Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti-Aging Potential Parris Kidd, Phd

Total Page:16

File Type:pdf, Size:1020Kb

Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti-Aging Potential Parris Kidd, Phd Monograph amr Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti-Aging Potential Parris Kidd, PhD Abstract Introduction Astaxanthin, a xanthophyll carotenoid, is a nutrient with Astaxanthin is a carotenoid nutrient with unique cell membrane actions and diverse clinical benefits. molecular properties that precisely position it This molecule neutralizes free radicals or other oxidants by within cell membranes and circulating lipoproteins, either accepting or donating electrons, and without being thereby imbuing them with potent antioxidant and destroyed or becoming a pro-oxidant in the process. Its linear, anti-inflammatory actions.1,2 Astaxanthin also polar-nonpolar-polar molecular layout equips it to precisely effectively protects the double membrane system insert into the membrane and span its entire width. In this of mitochondria, to the point of boosting their position, astaxanthin can intercept reactive molecular species energy production efficiency.3 As a dietary supple- within the membrane’s hydrophobic interior and along its ment, astaxanthin demonstrates an exceptional hydrophilic boundaries. Clinically, astaxanthin has shown range of benefits, mostly at very modest dietary diverse benefits, with excellent safety and tolerability. In intakes (40 mg/day or less). The molecular struc- double-blind, randomized controlled trials (RCTs), astaxanthin ture of astaxanthin is illustrated in Figure 1. lowered oxidative stress in overweight and obese subjects and Humans do not make astaxanthin.4 Current in smokers. It blocked oxidative DNA damage, lowered human dietary intake is almost exclusively from C-reactive protein (CRP) and other inflammation biomarkers, seafood. Astaxanthin is produced by algae, bacteria, and boosted immunity in the tuberculin skin test. Astaxanthin and fungi, and concentrates higher up the food lowered triglycerides and raised HDL-cholesterol in another chain as these primary producers are consumed for trial and improved blood flow in an experimental microcircula- food.5 Its naturally intense red color brightens the tion model. It improved cognition in a small clinical trial and flesh, skin, or exoskeleton of animals, such as crabs, boosted proliferation and differentiation of cultured nerve crayfish, krill, lobsters, salmon, shrimp, and trout. stem cells. In several Japanese RCTs, astaxanthin improved It is also fed to farmed seafood for this coloring visual acuity and eye accommodation. It improved reproduc- purpose. Astaxanthin also occurs naturally in Parris M. Kidd, PhD – Cell tive performance in men and reflux symptoms in H. pylori flamingo feathers (where it is responsible for the biology; University of Califor- patients. In preliminary trials it showed promise for sports characteristic color) and the retinas of quail.6 nia, Berkeley; contributing editor, Alternative Medicine performance (soccer). In cultured cells, astaxanthin protected Although synthetic astaxanthin is available, it Review; health educator; the mitochondria against endogenous oxygen radicals, has a different molecular profile than the natural biomedical consultant to the conserved their redox (antioxidant) capacity, and enhanced material, as do certain manufactured astaxanthin dietary supplement industry. Correspondence address: their energy production efficiency. The concentrations used in esters. This review is therefore restricted to natural 847 Elm Street, El Cerrito, these cells would be attainable in humans by modest dietary astaxanthin, virtually all of which comes from CA 94530 intakes. Astaxanthin’s clinical success extends beyond commercial cultures of the single-celled alga Email: [email protected] protection against oxidative stress and inflammation, to Haematococcus pluvialis (H. pluvialis).7 demonstrable promise for slowing age-related functional The clinical and basic science research on decline. astaxanthin is considerable, although a number of (Altern Med Rev 2011;16(4):355-364) the clinical trials in circulation were not published 355 Alternative Medicine Review Volume 16, Number 4 Copyright © 2011 Alternative Medicine Review, LLC. All Rights Reserved. No Reprint Without Written Permission. amr Monograph in peer-reviewed journals and some were published Complex Three-Dimensional Chemistry Key words: astaxanthin, antioxidant, carotenoid, only in Japanese. However, the English-language, The bonding patterns of natural astaxanthin cardiovascular, cell mem- peer-reviewed publications sufficiently establish generate many different molecular forms (isomers), branes, cognition, CRP, DNA astaxanthin as a nutrient with broad-ranging each with its unique three-dimensional shape. The damage, eye accommoda- tion, free radicals, H. pylori, efficacy and safety. intricacies of astaxanthin’s isomer array are beyond inflammation, immunity, the scope of this review. Pertaining to its use as a male fertility, mitochondria, Biochemistry dietary supplement, virtually all commercially oxidative stress, redox, vision, The Unique Molecular Layout of Astaxanthin available natural astaxanthin is predominantly in xanthophyll Astaxanthin (3,3’-dihydroxy-beta,beta-carotene- the all-trans geometric form 3S,3S’ Astaxanthin, as 4,4’-dione) belongs to the xanthophyll subclass of occurs in H. pluvialis and as illustrated in Figure 1. carotenoids. It has oxygen in its molecular struc- This is the predominant natural astaxanthin used ture, which sets it apart from beta-carotene and in all clinical trials to date. other molecules of the carotene subclass.5 The Another complication in the chemistry of natural astaxanthin molecule has an extended shape, with astaxanthin is that the molecule in its free form is a polar structure at either end of the molecule and relatively uncommon within the various organisms a nonpolar zone in the middle (Figure 1). The polar that produce it. Instead, most of this astaxanthin is structures are ionone rings that have potent either conjugated with proteins or esterified with capacity for quenching free radicals or other one or two fatty acids (as astaxanthin acyl monoes- oxidants, primarily in an aqueous environment, ters or diesters).11 Acyl esters make up more than but possibly also in the absence of water.8,9 99 percent of the astaxanthin from H. pluvialis and Figure 1. Molecular Layout of All-trans Astaxanthin, the Major Molecular Species in Natural Foods and Dietary Supplements O OH HO O all-trans astaxanthin Note the polar ionone rings at the ends and the non-polar zone of conjugated carbon-carbon bonds in the middle. The nonpolar middle segment of the astaxanthin approximately 80 percent of astaxanthin in molecule is a series of carbon-carbon double bonds, krill.11,12 Thus, acyl monoester and diester forms which alternate with carbon-carbon single bonds make up virtually all the astaxanthin currently – termed “conjugated.” This series of conjugated available in dietary supplements. double bonds gives the molecule a further antioxi- dant dimension, with a capacity to remove high- Metabolism: Absorption and Tissue energy electrons from free radicals and “delocalize” Distribution their electronic energy via the carbon-carbon chain In pharmacokinetic studies, after ingestion of – analogous to a lightning rod on the molecular esterified natural astaxanthin, only unesterified level (Figure 2).10 This polar-nonpolar-polar layout astaxanthin appears in the blood.13 This is most also allows the astaxanthin molecule to take a likely due to breaking the ester bonds by digestive transmembrane orientation, making a precise fit enzymes via their hydrolytic activity. Absorption into the polar-nonpolar-polar span of the cell into the intestinal lining cells (enterocytes) is membrane. thought to occur by passive diffusion and is Copyright © 2011 Alternative Medicine Review, LLC. All Rights Reserved. No Reprint Without Written Permission. Volume 16, Number 4 Alternative Medicine Review 356 Monograph amr Figure 2. Transverse Cell Membrane Orientation of 3S,3S’ Astaxanthin, the Major Molecular Form from H. pluvialis10 Vitamin C 3S, 3S’ Astaxanthin OH Extracellular e- e- O Space HO Oxidized O phospholipid HO OH HO OH O O Polar Heads (Hydrophilic) e- e- e- CholesterolCholesterol Bi-layer e- Membrane Fatty Acids Tails e- (Hydrophobic) O O Polar Heads OH (Hydrophilic) HO e- ROS Cytoplasm e- e- e- 3S, 3S’ Astaxanthin The polar end groups overlap the polar boundary zones of the membrane, while the nonpolar middle ts the membrane’s nonpolar interior. The dashed red line speculatively indicates “lightning-rod” conduction of electrons along the astaxanthin molecule, possibly to vitamin C or other antoxidants located outside the membrane. From: Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inammation in cardiovascular disease. Am J Cardiol 2008;101(suppl):58D-68D. Used with permission. facilitated in the presence of fat or other lipids.14 When astaxanthin is fed to human subjects, The enterocytes then incorporate the unesterified detailed pharmacokinetic data are difficult to astaxanthin into chylomicrons, which transport it obtain for single doses of less than 10 mg, due to to the liver.13 The liver does not convert this limitations of assay precision.13 However, there is molecule to vitamin A or otherwise biochemically good data to indicate a single 10-mg dose can transform it.4 Instead it becomes incorporated into persist in the blood for 24 hours and a 100-mg low-density lipoprotein (LDL) and high-density dose for 76 hours.13 Doses as low as 1
Recommended publications
  • Carotenoid Oxidation Products Are Stress Signals That Mediate Gene Responses to Singlet Oxygen in Plants
    Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants Fanny Ramela,b,c, Simona Birtica,b,c, Christian Giniesd, Ludivine Soubigou-Taconnate, Christian Triantaphylidèsa,b,c, and Michel Havauxa,b,c,1 aCommissariat à l’Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Laboratoire d’Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France; bCentre National de la Recherche Scientifique, Unité Mixte de Recherche Biologie Végétale et Microbiologie Environnementales, F-13108 Saint-Paul-lez-Durance, France; cUniversité Aix-Marseille, F-13108 Saint-Paul-lez- Durance, France; dInstitut National de la Recherche Agronomique, Unité Mixte de Recherche 408 SQPOV, Université d’Avignon et des Pays de Vaucluse, F-84000 Avignon, France; and eGénomiques Fonctionnelles d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche Institut National de la Recherche Agronomique 1165, Equipe de Recherche Labellisée Centre National de la Recherche Scientifique 8196, Université d’Evry Val d’Essonne, 91057 Evry, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and accepted by the Editorial Board February 23, 2012 (received for review September 29, 2011) 1 O2 (singlet oxygen) is a reactive O2 species produced from triplet toxicity (4, 10, 11) and, therefore, products resulting from their 1 excited chlorophylls in the chloroplasts, especially when plants are direct oxidation by O2 are potential candidates for this function. exposed to excess light energy. Similarly to other active O2 species, This possibility is explored in the present work. 1 O2 has a dual effect: It is toxic, causing oxidation of biomolecules, and it can act as a signal molecule that leads to cell death or to Results 1 1 acclimation.
    [Show full text]
  • Ionones When Used As Fragrance Ingredients Q
    Available online at www.sciencedirect.com Food and Chemical Toxicology 45 (2007) S130–S167 www.elsevier.com/locate/foodchemtox Review A toxicologic and dermatologic assessment of ionones when used as fragrance ingredients q The RIFM Expert Panel D. Belsito a, D. Bickers b, M. Bruze c, P. Calow d, H. Greim e, J.M. Hanifin f, A.E. Rogers g, J.H. Saurat h, I.G. Sipes i, H. Tagami j a University of Missouri (Kansas City), c/o American Dermatology Associates, LLC, 6333 Long Avenue, Third Floor, Shawnee, KS 66216, USA b Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Avenue, New York, NY 10032, USA c Lund University, Malmo University Hospital, Department of Occupational and Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d Institut for Miliovurdering, Environmental Assessment Institute, Linne´sgade 18, First Floor, Copenhagen 1361 K, Denmark e Technical University of Munich, Institute for Toxicology and Environmental Hygiene, Hohenbachernstrasse 15-17, Freising-Weihenstephan D-85354, Germany f Oregon Health Sciences University, Department of Dermatology L468, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA g Boston University School of Medicine, Department of Pathology and Laboratory Medicine, 715 Albany Street, L-804, Boston, MA 02118-2526, USA h Hospital Cantonal Universitaire, Clinique et Policlinique de Dermatologie, 24, Rue Micheli-du-Crest, Geneve 14 1211, Switzerland i Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA j 3-27-1 Kaigamori, Aoba-ku, Sendai 981-0942, Japan Abstract An evaluation and review of a structurally related group of fragrance materials.
    [Show full text]
  • Light-Induced Changes in an Aqueous Β-Carotene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIR Universita degli studi di Milano 5238 J. Agric. Food Chem. 2007, 55, 5238−5245 Light-Induced Changes in an Aqueous â-Carotene System Stored under Halogen and Fluorescent Lamps, Affected by Two Oxygen Partial Pressures SARA LIMBO,* LUISA TORRI, AND LUCIANO PIERGIOVANNI Department of Food Science and Microbiology, University of Milan, Via Celoria 2, 20133 Milan, Italy The aim of this work was to investigate the reaction kinetics of â-carotene in an aqueous medium as a function of exposure to commercial lights (halogen and fluorescent sources) and oxygen partial pressures. The evolution of the pigment concentration, the changes in color, and the accumulation of a volatile compound (â-ionone) were monitored during storage. The kinetics of degradation were mathematically modeled to compare the effects of lighting conditions and oxygen partial pressures. Lighting was also a critical variable in the presence of a low oxygen partial pressure (5 kPa), and in these conditions, the â-carotene degraded completely during storage, even if more slowly than at 20 kPa of O2. The pigment degradation was correlated to illuminance and UVA irradiance values, but the different decay rates of the fluorescent lamps were explained by the differences in the blue region of the energy emission spectra. A halogen lamp gave minor negative effects on â-carotene degradation. KEYWORDS: Light; halogen lamp; fluorescent lamp; â-carotene; â-ionone; aqueous system; color INTRODUCTION chemical bonds (6, 9). The effects of light on the degradation of packaged foods have been widely investigated especially Food color and appearance are important visually perceived when lipidic substrates are involved (10); attention has therefore factors that contribute to customer selection (1).
    [Show full text]
  • Photochemical Degradation of Antioxidants: Kinetics and Molecular End Products
    Photochemical degradation of antioxidants: kinetics and molecular end products Sofia Semitsoglou Tsiapou 2020 Americas Conference IUVA [email protected] 03/11/2020 Global carbon cycle and turnover of DOC 750 Atmospheric CO2 Surface Dissolved Inorganic C 610 1,020 Dissolved Terrestrial Organic Biosphere Carbon 662 Deep Dissolved 38,100 Inorganic C Gt C (1015 gC) Global carbon cycle and turnover of DOC DOC (mM) Stephens & Aluwihare ( unpublished) Buchan et al. 2014, Nature Reviews Microbiology Problem definition Enzymatic processes Bacteria Labile Recalcitrant Fungi Light Corganic Algae Corganic Radicals Carotenoids (∙OH, ROO∙) ➢ LC-MS ➢ GC-MS H2O-soluble products As Biomarkers for ➢ GC-IRMS Corg sources, fate and reactivity??? Hypotheses 1. Carotenoids in fungi neutralize free radicals and counteract oxidative stress and in marine environments are thought to serve as precursors for recalcitrant DOC 2. Carotenoid oxidation products can accumulate and their production and release can represent an important flux of recalcitrant DOC 3. Biological sources and diagenetic pathways of carotenoids are encoded into the fine-structure as well as isotopic composition of the degradation products FUNgal experiments Strains Culture cultivation - Unidentified - Potato Dextrose broth medium - Aspergillus candidus - Incubated 7 days - Aspergillus flavus - Aerobic conditions - Aspergillus terreus - Under natural light (28℃ ) - Penicillium sp. Biomass and Media Lyophilization extracts Bligh and Dyer method (for lipids analysis) FUNgal experiments a) ABTS assay: antioxidant activity Biomass and Media extracts b) LC-MS : CAR-like compounds c) Photo-oxidation of selected Biomass carotenoids extracts ABTS assay: fungal antioxidant activity Trolox Equivalent Antioxidant Capacity (TEAC) 400 350 300 250 200 Medium 150 Biomass extracted] 100 50 0 TEAC [µmol of Trolox/mg of biomass of of[µmol Trolox/mg TEAC Unidentified Aspergillus Aspergillus Aspergillus Penicillium candidus flavus terreus sp.
    [Show full text]
  • Tomato-Based Products and Lycopene in the Prevention of Cancer: Bioavailability and Antioxidant Properties
    CANCER PREVENTION RESEARCH □ REVIEW ARTICLE □ Tomato-based Products and Lycopene in the Prevention of Cancer: Bioavailability and Antioxidant Properties Eun-Sun Hwang School of Agricultural Biotechnology and Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea Epidemiological studies showed that dietary intakes of tomatoes and tomato products are associated with a decreased risk of chronic diseases, such as cancer and cardiovascular disease. This beneficial effect could be related to a high intake of carotenoids such as lycopene or β-carotene. Lycopene is present in tomatoes and tomato products and it is one of the most potent antioxidants among dietary carotenoids. Serum and tissue lycopene levels have been found to be inversely related to the incidence of several types of cancer, including prostate cancer. Although the antioxidant properties of lycopene are thought to be primarily responsible for its beneficial effects, evidence is accumulating to suggest that other mechanisms may also be involved. The bioavailability of lycopene is an essential requirement to sustain its in vivo role. This review outlined the characteristics of lycopene and its bioavailability in human body. (Cancer Prev Res 10, 81-88, 2005) ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ Key Words: Tomato, Lycopene, Carotenoids, Bioavailability, Antioxidant, Cancer prevention of vitamin A.2) The ability to function as a provitamin A was INTRODUCTION limited to those carotenoids with an unsubstituted β-ionone group, and include α-carotene, β-carotene, and β-cryptoxan- Carotenoids are the most common natural pigments and thin. Lycopene lacks the β-ionone ring structure of β-carotene more than 600 different compounds have been characterized and it dose not have provitamin A activity.
    [Show full text]
  • Ionone: Its Occurrence and Biological Function and Metabolic Engineering
    plants Review β-Ionone: Its Occurrence and Biological Function and Metabolic Engineering Antonello Paparella 1 , Liora Shaltiel-Harpaza 2,3 and Mwafaq Ibdah 4,* 1 Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy; [email protected] 2 Migal Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel; [email protected] 3 Tel Hai College, P.O. Box 831, Kiryat Shmona, Upper Galilee 12210, Israel 4 Newe Yaar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel * Correspondence: [email protected]; Tel.: +972-4-953-9537; Fax: +972-4-983-6936 Abstract: β-Ionone is a natural plant volatile compound, and it is the 9,10 and 90,100 cleavage product of β-carotene by the carotenoid cleavage dioxygenase. β-Ionone is widely distributed in flowers, fruits, and vegetables. β-Ionone and other apocarotenoids comprise flavors, aromas, pigments, growth regulators, and defense compounds; serve as ecological cues; have roles as insect attractants or repellants, and have antibacterial and fungicidal properties. In recent years, β-ionone has also re- ceived increased attention from the biomedical community for its potential as an anticancer treatment and for other human health benefits. However, β-ionone is typically produced at relatively low levels in plants. Thus, expressing plant biosynthetic pathway genes in microbial hosts and engineering the metabolic pathway/host to increase metabolite production is an appealing alternative. In the β β present review, we discuss -ionone occurrence, the biological activities of -ionone, emphasizing insect attractant/repellant activities, and the current strategies and achievements used to reconstruct enzyme pathways in microorganisms in an effort to to attain higher amounts of the desired β-ionone.
    [Show full text]
  • Ionone Is More Than a Violet's Fragrance
    molecules Review Ionone Is More than a Violet’s Fragrance: A Review Lujain Aloum 1 , Eman Alefishat 1,2 , Abdu Adem 1 and Georg Petroianu 1,* 1 Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; [email protected] (L.A.); Eman.alefi[email protected] (E.A.); [email protected] (A.A.) 2 Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE * Correspondence: [email protected]; Tel.: +971-50-413-4525 Academic Editor: Domenico Montesano Received: 25 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators.
    [Show full text]
  • Engineering the Oleaginous Yeast Yarrowia Lipolytica to Produce the Aroma Compound Β- Ionone
    Lawrence Berkeley National Laboratory Recent Work Title Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β- ionone. Permalink https://escholarship.org/uc/item/0nq772w2 Journal Microbial cell factories, 17(1) ISSN 1475-2859 Authors Czajka, Jeffrey J Nathenson, Justin A Benites, Veronica T et al. Publication Date 2018-09-01 DOI 10.1186/s12934-018-0984-x Peer reviewed eScholarship.org Powered by the California Digital Library University of California Czajka et al. Microb Cell Fact (2018) 17:136 https://doi.org/10.1186/s12934-018-0984-x Microbial Cell Factories RESEARCH Open Access Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β‑ionone Jefrey J. Czajka1, Justin A. Nathenson1, Veronica T. Benites2, Edward E. K. Baidoo2, Qianshun Cheng3,4, Yechun Wang5* and Yinjie J. Tang1* Abstract Background: β-Ionone is a fragrant terpenoid that generates a pleasant foral scent and is used in diverse applica- tions as a cosmetic and favoring ingredient. A growing consumer desire for natural products has increased the mar- ket demand for natural β-ionone. To date, chemical extraction from plants remains the main approach for commercial natural β-ionone production. Unfortunately, changing climate and geopolitical issues can cause instability in the β-ionone supply chain. Microbial fermentation using generally recognized as safe (GRAS) yeast ofers an alternative method for producing natural β-ionone. Yarrowia lipolytica is an attractive host due to its oleaginous nature, estab- lished genetic tools, and large intercellular pool size of acetyl-CoA (the terpenoid backbone precursor). Results: A push–pull strategy via genome engineering was applied to a Y.
    [Show full text]
  • Application of the Dehydration Homogeneous Liquid–Liquid Extraction (DHLLE) Sample Preparation Method for Fingerprinting of Honey Volatiles
    molecules Article Application of the Dehydration Homogeneous Liquid–Liquid Extraction (DHLLE) Sample Preparation Method for Fingerprinting of Honey Volatiles Piotr M. Ku´s 1,* and Igor Jerkovi´c 2 1 Department of Pharmacognosy, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland 2 Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Rudera¯ Boškovi´ca35, 21000 Split, Croatia; [email protected] * Correspondence: [email protected] Abstract: Recently, we proposed a new sample preparation method involving reduced solvent and sample usage, based on dehydration homogeneous liquid–liquid extraction (DHLLE) for the screening of volatiles and semi-volatiles from honey. In the present research, the method was applied to a wide range of honeys (21 different representative unifloral samples) to determine its suitability for detecting characteristic honey compounds from different chemical classes. GC-FID/MS disclosed 130 compounds from different structural and chemical groups. The DHLLE method allowed the extraction and identification of a wide range of previously reported specific and nonspecific marker compounds belonging to different chemical groups (including monoterpenes, norisoprenoids, benzene derivatives, or nitrogen compounds). For example, DHLLE allowed the detection of cornflower honey chemical markers: 3-oxo-retro-α-ionols, 3,4-dihydro-3-oxoedulan, phenyllactic acid; Citation: Ku´s,P.M.; Jerkovi´c,I. coffee honey markers: theobromine and caffeine; linden honey markers: 4-isopropenylcyclohexa- Application of the Dehydration 1,3-diene-1-carboxylic acid and 4-(2-hydroxy-2-propanyl)cyclohexa-1,3-diene-1-carboxylic acid, as Homogeneous Liquid–Liquid well as furan derivatives from buckwheat honey. The obtained results were comparable with the Extraction (DHLLE) Sample Preparation Method for previously reported data on markers of various honey varieties.
    [Show full text]
  • Β-Carotene Biotransformation to Obtain Aroma Compounds Biotransformação De Β-Caroteno Para Obtenção De Compostos De Aroma
    ISSN 0101-2061 Ciência e Tecnologia de Alimentos Original β-Carotene biotransformation to obtain aroma compounds Biotransformação de β-caroteno para obtenção de compostos de aroma Mariana UENOJO1*, Glaucia Maria PASTORE1 Abstract Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of β-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. Theβ -ionone was the main compound produced by CS1 (34.0 mg.L-1) and CF9 (42.4 mg.L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The β-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected. Keywords: carotenoids; biotransformation; β-carotene, β-ionone; aroma. Resumo Carotenoides são importantes constituintes de alimentos por sua coloração e por seus produtos de degradação gerarem compostos voláteis em alimentos. Compostos de aromas derivados de carotenoides estão distribuídos na natureza, constituem precursores de aromas importantes em alimentos como frutas e em flores.
    [Show full text]
  • Development of the Industrial Synthesis of Vitamin A
    Tetrahedron 72 (2016) 1645e1652 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Tetrahedron report 1103 Development of the industrial synthesis of vitamin A Gemma L. Parker, Laura K. Smith *, Ian R. Baxendale Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK article info abstract Article history: The advances made in chemistry during the last 70 years are excellently illustrated by the development Received 8 October 2015 of the industrial synthesis of vitamin A, a diterpene crucial in preventing premature death and visual Received in revised form 29 January 2016 problems. Arens and van Dorp published the first route in 1946, and critical contributions have been Accepted 10 February 2016 made by a number of scientists since, benefitting from fruitful collaborations between industry and Available online 11 February 2016 academia. However, these improvements have been mostly incremental, and the work has been per- formed by a limited number of companies; as yet, there is still no ‘ideal’ synthesis of vitamin A. Keywords: Ó 2016 Elsevier Ltd. All rights reserved. Vitamin A b-Ionone Arens-van Dorp reaction Wittig reaction Julia Olefination Contents 1. Introduction . ................................................1645 2. Previous work . ................................................1646 3. Arens-van Dorp synthesis of vitamin A (Organon) . ...................................1646 4. Isler synthesis and modification (Hoffmann-La Roche) . ...................................1647
    [Show full text]
  • CHEM 110L Synthesis of Ionones E3-1 Experiment 3 – Two-Step
    CHEM 110L Synthesis of Ionones Experiment 3 – Two-Step Synthesis of Ionones Additional Reading: Mohrig Section 24 (or other text on UV-vis Spectroscopy) Ionones are unsaturated ketones responsible for the characteristic fragrance of violets (Figure 1). The most abundant isomers, - and -ionone, can be synthesized in the lab in a two-step process. A concentrated mixture of ionones has a smell that resembles cedarwood. Perfumes from violets are difficult to obtain and have been highly appreciated since the days of Napoleon. An old method for obtaining this perfume consisted of embedding the petals of freshly cut violets between layers of animal fat. The aromatic oils were slowly absorbed by the fat that was then used as a hair cream or ointment. O O -ionone -ionone Figure 1. Structures of - and -ionone The synthesis of ionones is an important industrial process. Ionones are not only used in perfumery, but they are also key intermediates in the manufacture of vitamin A. Both ionones can be prepared via aldol condensation of citrals with acetone followed by acid treatment (Figure 2). Evaluate the structures below to identify which bond is formed by aldol condensation. Figure 2. Synthesis of pseudoionones via aldol condensation Citral is a mixture of the two E/Z stereoisomers of 3,7-dimethyl-2,6-octadienal. Citral a or geranial (E isomer) and citral b or neral (Z isomer) are the main components of lemongrass oil. The aldol condensation of citrals with acetone in the presence of sodium ethoxide gives a mixture of two products, pseudoionones, which differ only in the geometry of the double bond between C5 and C6 (Figure 2).
    [Show full text]