Geología Y Peligros Del Volcán San Pedro, II Región

Total Page:16

File Type:pdf, Size:1020Kb

Geología Y Peligros Del Volcán San Pedro, II Región O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Geología y peligros del volcán San Pedro, II Región Daniel Bertin* y Álvaro Amigo Unidad de Geología y Peligros Volcánicos, RNVV, Servicio Nacional de Geología y Minería, Rudecindo Ortega 03850, Temuco, Chile * email: [email protected] Resumen. El volcán San Pedro constituye la componente Petit-Breuilh, 2004), donde destaca la del año 1901, que más reciente de un sistema binario que se remonta a fines causó daños de diversa consideración (Martin, 1901). En la del Pleistoceno inferior con la edificación del volcán San actualidad, y a lo largo del siglo XX, el volcán ha exhibido Pablo. Durante su etapa inicial, el San Pedro se construyó permanente actividad fumarólica de tipo pasiva. mediante numerosos flujos lávicos y depósitos piroclásticos de flujo, para posteriormente sufrir un colosal evento de colapso, generando hacia el noroeste un extenso depósito 2 Geología (extraído de Bertin y Amigo, de avalancha de detritos volcánicos. Durante el 2014a,b) Pleistoceno superior la actividad se retomó a través de una serie de voluminosas lavas y lavas-domo dacíticas 2.1 Basamento emitidas desde el escarpe de colapso, etapa que culminó El volcán San Pedro se emplaza sobre un basamento hace ca. 10 ka con una erupción catastrófica la cual constituido por, al menos, tres planicies ignimbríticas de involucró un volumen de material no corregido cercano a los 9 km3. Este evento generó un depósito ignimbrítico de distribución regional y pertenecientes al Mioceno superior pequeño volumen pero amplia extensión, en especial hacia (ignimbritas San Pedro Inferior, Sifón y Carcote; Guest, el flanco oeste del edificio. La actividad durante el 1969; Baker, 1977; de Silva, 1989; Salisbury et al., 2010), Holoceno ha edificado un sistema de domos dacíticos de además de productos efusivos de origen volcánico bajo volumen, algunos de los cuales han colapsado comprendidos entre el Mioceno superior y el Pleistoceno durante sus respectivos emplazamientos, produciendo superior, entre los que se destacan el Cerro del Azufre, el extensos depósitos de flujo piroclástico de bloques y volcán San Pablo y los domos de Chanka (Francis et al., ceniza y donde el más reciente de ellos estaría ligado a la 1974; Baker, 1977; Tierney, 2011). actividad eruptiva registrada en el año 1901. Palabras Claves: Volcán San Pedro, Geología, 2.2 San Pedro I (< 150 ka) Petrografía, Geoquímica, Peligros volcánicos. Los productos de esta etapa construyeron el edificio primigenio del volcán San Pedro. Se caracterizan hacia su techo por una secuencia conformada por numerosos flujos 1 Introducción lávicos, algunos de potencia métrica, con niveles escoriáceos subordinados, mientras que hacia su base El volcán San Pedro (Figura 1) corresponde al abundan extensos flujos lávicos, de hasta 15 km de estratovolcán con actividad histórica registrada más alcance, bien reconocibles hacia los flancos oeste y sur del elevado a nivel mundial. En efecto, sus 6.145 m s.n.m. y su edificio. Emplazado de manera directa por encima de gran volumen hacen de él una de las cumbres más algunas de las lavas más extensas de esta etapa, se presenta sobresalientes visibles desde la ciudad de Calama, distante un amplio manto piroclástico, no consolidado, de espesor a más de 85 km al suroeste. Se emplaza en la cercanía de la no superior a 2 m, con abundantes fragmentos escoriáceos confluencia de los ríos Loa y San Pedro, en el altiplano de de dimensiones decimétricas y fragmentos líticos la comuna de Calama, provincia de El Loa y distante a ca. centimétricos subordinados, cuyas relaciones de contacto 35 km del límite internacional con Bolivia. Posee un sugieren que representaría parte de la actividad final de diámetro basal de ca. 20 km, con un volumen estimado de esta etapa, fechada en torno a los 160 ka (40Ar/39Ar en 140 km3 y una elevación sobre el basamento de 2.645 m, lo masa fundamental). que lo convierte en el volcán activo más voluminoso y de La etapa San Pedro I culmina con un catastrófico evento de mayor altura de los Andes Centrales (Amigo et al., 2012). colapso volcánico dirigido hacia el norte - noroeste, lo que El volcán San Pedro en estricto rigor aparece mencionado generó un depósito de avalancha de detritos que cubre un sucintamente en documentos de fines del siglo XIX e área de hasta 120 km2, con un alcance de 16 km y un frente inicios del siglo XX (Astaburuaga, 1899; Riso Patrón, bien definido de 30 a 40 m de potencia con un ángulo 1924). Los estudios geológicos relativos al volcán se frontal de hasta 32°, lo que le confiere al depósito una remontan a descripciones y análisis petrográficos puntuales característica morfología frontal en forma de escalón. El (Hausen, 1938; Siegers et al., 1969), aunque destacan los depósito presenta una notoria morfología de cerrillos, trabajos de Francis et al. (1974) y O’Callaghan y Francis algunos de hasta 70 m de altura, además de un conspicuo (1986), que tratan acerca de su evolución y características desarrollo de surcos y ridges longitudinales. Este evento geoquímicas particulares. generó en el estratovolcán un abrupto escarpe de hasta 250 Su actividad eruptiva histórica incluye más de diez eventos m de desnivel y orientado hacia el noroeste. desde la década de 1870 (Brüggen, 1950; Casertano, 1963; 128 AT 4 Impacto de las GeocIencIas en la socIedad 2.3 San Pedro II (150 ka - 15 ka) espesor y que cubre un área de ca. 15 km2. Compuesta por Con posterioridad al evento de avalancha volcánica, el más de 315 lóbulos primaros, exhibe un muy buen volcán retomó su actividad eruptiva a través de al menos desarrollo de canales, ojivas y pliegues (Peckyno, 2010). doce coladas individuales de bloques, emitidas desde el escarpe de colapso remanente hacia el oeste y noroeste, y 2.5 San Pedro II (<15 ka) con una edad promedio de 100 ± 35 ka (40Ar/39Ar en masa La evolución del San Pedro post-15ka comienza con la fundamental y anfíbola); exhiben frentes variables entre 30 mayor erupción reconocida para el volcán, hace 10 ka (14C y 100 m y alcances de hasta 12 km, además de un muy en turba; Payne, 1998). Esta actividad produjo abundante buen desarrollo de ojivas, frentes de flujos y levées. Se caída piroclástica, así como un depósito ignimbrítico de destaca que el flujo lávico de mayor alcance no proviene pequeño volumen, con un volumen total no corregido de 9 desde el escarpe de colapso, sino que desde el flanco km3. El nivel de tefra presenta una amplia distribución suroeste del volcán, en torno a los 4.500 m s.n.m., donde hacia el norte, este y sureste del macizo, reconociéndose en posiblemente se facilitó su emisión debido a debilidades en las localidades de Ascotán, Polapi, Ojo de San Pedro e el edificio remanentes del evento de colapso volcánico. incluso en Inacaliri, cercano a la frontera con Bolivia; 15 La secuencia lávica da lugar a un conjunto de domos y km hacia el sureste del volcán este depósito consiste en un lavas-domo, de carácter más viscoso y frentes más nivel masivo, de hasta 1,75 m de potencia, con abundantes potentes (hasta 250 m), pero de menor alcance (no más de pómez blanquecinas de hasta 40 cm de diámetro (Figura 4 km), los cuales fueron emitidos directamente por encima 2). El depósito ignimbrítico cubre gran parte del flanco de la secuencia lávica basal; dentro del grupo destaca un oeste, suroeste y sur del volcán, así como un reducido domo de ca. 2,5 km3 de volumen, el cual empleó sector del flanco norte. Consiste en una secuencia de probablemente el mismo conducto que alimentó al más mínimo tres metros de espesor, conformada por un extenso de los flujos lávicos de la secuencia inicial. depósito no consolidado, pobremente seleccionado y De manera contemporánea a este periodo efusivo, entre los matriz a clasto-soportado, con abundantes fragmentos 110 ka (40Ar/39Ar en roca total) y los 36 ka (14C en pumíceos que constituyen la fracción dominante del sedimento orgánico), se produjeron al menos tres depósito hacia su tercio superior. Este considerable evento importantes flujos de detritos de origen volcánico; el más eruptivo habría generado una pequeña depresión hacia la antiguo aflora a lo largo de todo el cajón del río San Pedro, cumbre del edificio nuevo. cubriendo la planicie ignimbrítica y alcanzando inclusive Con posterioridad a esta erupción catastrófica, la actividad el cajón del río Loa, distante a más de 20 km del volcán, eruptiva fue retomada a través de la emisión de al menos mientras que los flujos posteriores poseen una extensión cuatro domos, todos de pequeño volumen, los cuales bastante más reducida, no excediendo los 8 km desde el habrían rellenado la depresión resultante de la etapa volcán San Pedro y alcanzando sólo el curso medio del anterior. Estos domos poseen un alcance de hasta 2,5 km, cajón del río homónimo. Estos depósitos presentan un frentes no superiores a los 150 m y pendientes que espesor individual de hasta 10 m, son clasto-soportados, promedian los 30°. Esto último ha condicionado que exhiben un elevado nivel de consolidación y abundantes algunos de estos domos hayan colapsado durante sus bloques lávicos y escoriáceos, algunos de hasta 1 m de respectivos emplazamientos, generando al menos dos diámetro. abanicos piroclásticos, con un alcance superior a los 9 km Finalmente, a los 15 ka (14C en sedimento orgánico) el y correspondientes a depósitos de flujo piroclástico de volcán sufre un considerable evento explosivo de carácter bloques y cenizas. Exhiben una morfología caracterizada escoriáceo, generando tanto depósitos de caída como de por un conspicuo desarrollo de lóbulos, canales y levées, flujo, donde estos últimos se distribuyeron a lo largo de donde muchos de ellos se truncan u ocultan bajo otros gran parte de los flancos superiores a medios del edificio, lóbulos del mismo depósito, además de variados bloques con un alcance máximo de 13 km.
Recommended publications
  • [email protected].: Tacora/Rev
    [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 [email protected].: Tacora/rev: 18 de noviembre, 2009/24 de abril, 2011/19 de mayo, 2011/05 de mayo, 2013/10 de marzo, 2014/07 de mayo, 014/l28 de diciembre, 2015/26 de junio, 2016 LA INDUSTRIA AZUFRERA, EL ANDARIVEL Y EL FERROCARRIL DE TACORA por: Ian Thomson N. ÍNDICE 1. Introducción y conclusiones. 2. Los inicios de la explotación del azufre en Chile. 3. La importancia crítica de los costos de transporte. 4. La explotación del azufre del Tacora y los orígenes del Ferrocarril. 5. El tráfico del Ferrocarril, el personal y la rentabilidad. 6. El trazado y la infraestructura del Ferrocarril. 7. El Ferrocarril de Tacora después de su cierre. 8. La red de andariveles. 9. El material rodante ferroviario. Recuadro 1: El de Aucanquilcha: otro ferrocarril azufrero en altura Recuadro 2: La Asociación para la Conservación de las ex-azufreras y del Ferrocarril de Tacora Referencias seleccionadas El autor es, por profesión, un economista dedicado a temas de transporte. Además, durante largos años, ha sido activo en las áreas de la conservación y del estudio de la historia de sistemas de transporte, especialmente los ferroviarios. Promovió, a principios de la década de 1980, la formación de la Asociación Chilena de Conservación del Patrimonio Ferroviario, sirviendo como su presidente durante unos diez años, con breves intervalos.
    [Show full text]
  • The South American Indian As a Pioneer Alpinist
    TI-lE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST 81 THE SOUTH AMERICAN INDIAN AS A PIONEER ALPINIST BY EVELIO ECHEVARRfA C. ECENTL Y it has become kno\vn that a number of very high Andean mountain tops had not only been ascended but also permanently occupied by the Indians, possibly as much as three centuries before de Saussure's ascent of Mont Blanc. They climbed peaks of up to 22,ooo ft., they constructed shelters on or near their tops, and they used the high places as watch-towers or as sacrificial shrines. Some authorities believe that this activity took place as early as the late four­ teenth century, though we cannot prove that some of it did not take place long after, possibly as late as the nineteenth century. These Indian accomplishments have been left unmentioned in practi­ cally all mountaineering history books. In this article, which may be the first to attempt a comprehensive survey,1 my purpose is to review briefly the location and the nature of each discovery. The area in which these Indian mountain ascents took place is what in physical geography is known as the Atacama desert (although this name is nowadays used in political and cultural geography for a much more restricted area). It is a treeless, sandy and volcanic waste-land seldom visited by mountaineers. It stretches from the neighbourhood of Arequipa, in Peru, as far south as Elqui in Chile; to the east it reaches the Andean slopes that face the jungles of Argentina and Bolivia, and to the west, the Pacific Ocean.
    [Show full text]
  • The Causes and Effect of Temporal Changes in Magma Generation Processes in Space and Time Along the Central Andes (13°S – 25°S)
    The causes and effect of temporal changes in magma generation processes in space and time along the Central Andes (13°S – 25°S) Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Rosanne Marjoleine Heistek aus Nederland/Niederlande Göttingen 2015 Betreuungsausschuss: Prof. Dr. Gerhard Wörner, Abteilung Geochemie, GZG Prof. Dr. Andreas Pack, Abteilung Isotopengeologie, GZG Referent: Prof. Dr. Gerhard Wörner Prof. Dr. Andreas Pack Weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Prof. Dr. Hilmar von Eynatten Prof. Dr. Jonas Kley Dr. John Hora Tag der mündlichen Prüfung: 25.06.2015 TABLE OF CONTENTS Acknowledgements .................................................................................................................................1 Abstracts .................................................................................................................................................2 Chapter 1: Introduction .........................................................................................................................7 1.1.The Andean volcanic belt .............................................................................................................................. 7 1.2. The Central volcanic zone ...........................................................................................................................
    [Show full text]
  • Diagnostico Regional De Suelos Abandonados Con Potencial Presencia De Contaminantes”
    INFORME FINAL. Versión 4 “DIAGNOSTICO REGIONAL DE SUELOS ABANDONADOS CON POTENCIAL PRESENCIA DE CONTAMINANTES” CONTRATO NO 618775-3-LP13 31-Marzo-2014 Informe Final-versión 4 Página 1 INDICE GENERAL GLOSARIO DE TERMINOS UTILIZADOS EN ESTE INFORME. 4 ALCANCE Y PRESENTACION DEL INFORME 7 PARTE 1.- PRESENTACION DEL PROBLEMA. 10 1.1.- INTRODUCCIÓN GENERAL. 10 1.1.1 ESTADO DEL ARTE DE LA GESTION DE SUELOS CON POTENCIAL 12 PRESENCIA DE CONTAMINANTES. 1.2.- OBJETIVOS 15 1.2.1 Objetivo General 15 1.2.2 Objetivos Específicos 15 1.3.- GENERALIDADES DE LA METODOLOGIA DE TRABAJO 16 1.3.1Gestión de suelos con potencial presencia de contaminantes: identificación 16 y priorización. PARTE 2.- RECOPILACION Y SISTEMATIZACION DE LA INFORMACION 20 DISPONIBLE. 2.1 LA REGION DE ANTOFAGASTA Y LOS SUELOS CON POTENCIAL 20 PRESENCIA DE CONTAMINANTES. 2.1.1. Breve descripción de la región 20 2.1.2Estrategia de desarrollo regional 2009-2020 22 2.2 LEVANTAMIENTO DE INFORMACION 23 PARTE 3: PRIORIZACION Y JERARQUIZACION DE SUELOS 32 ABANDONADOS CON POTENCIAL PRESENCIA DE CONTAMINANTES. 3.1.- RESULTADOS DE LA PRIORIZACION DE SAPPC. 32 3.2.- RESULTADOS DE LA INSPECCION DE LOS SAPPC. 37 3.3 RESULTADOS DE LA JERARQUIZACION DE SAPPC. 41 PARTE 4.- INVESTIGACION PRELIMINAR Y CONFIRMATORIA. 48 4.1- INVESTIGACION PRELIMINAR 48 4.2- INVESTIGACION CONFIRMATORIA 48 4.2.1 DEFINICION DE CONTAMINANTES DE INTERES POTENCIAL. 49 4.2.2 HIPOTESIS DE DISTRIBUCION DE LOS CONTAMINANTES 52 4.2.3 TAMAÑO DEL SPPC. 53 4.2.4 COMPONENTES AMBIENTALES A MUESTREAR; NÚMERO Y TIPO DE 53 MUESTRAS. 4.2.5 MUESTRAS BLANCO O BACKGROUND 54 4.2.6 ANALISIS QUIMICO DE MUESTRAS AMBIENTALES 62 4.2.7 PROCEDIMIENTOS DE CONTROL Y ASEGURAMIENTO DE CALIDAD 72 4.2.8 COMPARACION CON VALORES DE REFERENCIA.
    [Show full text]
  • Volcanology and Petrology of Volcán Miño, Andean Central Volcanic Zone
    AN ABSTRACT OF THE THESIS OF Claire M. McKee for the degree of Master of Science in Geology presented on June 29, 2001. Title: Volcanology and Petrology of VolcáIi Miño, Andean Central Volcanic Zone. Redacted for Privacy Anitá'L. Grunder Volcán Miño (21011'S) is located on the westernmost periphery of a long- lived complex of stratovolcarioes and domes called the Aucanquilcha Complex. The Aucanquilcha Complex ranges in age from 11 Ma to 1-lolocene and lies along the main N-S trending axis of Quaternary volcanoes in the Andean Central Volcanic Zone (CVZ). Volcán Aucanquitcha lies at the center of the complex and forms a ridge extending 10 km in an east-west direction; defined by a distinct cluster of andesite and dacite stratocones, dacite domes and a prominent collapse structure and two debris avalanche deposits. In contrast to the main edifice, Volcán Miño (5611 m) is a steep-sided, symmetric andesitic stratovolcano. Volcán Miño lavas range in age from 3.0 to 3.7 Ma and eruptive products are dominantly two-pyroxene ± hornblende andesites. Basaltic andesites and dacites are rare. - ----- - ------ ---I, ..--.- __, IuIVULJ, LII Volcán Miño lavas conform to regional med- to high-potassium caic-alkaline trends and are characterized by subduction-related light rare earth and large ion lithophile-element enrichments and high field strength element depletions. Miño lavas are distinctive in that they display a restricted range in whole-rock composition, 60±2 weight percent Si02. Despite this whole- rock compositional homogeneity, lavas are texturally and mineralogically diverse as evidenced by variations of proportions and textures of clinopyroxene, orthopyroxene, and amphibole in assemblages with similar weight percent Si02.
    [Show full text]
  • Evaluación Objetiva De La Amenaza Volcanica Del Territorio Nacional
    UNIVERSIDAD DE CHILE Facultad de Arquitectura y Urbanismo Departamento de Geografía ___________________________________________________________________ EVALUACIÓN OBJETIVA DE LA AMENAZA VOLCANICA DEL TERRITORIO NACIONAL Memoria de título para optar al grado de Geógrafa Por: Lic. Cristina Alejandra Silva Briones Profesor Guía: Dr. Francisco Ferrando A. Profesor Informante Experto: Dr. Luis Lara P. Profesor Informante: Enrique Zarate C. Santiago de Chile - 2011 ___________________________________________________________________ Marcoleta 250, Casilla 3387, Santiago, Chile / Teléfono (56-2)6783095 / Fax (56-2)2229522 / 6783100 Cristina Silva B. ÍNDICE DE CONTENIDOS AGRADECIMIENTOS 3 RESUMEN 5 1. INTRODUCCIÓN 6 2. PLANTEAMIENTO DEL PROBLEMA 8 2.1 Estado del Asunto 10 3. OBJETIVOS 13 3.1 Objetivo General 13 3.2 Objetivos Específicos 13 4. MARCO TEÓRICO 14 5. PLANTEAMIENTO METODOLÓGICO 20 5.1 Exposición de la Amenaza 22 5.2 Integración Amenaza – Exposición: Análisis 26 6. RESULTADOS 29 6.1 Ranking 29 6.1.1 Factores de Riesgo 29 6.1.2 Factores de Exposición 30 6.1.3 Determinación de categorías 36 6.2 Superficie nacional bajo amenaza volcánica 40 6.3 Evaluación de la amenaza en el territorio nacional; índice de Riesgo Volcánico… 42 6.3.1 Población comunal dentro del área de amenaza 42 6.3.2 Superficie de amenaza comunal (km²) 43 6.3.3 Promedio Ranking de amenaza volcánica 44 6.3.4 Índice de Desarrollo Humano 45 6.3.5 Cálculo del Índice de Riesgo Comunal 45 7. ANALISIS DE RESULTADOS 50 7.1 Ranking de Amenaza 50 7.2 Superficie de amenaza 54 7.3 Índice de Riesgo Volcánico Comunal 57 7.3.1 Categorías de amenaza 62 8.
    [Show full text]
  • Enter Filename
    ANÁLISIS DE ANTECEDENTES HIDROGEOLÓGICOS DEL PROYECTO GEOTÉRMICO CERRO PABELLÓN Y SU RELACIÓN CON CUENCAS VECINAS Informe Final Rev. D 28 de diciembre de 2019 ANÁLISIS DE ANTECEDENTES HIDROGEOLÓGICOS DEL PROYECTO GEOTÉRMICO CERRO PABELLÓN Y SU RELACIÓN CON CUENCAS VECINAS CONTENIDO RESUMEN ............................................................................................................... 1 I. INTRODUCCIÓN ............................................................................................... 2 I.1 Localización .................................................................................................. 2 I.2 Alcances ....................................................................................................... 3 I.3 Antecedentes ............................................................................................... 3 II. OBJETIVO ........................................................................................................ 5 III. MATERIALES Y MÉTODOS ................................................................................ 6 IV. RESULTADOS ................................................................................................... 7 IV.1 Geomorfología e Hidrografía ....................................................................... 8 IV.1.1 Geomorfología ........................................................................................ 8 IV.1.2 Hidrografía .............................................................................................. 8 IV.2 Geología
    [Show full text]
  • Peligros Volcánicos De Chile
    ISSN 0717-7305 S U B D I R E C C I Ó N N A C I O N A L D E G E O L O G Í A PELIGROS VOLCÁNICOS DE CHILE Luis E. Lara P. Gabriel Orozco L. TERRITORIO CHILENO Álvaro Amigo R. ANTÁRTICO Carolina Silva P. 90° 53° CARTA GEOLÓGICA DE CHILE POLO SUR SERIE GEOLOGÍA AMBIENTAL No. 13 Escala 1: 2.000.000 � "ACUERDO ENTRE LA REPÚBLICA DE CHILE Y LA REPÚBLICA ARGENTINA PARA PRECISAR EL RECORRIDO DEL LÍMITE DESDE EL MONTE FITZ ROY 2011 HASTA EL CERRO DAUDET". (Buenos Aires, 16 de diciembre de 1998). CARTA GEOLÓGICA DE CHILE SERIE GEOLOGÍA AMBIENTAL No. 1 Respuesta Sísmica de la Cuenca de Santiago, Región Metropolitana de Santiago. 2003. J.C. Fernández. 1 mapa escala 1:100.000. No. 2 Peligro de Remociones en Masa e Inundaciones de la Cuenca de Santiago, Región Metropolitana de Santiago. 2003. J.L. Antinao, J.C. Fernández, J.A. Naranjo, P. Villarroel. 1 mapa escala 1:100.000. No. 3 Rocas y Minerales Industriales de la Cuenca de Santiago, Región Metropolitana de Santiago. 2003. J.L. Antinao. 1 mapa escala 1:100.000. No. 4 Vulnerabilidad a la Contaminación de los Acuíferos de la Cuenca de Santiago, Región Metropolitana de Santiago. 2003. S. Iriarte. 1 mapa escala 1:100.000. No. 5 Geología para el Ordenamiento Territorial: Cuenca de Santiago, Región Metropolitana de Santiago. 2003. J.L. Antinao, J.C. Fernández, S. Iriarte. 1 mapa escala 1:100.000. No. 6 Geología para el Ordenamiento Territorial: Área de Osorno, Región de Los Lagos.
    [Show full text]
  • First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile
    remote sensing Article First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile Felipe Aguilera 1,2,3,* , Susana Layana 1,3,4 , Felipe Rojas 1 , Pilar Arratia 1, Thomas C. Wilkes 5 , Cristóbal González 1,4 , Manuel Inostroza 1,4 , Andrew J.S. McGonigle 5 , Tom D. Pering 5 and Gabriel Ureta 1,3,4 1 Núcleo de Investigación en Riesgo Volcánico—Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile; [email protected] (S.L.); [email protected] (F.R.); [email protected] (P.A.); [email protected] (C.G.); [email protected] (M.I.); [email protected] (G.U.) 2 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 3 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av. Vicuña Mackenna 4860, Santiago 7810000, Chile 4 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 5 Department of Geography, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; tcwilkes1@sheffield.ac.uk (T.C.W.); a.mcgonigle@sheffield.ac.uk (A.J.S.M.); t.pering@sheffield.ac.uk (T.D.P.) * Correspondence: [email protected] Received: 25 April 2020; Accepted: 29 June 2020; Published: 2 July 2020 Abstract: UV cameras have been used for over a decade in order to remotely sense SO2 emission rates from active volcanoes, and to thereby enhance our understanding of processes related to active and passive degassing.
    [Show full text]
  • Mi Lugar En Lo Alto Del En Lo Alto Mi Lugar Loa
    MI LUGAR EN LO ALTO DEL LOA MI LUGAR EN LO ALTO DEL ¿Sabías que en Alto El Loa vivieron dinosaurios? ¿Sabes LOA detrás de qué cerro aparece el sol en el solsticio de invierno? ATLAS EDUCATIVO: ¿Conoces algunas de las tradiciones de la gente antigua? IDENTIDAD Y TERRITORIO Melina, Tomás y Libeluloa te acompañarán en este recorrido para aprender sobre la naturaleza y la cultura de su lugar, ahí en lo Alto de El Loa. MI LUGAR EN LO ALTO DEL LOA ATLAS EDUCATIVO: IDENTIDAD Y TERRITORIO JOSEFINA HEPP, JAVIERA MACHUCA Y NICOLÁS ZANETTA ILUSTRACIONES DE ALFREDO CÁCERES PRESENTACIÓN Nos enorgullece presentar a la comunidad explican los secretos de la Provincia de El Loa, en la este nuevo material educativo sobre la Región de Segunda región de nuestro país. A través de didácti- Antofagasta, Provincia de El Loa. Este documento fue cas ilustraciones, nos enseñarán acerca del clima, la hecho con mucho cariño para quienes viven en esta flora, la fauna, la cultura, las tradiciones y los desafíos hermosa zona, y de modo especial, para las comuni- que esconde este territorio. dades que acogen a nuestra operación de Minera El Sabemos que la minería es un negocio finito Abra, con las cuales nos relacionamos y convivimos y nuestra responsabilidad es preocuparnos por a diario. brindarles a las próximas generaciones que vienen un Queremos destacar el trabajo del Centro del mejor futuro. Confiamos que este material pedagó- Desierto de Atacama de la Pontificia Universidad gico será un valioso aporte para fortalecer el sentido Católica de Chile, entidad con la cual, por segundo de identidad hacia la naturaleza y cultura de la zona, año mantenemos un convenio de cooperación sobre todo, en las comunidades indígenas escolares.
    [Show full text]
  • Descriptive Stats Craterdiam 1162Records
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number Volcano.Name 130 -99 NP Volcano and eruption
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]