Greece General Crops & Ana Luisa Fernando, Nova University of Lisbon, Lisbon, Portugal Products: Medicinal & Diana Jasso De Rodríguez, Universidad Autónoma Agraria Antonio Nutraceutical Plants: Narro, Saltillo, Coahuila, México Natural Rubber & Guangyao (Sam) Wang, Bridgestone Americas, Inc., Eloy, AZ, USA Resins: Oilseeds: Hussein Abdel-Haleem, USDA-ARS ALARC, Maricopa, AZ, USA To cite this publication: Cruz, V.M.V. and M. Berti. (eds.) 2019. Advancing the Adoption of Industrial Crops through Innovation and Technology.
    [Show full text]
  • (Parthenium Hysterophorus L.) on the Range Ecosystem Dynamics of the Jijiga Rangeland, Ethiopia
    THE IMPACT OF PARTHENIUM (PARTHENIUM HYSTEROPHORUS L.) ON THE RANGE ECOSYSTEM DYNAMICS OF THE JIJIGA RANGELAND, ETHIOPIA M.Sc. THESIS SHASHIE AYELE April 2007 Haramaya University IMPACT OF PARTHENIUM (Parthenium hysterophorus L.) ON THE RANGE ECOSYSTEM DYNAMICS OF THE JIJIGA RANGELAND, ETHIOPIA A Thesis Submitted to the Department of Animal Sciences, School of Graduate Studies HARAMAYA UNIVERSITY In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN AGRICLTURE (RANGE ECOLOGY AND MANAGEMENT) By Shashie Ayele April 2007 Haramaya University ii SCHOOL OF GRADUATE STUDIES HARAMAYA UNIVERSITY As Thesis research advisor, I hereby certify that I have read and evaluated this Thesis prepared under my guide, by SHASHIE AYELE Entitled: The IMPACT OF PARTHENIUM (Parthenium hysterophorus L.) ON THE RANGE ECOSYSTEM DYNAMICS OF THE JIJIGA RANGELAND, ETHIOPIA. “I recommend that it be subjected as fulfilling the Thesis requirement’’. ________________________ __________________ ________________ Major advisor Signature Date ________________________ __________________ ________________ Co-advisor Signature Date As member of the Board of examiners of the M.Sc. Thesis Open Defense Examination, we certify that we have read, evaluated the thesis prepared by SHASHIE AYELE and examined the candidate. We recommended that the Thesis be accepted as fulfilling the thesis requirement for the degree of Master Science in Agriculture (Range Ecology and Management). ________________________ __________________ ________________ Chairman, EB Signature Date ________________________ __________________ ________________ Internal Examiner Signature Date ________________________ __________________ ________________ External Examiner Signature Date iii DEDICATION The author dedicates this piece of work to her father Ayele Yemenue and her mother Aleme Sendekae for their consistent and unreserved encouragement throughout her educational carriers.
    [Show full text]
  • Essential Oil Characterization of Thymus Vulgaris from Various Geographical Locations
    foods Article Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations Prabodh Satyal 1,2, Brittney L. Murray 2, Robert L. McFeeters 2 and William N. Setzer 2,* 1 Alchemy Aromatic LLC, 621 Park East Blvd., New Albany, IN 47150, USA; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] (B.L.M.); [email protected] (R.L.M.) * Correspondence: [email protected]; Tel.: +1-256-824-6519 Academic Editor: Angel A. Carbonell-Barrachina Received: 1 September 2016; Accepted: 24 October 2016; Published: 27 October 2016 Abstract: Thyme (Thymus vulgaris L.) is a commonly used flavoring agent and medicinal herb. Several chemotypes of thyme, based on essential oil compositions, have been established, including (1) linalool; (2) borneol; (3) geraniol; (4) sabinene hydrate; (5) thymol; (6) carvacrol, as well as a number of multiple-component chemotypes. In this work, two different T. vulgaris essential oils were obtained from France and two were obtained from Serbia. The chemical compositions were determined using gas chromatography–mass spectrometry. In addition, chiral gas chromatography was used to determine the enantiomeric compositions of several monoterpenoid components. The T. vulgaris oil from Nyons, France was of the linalool chemotype (linalool, 76.2%; linalyl acetate, 14.3%); the oil sample from Jablanicki, Serbia was of the geraniol chemotype (geraniol, 59.8%; geranyl acetate, 16.7%); the sample from Pomoravje District, Serbia was of the sabinene hydrate chemotype (cis-sabinene hydrate, 30.8%; trans-sabinene hydrate, 5.0%); and the essential oil from Richerenches, France was of the thymol chemotype (thymol, 47.1%; p-cymene, 20.1%).
    [Show full text]
  • Proceedings: Shrubland Dynamics -- Fire and Water
    Ecology and Population Biology Session Estimating Aboveground Biomass of Mariola (Parthenium incanum) from Plant Dimensions Carlos Villalobos1 Abstract: The distribution and abundance of plant biomass in space and time are important properties of rangeland ecosystem. Land managers and researchers require reliable shrub weight estimates to evaluate site productivity, food abundance, treatment effects, and stocking rates. Rapid, nondestructive methods are needed to estimate shrub biomass in semi-arid ecosystems. Shrub height and crown diameter are useful non-destructive measures of shrub size. Mariola (Parthenium incanum) is an important shrub that is widely distributed in the Chihuahuan and Sonoran deserts. Mariola is found from the southwest United States to the central part of Mexico. Regression analyses were used to examine the relationships between aboveground biomass and four plant measurements (shrub height, longest canopy width, shortest canopy width, and crown volume) from 45 plants. All variables were related to aerial biomass; R values varied from 0.73 to 0.98. Regression equations developed for mariola compared favorably to equations in similar species in desert environments, suggesting that results might be applicable to other desert regions for rapid and accurate estimation of shrub biomass. Introduction goldeneye (Viguiera cordifolia), and ocotillo (Fouquieria splendens). Among these shrubs, fourwing saltbush The Chihuahuan desert is the largest of the three creosote- (Atriplex canescens) and mariola (Parthenium incanum) bush-dominated deserts in North America. The Chihuahuan are important components of the diet of grazing animals. desert covers 450,000 to 629,000 km2 (Henrickson and Maynez and others (1984) evaluated the nutritional value Straw 1976; Morafka 1977; Dinerstein and others 2000) of mariola by collecting samples during 1 year in a monthly in eastern Chihuahua, western Coahuila, San Luis, Potosi, period.
    [Show full text]
  • Guayule (Pathenium Argentatum) Plant Guide
    Natural Resources Conservation Service Plant Guide GUAYULE Parthenium argentatum A. Gray Plant Symbol = PAAR5 Common Names: guayule Description General: Guayule is a perennial shrub with thick lignified stems, a low, spreading form, and an average height of approximately 20 inches (USDA, 1945). The leaves are greenish-grey and are covered with small hairs that aid in reducing evapotranspiration. Guayule has a deep, coarse taproot to collect water and nutrients from deep in the soil profile as well as a shallow fibrous system to collect moisture from brief desert rainfall (USDA, 1945; Muller, 1946). It flowers in the spring and through most of the summer months. The small, yellow composite flowers formed at the end of a stem are approximately 6 inches long. Reproduction is by facultative apomixis or sexual reproduction and results in small seeds, 0.12 inches long and 0.06 Guayule. Photo by Blase Evancho. University of Arizona inches wide, of relatively low viability (Lloyd, 1911). Cooperative Extension. Distribution: Native guayule stands are distributed throughout the northeastern parts of the Chihuahuan Desert from Mexico to the Big Bend region of Texas. For current distribution, please consult the Plant Profile page for this species on the PLANTS Website. Habitat: Guayule is frequently found in the foothills and hillslopes of the transitional zone between desert and desert grassland regions. It prefers shallow, sandy soils formed from limestone where it has the highest competitive advantage over other flora (Lloyd, 1911). Adaptation Guayule is a long lived, desert adapted shrub but requires more water than associated desert vegetation for active growth (Muller, 1946).
    [Show full text]
  • A Publication of the Wyoming Native Plant Society
    Castilleja A Publication of the Wyoming Native Plant Society www.uwyo.edu/wyndd/wnps/wnps_home.htm March 2003 Volume 22 No. 1 In this issue: Megadrought 1, 4 WNPS News, Meetings 2 Phlox Family 3 Wetlands Work 5 Forest Service Region 2 Sensitive List 7 -8 Moonwort Stalking Confessions 9 - 11 Ask Linnaeus 11 Botanists Seek to Understand Megadroughts The past holds keys to the future and the clues are in the records marked by annual tree rings. University of Wyoming botanists Stephen Gray, Stephen Jackson and colleagues are publishing results of 750-year-long tree-ring chronologies examined from a network of study sites in the central and southern Rockies for multi- decade variability in precipitation (Gray et al. 2003). The study suggests that the Great Plains, the Rockies, and the Southwest are stricken by ‘megadroughts’ when the tropical Pacific turns cold at the same time that the North Atlantic warms. Parthenium alpinum Multi-year persistence of these ocean conditions a Ray floret can result in multi-year severe droughts in the b Composite flower western interior of North America. (cont. p. 4) c Leaf Illustration by B. Heidel Wyoming Harbinger of Spring Wyoming feverfew (Parthenium alpinum Smithsonian Institution on the first list of Nutt.; also called alpine feverfew) is a stemless, potentially endangered and threatened plants of mat-forming perennial forb of the Aster family the United States (Ayensu et al. 1978) but found (Asteraceae). It arises from a deep, woody to be more common and taken off the list in 1985. caudex and each branch of the caudex is crowned Currently, there are at least 44 populations known by rosettes of leaves.
    [Show full text]