Sensor-Based Garments That Enable the Use of Bioimpedance Technology: Towards Personalized Healthcare Monitoring
Total Page:16
File Type:pdf, Size:1020Kb
Sensor-Based Garments that Enable the Use of Bioimpedance Technology: Towards Personalized Healthcare Monitoring. JUAN CARLOS MÁRQUEZ RUIZ Doctoral Thesis Stockholm, Sweden, January 2013 ISSN 1653-3836 TRITA-STH Report 2012:6 ISRN/KTH/STH /2012:6-SE ISBN 978-91-7501-603-0 School of Engineering, University of Borås & School of Technology and Health, KTH Borås Stockholm Sweden Sweden ©Juan Carlos Márquez Ruiz, January 2013 ii ABSTRACT Functional garments for physiological sensing purposes have been utilized in several disciplines i.e. sports, firefighting, military and medical. In most of the cases textile electrodes (Textrodes) embedded in the garment are employed to monitor vital signs and other physiological measurements. Electrical Bioimpedance (EBI) is a non-invasive and effective technology that can be used for detection and supervision of different health conditions. In some specific applications such as body composition assessment EBIS has shown encouraging results proving good degree of effectiveness and reliability. In a similar way Impedance Cardiography (ICG) is another modality of EBI primarily concerned with the determination of Stroke Volume SV, indices of contractility, and other aspects of hemodynamics. EBI technology in the previously mentioned modalities can benefit from a integration with a garment; however, a successful implementation of EBI technology depends on the good performance of textile electrodes. The main weakness of Textrodes is a deficient skin-electrode interface which produces a high degree of sensitivity to signal disturbances. This sensitivity can be reduced with a suitable selection of the electrode material and an intelligent and ergonomic garment design that ensures an effective skin-electrode contact area. This research work studies the performance of textile electrodes and garments for EBI spectroscopy for Total Body Assessment and Transthoracic Electrical Bioimpedance (TEB) for cardio monitoring. Their performance is analyzed based on impedance spectra, estimation of parameters, influence of electrode polarization impedance Zep and quality of the signals using as reference Ag/AgCl electrodes. The study includes the analysis of some characteristics of the textile electrodes such as conductive material, skin-electrode contact area size and fabric construction. The results obtained in this research work present evidence that textile garments with a dry skin- electrode interface like the ones used in research produce reliable EBI measurements in both modalities: BIS for Total Body Assessment and TEB for Impedance Cardiography. Textile technology, if successfully integrated, may enable the utilization of EBI in both modalities and consequently implementing wearable applications for home and personal health monitoring. iii iv ACKNOWLEDGEMENTS This research work was funded by the Mexican CONACYT (Consejo Nacional de Ciencia y Tecnología) reference: 210788/304684. I would like to express my sincere gratitude to my supervisors, Prof. Kaj Lindecrantz and Dr. Fernando Seoane Martínez, for their guidance, advice and support during my years as PhD student. I am enormously thankful to my mother, Carmen, and my brothers, José Antonio and Francisco Javier, for encouraging me to pursue my goals and for their unconditional support during these years. Special thanks to my colleagues and friends at the University of Borås: Javier Ferreira, Rubén Buendía, Reza Atefi, Martin Bohlén, Jorge Ferreira, Peter Axelberg and Johan Löfhede, who have made available their support in a number of ways. Sincere thanks to all my friends Maulo Rivera, Martin Westerling, Anna Hellström, Sára Darányi, Isa Arslan, Jimmy Nilsson, Markus Rempfler, Guillermo Garcia, Giuseppe Giovinazzo, Abraham Méndez, Mauricio Palacios, Omar Rodriguez and Hector Huerta. Finally, I offer my thanks, regards and blessings to all of those who supported me in any respect during the completion of the project. Juan Carlos Márquez Ruiz Borås, January 2013 v vi TABLE OF CONTENTS Abstract .......................................................................................................................................... iii Acknowledgements .......................................................................................................................... v Table of Contents ........................................................................................................................... vii List of Acronyms .............................................................................................................................. x Chapter I .......................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 1.1 Introduction ................................................................................................................................. 1 1.2 Motivation .................................................................................................................................... 2 1.3. Research Questions. .................................................................................................................... 2 1.4. Work performed .......................................................................................................................... 3 1.5. Structure of the Thesis Report ................................................................................................... 3 1.6. Beyond the Scope of this Work .................................................................................................. 4 Chapter II ......................................................................................................................................... 5 Electrical Bioimpedance ................................................................................................................. 5 2.1. Electrical Properties of Biological Tissue .................................................................................. 5 2.2. Electrical Impedance .................................................................................................................. 5 2.3. Electrical Bioimpedance Background ....................................................................................... 6 2.4. EBI Measurements and Classification ...................................................................................... 8 2.4.1. Single-Frequency Bioimpedance for BCA .......................................................................................... 8 2.4.2. Multi-Frequency Spectroscopy Bioimpedance. ................................................................................... 9 2.4.3. Whole Body, Segmental and Focal Bioimpedance Measurements ...................................................... 9 2.5. EBI Measurement Configuration ............................................................................................... 9 2.5.1. Two-Electrode Measurement ............................................................................................................... 9 2.5.2. Four-Electrode Measurement ............................................................................................................. 10 2.6. Measurements Artifacts ............................................................................................................ 11 2.6.1. The Influence of the Zep on EBI measurements Estimation of Zep on EBI ........................................ 12 2.6.2. Capacitive Leakage ............................................................................................................................ 12 Chapter III ..................................................................................................................................... 15 Electrical Bioimpedance Applications .......................................................................................... 15 3.1. Medical Applications ................................................................................................................. 15 3.2. EBI for Total Body Composition Analysis ............................................................................. 15 3.2.1. Cole Function and Fitting .................................................................................................................. 16 3.2.2. Estimation of Body Composition Parameters .................................................................................... 18 vii 3.3. Impedance Cardiography (ICG) .............................................................................................. 20 3.3.3. Sigman Effect..................................................................................................................................... 21 3.3.4. TEB Cylinder Model .......................................................................................................................... 22 3.3.4. Recent Model Electrical Velocimetry ................................................................................................ 23 3.3.5. Characteristic Points and Parameters Estimation ............................................................................... 25 Chapter IV ..................................................................................................................................... 27 Theory for Textile Electrodes .......................................................................................................