Reservoir Quality and Petrophysical Properties of Cambrian Sandstones and Their Changes During the Experimental Modelling of CO2 Storage in the Baltic Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Baltic Republics
FINNISH DEFENCE STUDIES THE BALTIC REPUBLICS A Strategic Survey Erkki Nordberg National Defence College Helsinki 1994 Finnish Defence Studies is published under the auspices of the National Defence College, and the contributions reflect the fields of research and teaching of the College. Finnish Defence Studies will occasionally feature documentation on Finnish Security Policy. Views expressed are those of the authors and do not necessarily imply endorsement by the National Defence College. Editor: Kalevi Ruhala Editorial Assistant: Matti Hongisto Editorial Board: Chairman Prof. Mikko Viitasalo, National Defence College Dr. Pauli Järvenpää, Ministry of Defence Col. Antti Numminen, General Headquarters Dr., Lt.Col. (ret.) Pekka Visuri, Finnish Institute of International Affairs Dr. Matti Vuorio, Scientific Committee for National Defence Published by NATIONAL DEFENCE COLLEGE P.O. Box 266 FIN - 00171 Helsinki FINLAND FINNISH DEFENCE STUDIES 6 THE BALTIC REPUBLICS A Strategic Survey Erkki Nordberg National Defence College Helsinki 1992 ISBN 951-25-0709-9 ISSN 0788-5571 © Copyright 1994: National Defence College All rights reserved Painatuskeskus Oy Pasilan pikapaino Helsinki 1994 Preface Until the end of the First World War, the Baltic region was understood as a geographical area comprising the coastal strip of the Baltic Sea from the Gulf of Danzig to the Gulf of Finland. In the years between the two World Wars the concept became more political in nature: after Estonia, Latvia and Lithuania obtained their independence in 1918 the region gradually became understood as the geographical entity made up of these three republics. Although the Baltic region is geographically fairly homogeneous, each of the newly restored republics possesses unique geographical and strategic features. -
Health Systems in Transition
61575 Latvia HiT_2_WEB.pdf 1 03/03/2020 09:55 Vol. 21 No. 4 2019 Vol. Health Systems in Transition Vol. 21 No. 4 2019 Health Systems in Transition: in Transition: Health Systems C M Y CM MY CY CMY K Latvia Latvia Health system review Daiga Behmane Alina Dudele Anita Villerusa Janis Misins The Observatory is a partnership, hosted by WHO/Europe, which includes other international organizations (the European Commission, the World Bank); national and regional governments (Austria, Belgium, Finland, Kristine Klavina Ireland, Norway, Slovenia, Spain, Sweden, Switzerland, the United Kingdom and the Veneto Region of Italy); other health system organizations (the French National Union of Health Insurance Funds (UNCAM), the Dzintars Mozgis Health Foundation); and academia (the London School of Economics and Political Science (LSE) and the Giada Scarpetti London School of Hygiene & Tropical Medicine (LSHTM)). The Observatory has a secretariat in Brussels and it has hubs in London at LSE and LSHTM) and at the Berlin University of Technology. HiTs are in-depth profiles of health systems and policies, produced using a standardized approach that allows comparison across countries. They provide facts, figures and analysis and highlight reform initiatives in progress. Print ISSN 1817-6119 Web ISSN 1817-6127 61575 Latvia HiT_2_WEB.pdf 2 03/03/2020 09:55 Giada Scarpetti (Editor), and Ewout van Ginneken (Series editor) were responsible for this HiT Editorial Board Series editors Reinhard Busse, Berlin University of Technology, Germany Josep Figueras, European -
The Military Heritage and Environment of Kurzeme
SELFDRIVE THE MILITARY HERITAGE AND ENVIRONMENT OF KURZEME The NATURA 2000 system was established by European Union member states to protect a large series of environmental territories. In Latvia’s case, the system includes territories that were protected before it was set up, as well as 122 new territories. Each EU member state establishes its own system of territories, and these are then joined in the central system. NATURA 2000 territories are of European importance and are environmentally protected. Along this route, the most interesting NATURA 2000 territories include the Zvārde Forest Park, the Embūte Nature Park, the Ziemupe Nature Reserve and the Nature Park of the Ancient Abava River Valley. While in these territories, please be gentle with environmental, cultural and historical values. Keep the “interests” of birds in mind when birdwatching. ROUTE During the Soviet era, Latvia was the western border of the USSR, and that made it a strategic location in which lots of military resources were concentrated. During the Soviet occupation, there were more than 1,000 Soviet military units in Latvia, and they controlled some 600 facilities equalling to more than 10% of the territory of the Latvian SSR. In other words, Latvia was behind the Iron Curtain for nearly half a century. Border guard posts, tank bases, aviation bases, military airfields, storage facilities for weapons and munitions (including nuclear missiles), military espionage facilities and other, similar entities were mostly centred on the shore of the Baltic Sea, where there was a special frontier regime. It was just 20 years ago that people were allowed to be on the beach only during sunlight and in very limited areas. -
National Selection of the Landscape Award in Latvia
National selection of the Landscape Award in Latvia Mrs Dace Granta Spatial Planning Policy Division Department of Spatial Planning Daugavpils, 2018 Basis The Ministry of Environmental Protection and Regional Development has organised the National Selection of the Landscape Award of the European Council since 2010. There have been four national selections. The national selection, ending in October 2018, is currently taking place for the fifth time. 2 Evaluation of applications In order to make the applications available to the general public, all submitted applications have been published on the website of our Ministry. Since 2014, applications have been evaluated by an inter-institutional evaluation committee that includes representatives from different ministries and NGOs (for example, the Association of Latvian Local Governments and the Latvian Landscape Architects’ Association) 3 Criteria of evaluation Each project is first evaluated in accordance with the four criteria set out in the Resolution of the Council of Europe. The National evaluation committee has decided that these criteria should be supplemented by specific criteria for Latvia: from this 2018 all applications will be evaluated in the context of landscape planning. Each member of the evaluation committee has the right to assign one additional point to the project with a specific contribution in the field represented by the member of the commission. 4 Application for national selection in 2018 Pasta island reconstruction Jelgava/Zemgale planning region 5 Application for -
Vertebrate Microremains from the Lower Silurian of Siberia and Central Asia: Palaeobiodiversity and Palaeobiogeography
Journal of Micropalaeontology, 30: 97–106. 2011 The Micropalaeontological Society Vertebrate microremains from the Lower Silurian of Siberia and Central Asia: palaeobiodiversity and palaeobiogeography ŽIVILĖ ŽIGAITĖ1,2,*, VALENTINA KARATAJŪTĖ-TALIMAA3 & ALAIN BLIECK1 1UFR Sciences de la Terre, FRE 3298 du CNRS ‘Géosystèmes’, Université Lille – 1, F-59655 Villeneuve d’Ascq Cedex, France 2Department of Evolution and Development, Uppsala University, Norbyvägen 18A, SE-75236 Uppsala, Sweden 3Department of Geology and Mineralogy, Vilnius University, M.K.Ciurlionio 21/27, LT-03101 Vilnius, Lithuania *Corresponding author (e-mail: [email protected]) ABSTRACT – The biostratigraphic and palaeogeographical distributions of early vertebrate microfossils from a number of Lower Silurian localities in northwestern Mongolia, Tuva and southern Siberia were reviewed. Vertebrate microremains showed high taxonomic diversity, comprising acanthodians, chon- drichthyans, putative galeaspids, heterostracans, mongolepids, tesakoviaspids, thelodonts and possible eriptychiids. The majority of taxa have lower stratigraphic levels of occurrence compared to other Silurian palaeobiogeographical provinces, such as the European-Russian or Canadian Arctic. Vertebrate micro- remains are numerous within the samples, which may indicate warm-water low-latitude palaeobasins with rich shelf faunas. This disagrees with the recent interpretations of the territory as a northern high-latitude Siberian palaeocontinent. The palaeobiogeographical distribution of vertebrate taxa indicates an endemic palaeobiogeographical province of connected epeiric palaeoseas with external isolation during the early Silurian. In previous works separation between Tuvan and Siberian palaeobiogeographical provinces has been suggested. After careful revision of the vertebrate microfossil record of the region, we find that differences in a few vertebrate taxa do not provide not strong enough evidence to reliably distinguish these provinces. -
Energy Procedia
Available online at www.sciencedirect.com Energy Procedia Energy Procedia 00 (2008) 000–000 www.elsevier.com/locate/XXX GHGT-9 Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic region Alla Shogenovaa, Saulius Šliaupab,c, Kazbulat Shogenova, Rasa Šliaupieneb, Raisa Pomerancevad, Rein Vahera, Mai Uibue, Rein Kuusike aInstitute of Geology, Tallinn University of Technology, Ehitajete tee5, 19086 Tallinn, Estonia bInstitute of Geology and Geography, T. Sevcenkos 13, Lt-03223, Vilnius, Lithuania cVilnius University,Universiteti St.3, LT-01513, Vilnius, Lithuania dLatvian Environment, Geology & Meteorology Agency, Maskavas St. 165, LV-1019, Riga, Latvia eLaboratory of Inorganic Materials, Ehitajete tee5, Tallinn 19086, Estonia Elsevier use only: Received date here; revised date here; accepted date here Abstract Industrial CO2 emissions and possibilities for geological storage of CO2 in Estonia, Latvia and Lithuania were studied within the framework of EU GEOCAPACITY and CO2NET EAST projects supported by European Commission Sixth Framework Programme (FP6). Twenty-two large industrial sources produced 14.5 Mt of CO2 in Estonia, 1.9 Mt in Latvia and 4.8 Mt in Lithuania in 2007. The two greatest Estonian power stations, using oil-shale, produced 9.4 and 2.7 Mt of CO2. The Baltic States are located within the Baltic sedimentary basin, the thickness of which varies from 100 m in NE Estonia up to 1900 m in SW Latvia and 2300 m in western Lithuania. The most prospective formation for the geological storage of CO2 is the Cambrian reservoir, with an estimated potential of 300 Mt of CO2 in 15 large structures located in Latvia. -
146 Since 1961 Distribution of Organic Matter and Evaluation of Brittleness
since 1961 BALTICA Volume 33 Number 2 December 2020: 146–165 https://doi.org/10.5200/baltica.2020.2.3 Distribution of organic matter and evaluation of brittleness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs Saulius Šliaupa, Jurga Lazauskienė, Saulius Lozovskis, Rasa Šliaupienė Šliaupa, S., Lazauskienė, J., Lozovskis, S., Šliaupienė, R. 2020. Distribution of organic matter and evaluation of brittle- ness index of the Lower Silurian shales of west Lithuania based on interpretation of well logs. Baltica, 33 (2), 146–165. Vilnius. ISSN 0067-3064. Manuscript submitted 21 August 2020 / Accepted 16 November 2020 / Published online 22 December 2020 © Baltica 2020 Abstract. There is little known of the basic parameters of the Lower Silurian graptolitic black shales that are considered the most prospective unconventional gas reservoir in west Lithuania, situated in the deep central part of the Baltic sedimentary basin. Hundreds of deep oil exploration wells have been drilled in the area of interest, owing to extensive exploration of oil fields. The lower and middle Llandovery interval was mainly drilled with coring, while most of the section was covered by only logging. Therefore, the knowledge of major parameters of the Lower Silurian shales is rather obscure and is based on scarce rock sample data. The gamma- ray, electrical resistivity and sonic logs were utilised, together with mineralogical studies of rock samples to document vertical and lateral distribution of organic matter. Also, the brittleness index was defined to charac- terise the whole Lower Silurian section. Some unexpected trends were identified that may redirect exploration strategy in west Lithuania. -
Tectonic Regimes in the Baltic Shield During the Last 1200 Ma • a Review
Tectonic regimes in the Baltic Shield during the last 1200 Ma • A review Sven Åke Larsson ' ', Bva-L^na Tuliborq- 1 Department of Geology Chalmers University of Technology/Göteborij U^vjrsivy 2 Terralogica AB November 1993 TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW Sven Åke Larsson12, Eva-Lena Tullborg2 1 Department of Geology, Chalmers University of Technology/Göteborg University 2 Terralogica AB November 1993 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32),. 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64) and 1992 (TR 92-46) is available through SKB. ) TECTONIC REGIMES IN THE BALTIC SHIELD DURING THE LAST 1200 Ma - A REVIEW by Sven Åke Larson and Eva-Lena Tullborg Department of Geology, Chalmers University of Technology / Göteborg University & Terralogica AB Gråbo, November, 1993 Keywords: Baltic shield, Tectonicregimes. Upper Protero/.oic, Phanerozoic, Mag- matism. Sedimentation. Erosion. Metamorphism, Continental drift. Stress regimes. , ABSTRACT 1 his report is a review about tectonic regimes in the Baltic (Fennoscandian) Shield from the Sveeonorwegian (1.2 Ga ago) to the present. It also covers what is known about palaeostress during this period, which was chosen to include both orogenic and anorogenic events. -
1. Gardens Ar Tree Nurseries
1. Gardens ar tree nurseries Tour duration: 3 days, 271 km, cycling 15 km Tour route: Jelgava – Iecava – Brukna – Bauska – Mežotne – Rundāle – Blankenfelde – Tērvete –Žagare (LT) – Kroņauce – Dobele – Jelgava Tour route: This tour takes you to beautiful gardens in Latvia and Lithuania. Poems are dedicated to trees in the garden surrounding the memorial house of Edvarts Virza, a Latvian poet and writer who wrote a legendary novel about the lives of Latvian farmers. Strūbergu decorative garden offers a garden excursion and consultations in gardening. At Brukna manor you will see a vegetable garden that is arranged as a Renaissance park, a rose garden and a vineyard. The beautiful 18th century Mazmežotne castle is renovated by a grain farmer’s family. The Rundāle castle is known as Latvia’s true jewel of Baroque and Rococo architecture featuring also a rose garden with over 2200 varieties of roses. At Blankenfelde manor you will see a collection of bells and will enjoy natural juices, syrups and pickles produced in-house. Visiting Mint House you will taste mint tea, biscuits, honey with peppermint and peppermint syrups. Next stop is at the vegetable and herb farm “Healthy” producing herbal ointments. In Lithuania you will visit Žagarė, known for its cherry orchard-park and the special species of cherry – the ‘Žagarvyšnė’, on the National List of Plant Varieties. Stop by Žagarė Manor Park, containing more than 100 species of trees and shrubs. Back in Latvia you can have a picnic at Vilki arboretum showing about 1000 different plants - both typical of the landscape of Latvia and quite unique. -
(UN/LOCODE) for Latvia
United Nations Code for Trade and Transport Locations (UN/LOCODE) for Latvia N.B. To check the official, current database of UN/LOCODEs see: https://www.unece.org/cefact/locode/service/location.html UN/LOCODE Location Name State Functionality Status Coordinatesi LV 6LV Alsunga 006 Road terminal; Recognised location 5659N 02134E LV AGL Aglona 001 Road terminal; Recognised location 5608N 02701E LV AIN Ainazi 054 Port; Code adopted by IATA or ECLAC 5752N 02422E LV AIZ Aizkraukle 002 Port; Rail terminal; Road terminal; Recognised location 5636N 02513E LV AKI Akniste JKB Road terminal; Multimodal function, ICD etc.; Recognised location 5610N 02545E LV ALJ Aloja 005 Road terminal; Recognised location 5746N 02452E LV AMT Amata 008 Road terminal; Recognised location 5712N 02509E LV APE Aizpute 003 Road terminal; Recognised location 5643N 02136E LV APP Ape 007 Road terminal; Recognised location 5732N 02640E LV ARX Avoti RIX Road terminal; Recognised location 5658N 02350E LV ASE Aluksne 002 Rail terminal; Road terminal; Recognised location 5725N 02703E LV AUC Auce 010 Rail terminal; Road terminal; Recognised location 5628N 02254E LV B8R Balozi 052 Road terminal; Recognised location 5652N 02407E LV B9G Baldone 013 Port; Road terminal; Recognised location 5644N 02423E LV BAB Babite 079 Road terminal; Recognised location 5657N 02357E LV BAL Balvi 015 Rail terminal; Road terminal; Recognised location 5708N 02715W LV BAU Bauska 016 Rail terminal; Road terminal; Recognised location 5624N 02411E LV BLN Baltinava 014 Road terminal; Recognised location -
Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p. -
1 Supplementary Materials and Methods 1 S1 Expanded
1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).