Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

Patent Office Patented May 2, 1939 2,156,727 UNITED STATES PATENT OFFICE 2,156,72 BLUE PIGMENT COLORS AND A PROCESS OF PREPARNG THEV Erich Korinth, Frankfort-on-the-Main-Hochst, and Georg Medler, Murasier, Germany, assign ors to H. G. Faroenindustrie Aktiengesellschaft, Frankfort-on-the-Main, Germany No Drawing. Application August 31, 1934, Se ria No. 42,346. in Germany September 13, 933 Clains. (C. 134-58) The present invention relates to blue pigment fate to run into an aqueous suspension of barium colors prepared from barium Sulfate and to a carbonate which simultaneously contains the proceSS of preparing them. Salts of manganese in a dissolved condition. The We have found that a new kind of stable blue precipitate then contains a sufficient quantity of s pigment colors can be prepared in an economical manganese compounds, so that in the Subsequent nanner from barium Sulfate With the aid of man heating process the desired blue color may be ganese. COnpounds. These pigment colors fulfil obtained. It is particularly advantageous fur the highest requirements. thermore to add a Substance having a basic ac The characteristic feature of the new proceSS tion, for instance barium carbonate and to carry O consists in heating barium Sulfate together With Out the process in an oxidizing melt; the blue O manganese compounds So as to obtain a thermic pigment thus produced has a particularly deep reaction, under Such conditions as lead to the color. production of the MnO4 group or counteract itS The barium sulfate may also be produced only decomposition. This can be attained, in a man during the heating process, for instance from 5 ner in itself known, by carrying out the heating barium carbonate or barium nitrate and sodium 5 process in the presence of basic Substances and Sulfate. It is likewise possible to start from the not too high a temperature. The temperature finished, precipitated barium sulfate. which is most Suitable is between about 400 C. It may be particularly advantageous to start and about 850° C. Furthermore it is advisable With the cheap heavy spar if it is finely ground. 20 for the maintenance or the formation of the In this case it Suffices for instance to mix the 20 MnO4 group to carry out the heating proceSS heavy Spar powder With a Solution of the de either with access of air or oxygen or in the pres Sired manganese compounds, to add a Small ence of a substance having an Oxidizing action, quantity of basic Substance and oxidizing flux Such as a nitrate. (preferably barium carbonate and barium ni 25 As basic substances, there may advantageously trate) and to heat the mixture to incandescence 25 be used particularly basic barium compounds, for about half an hour to one hour, for instance such as barium carbonate, barium hydroxide or at about 700 C. v barium oxide. An addition of basic Substances If the manganese compound has not been com may, however, also be dispensed with, if con pletely bound to the barium sulfate, green to 30 pounds are present which, by the action of the brown Colors first appear which can readily be 30 high temperatures, produce a basic compound, renoved by an after-treatment with an acidified for instance barium nitrate. The manganates Solution of a bisulfite of an alkali or alkaline and permanganates of the alkali metals and al earth metal Or With Sulfurous acid. The previ kaline earth metals likewise produce alkaline Ously COWered blue coloration then appears in a 35 Substances during the heating process. Conse complete purity. 35 quently, they can be caused to react with the In many cases it is Sufficient to carry out the barium Sulfate without any further addition; purification by the addition of dilute nitric acid during this process they simultaneously act as to the finished fused maSS Without adding a par compounds providing manganese and alkali. ticular reducing agent. AS Soon as the purifica 40 As to the quantitative proportions, it is Suit tion is complete, the acid and the manganese 40 able, for instance if potassium manganate or po Which has been dissolved, are removed by de tassium permanganate are used, to add up to 15 Canting. It has been found to be advantageous per cent. of these compounds to the barium Sul not to use Water for the decanting process, but a fate before the heating process. In a cases it Salt Solution by Which the Solubility of the bari is advisable to mix as intimately as possible the 45 barium sulfate and the manganese compound Un Sulfate is repressed, that is a solution of sul used, so that the latter is homogeneously dis fate salt, or preferably barium salt, for instance tributed in a particularly fine state in the total barium nitrate. There is thus prevented a too quantity of barium Sulfate. far-reaching attack; the Velocity at which the The process may be carried out for instance as dispersed particles deposit at the bottom is simul 50 follows: The barium sulfate is precipitated in the taneously increased. If the acid has been re presence of the manganese compounds, for in noved in this manner, the product can be further stance manganese nitrate, KMnO4, K2MnO4, treated by Washing and drying operations. It is BaMnO4, or the like. It is sufficient for this pur advisable however, to add a Small quantity of 5 pose to cause sulfuric acid or a solution of a sul barium carbonate to the product in order to cre 55 2 2,156,727 ate a buffer against later actions of stronger (5) An intimate mixture of 710 grams of cal acids. cined sodium sulfate, 1.3 kilos of barium nitrate, The barium carbonate may be added SubSe 50 grams of potassium permanganate and 150 quently or it may be precipitated upon the de grams of barium hydroxide is fused for about 2 5 posited pigment. The addition of barium car hours at 500 C. The fused maSS obtained is bonate acts by its neutralising effect and by the further treated as described in Example 3. There reduction of the solubility of the barium sulfate is obtained a light-blue pigment. owing to the formation of barium bicarbonate by (6) 280 grams of sodium sulfate containing the action of acid. Water of Crystallization, 50 grams of caustic SOda, 10 The color pigments prepared according to the 25 grams of calcined sodium carbonate and 65 () described process appear to be crystals of barium grams, of potassium manganate are dissolved at sulfate, in the lattice construction of which bari 35° C. to 40° C. in 1000 grams of water. The un manganate is embedded. The color pig solution is filtered and caused to run slowly, while ments are completely fast to light, insoluble and vigorously stirring, into a boiling solution of 700 15 resistant to atmospheric conditions. They are grams of barium nitrate and 25 grams of caustic 5 distinguished by the excellent purity of their soda, and 2000 grams of Water. The violet precip color and a Small content of black and more itate obtained is filtered by Suction and intimately over by the known good pigmentary properties kneaded, without previously Washing it, With 100 of the barium sulfate. The following examples grams of finely pulverized barium nitrate. The 20 Serve to illustrate the invention, but they are mass is then dried and the dried cake which has 20 not intended to limit it thereto: been reduced to Small pieces is heated for about (1) 5 kilos of potassium manganate or potas 45 minutes at 690 C. in a covered Crucible. The sium permanganate and 25 kilos of barium ni product obtained is then treated with 1 liter of wa trate are together dissolved in 500 liters of water. ter and finely ground. The Suspension is mixed, The Solution is precipitated at boiling tempera while stirring with nitric acid until an acid reac 25 ture, while vigorously stirring, with a solution of tion is obtained. The nitric acid is caused to act 12 kiloS of calcined sodium sulfate in 50 liters of upon the Suspension for about 1 hour. The SuS Water. pension is then decanted with a Saturated solution The violet or violet-red precipitation product of barium nitrate until the acid and the manga is heated for about 15 minutes at a temperature nese which has been dissolved are removed. A 30 between 750° C. and 800° C., while being exposed Small quantity, for instance A2 per cent. of ba to the air. rium carbonate is precipitated upon the suspend The mixed crystal obtained by way of precipi ed blue pigment and the pigment is then dried tation is destroyed with separation of manganese after having been thoroughly Washed. 35 by gently heating it. Later, there is formed in its We claim: 5 place a body of a pale blue coloration. In order i. The process of producing blue manganate to obtain the pigment in a pure color, that is pigment colors which comprises heating to a tem free from any excess of manganese-oxide or perature of between about 400° C. and about 850 barium manganate, it may be necessary to sub C. an intimate mixture of barium sulfate and a 40 ject the heated product which has been conmi manganese compound in the presence of a basic nuted to small pieces by chilling or grinding, to Substance and of air and purifying the product a purification, for instance with hydrochloric thus obtained with a solution containing Sul acid and a Solution of a bisulfite of an alkali or furous acid.
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • 1,45%,562 UNITED SATES P All.‘ Bl If" Til?
    Patented May 1, 1923. 1,45%,562 UNITED SATES P All.‘ bl if" til? . ROBERT E. WILSON, LEON ‘JV. PARSONS, AND STANLEY 1E. OHXSHOLIYI, OF WASHINGTON, DISTRICT OF COLUMBIA. PROCESS THE PRODUCTION OE‘ All‘HALLEAETELMLETAL PERTJIANGANATES. N0 Drawing". Application ?led September 27, 1918. Serial No. 255,975. To (all to]: am it may concern. .' manganate by oxidation or acidification, Be it known that we, Romain‘ E. lllinsou, metatheses into calcium pern'iangamite by LEON “7. Parsons, and STANLEY L. Unis treatment With calcium sulphate or milk at HoLM, citizens of the United States. and sta lime. tioned at ViTashington, District of Columbia, O'li' these four possible methods, (1.) is not 60 in the o?icc of the Director the Chemical a possible large scale method. on account l/Varfare Service, Research Division, have in of its use ot silver; (2) and are elec vented a Process for the ll’roduction oif Al trolytic methods Without a. great deal out kali-Earth-l\letal Permanpjanates, of which promise, and are to be considered elsewhere; ll) the ‘following is a speci?cation. (ll) the principal subject of this applica G3 in The present invention relates to the pro tion. duction oi? alkah» earth metal permangam Three distinct methods for preparing: ba~ nates and especially the permanganates of rium (or strontium) manganate have been calcium and magnesium as these have beenv here investigated. The ?rst of? these meth found to be very ellicient oxidizing agents ods involves heating together barium perox 70 for certain purposes, more e?icient even. than ide, hydroxide, or a salt, such as the nitrate the permanganates of the allmliearth metals.
    [Show full text]
  • Safety Practices in Chemistry Laboratories
    4/24/2012 Safety Practices in Chemistry Laboratory Sam Tung, HSE Specialist, CIH, RSO Health Safety and Environment Office, Hong Kong University of Science and Technology Contents 1. Introduction to Legislations related to Chemistry Laboratories 2. Introduction to Chemical Hazards 3. Criteria of Design for Laboratory Ventilation 4. Operations and Maintenance of Laboratory Fume hood 5. Case Studies of Laboratory Accidents 6. Handling of Chemical Spills 7. Emergency Response Equipment 1 4/24/2012 Importance of Health and Safety To protect your health and safety (and environment) To protect your colleagues’ and students’ health and safety Case Study: Laboratory Fire Kills UCLA Researcher A 23-year-old research assistant working at UCLA who was seriously burned in a lab fire in December 2008 recently died from her injuries. She was trying to transfer up to 2 ounces (~50ml) of t-butyl lithium (pyrophoric chemical), which was dissolved in pentane from one sealed container to another by a 50 ml syringe. The barrel of the syringe was either ejected or pulled out of the syringe, causing liquid to be released. A flash fire set her clothing ablaze and spread second- and third-degree burns over 43% of her body. 2 4/24/2012 Root Causes of the Accident Poor technique and improper method Use a 50ml syringe to transfer~50 ml pyrophoric chemical Should use a 100ml syringe Should use Cannula Method for transfer of pyrophoric chemical > 50 ml Lack of proper training No safety training record Lack of supervision No follow up actions had been
    [Show full text]
  • Synthesis and Properties of Simple and Complex Salts Of
    PhD Theses SYNTHESIS AND PROPERTIES OF SIMPLE AND COMPLEX SALTS OF PERMANGANIC ACID Kótai László Institute of Materials and Environmental Chemistry Chemical Research Center, Hungarian Academy of Sciences 2006 1 1. INTRODUCTION AND AIMS Widespread applicapibility and the increased quality requirements of permanganate salts require development of new synthetic methods. The transition metal permanganates are precursors of numerous catalytically active metal-manganese oxide composites. Therefore, the exact kowledge of their structure, reactivity and the thermal decomposition characteristics of permanganate compounds is essenial to plan the properties of the decomposition products. The main target of this work was the development of new synthetic methods to prepare simple and complex salts of permanganic acid, including the preparation and the study of ammonium permanganate and some ammine-complex permanganates of transition metals such as Ag, Cu, Ni, Cd, Zn. 2. ANALYTICAL METHODS Classical inorganic analytical chemistry, IR and Raman spectroscopy, UV-VIS spectroscopy, ESR, XRD, GC-MS, single crystal X-ray and powder neutron diffractometry, TG-gas- titrimetry, TG-MS and DSC methods were used. 3. NEW RESULTS 3.1. SYNTHESES 3.1.1. Syntheses based on manganese heptoxide A method has been developed to prepare Ba, Mg, Ca, Ni, Zn, Cd, Cu(II), Al, Fe(III), Y, Ce(IV), Sm, Pr and Gd-permanganates by means of the reaction of KMnO4 with sulfuric acid monohydrate, followed by extraction of the Mn2O7 with CCl4 and the reaction of the Mn2O7 in CCl4 with catalytic amount of water and the oxide, hydroxide and carbonate of the appropriate metal. 3.1.2. Syntheses based on the metathesis reaction of KMnO4 Reaction of warm saturated solutions of NH4Cl and potassium permangnate provided Kx(NH4)1-xMnO4 (x=0.2-0.4) solid solutions instead of NH4MnO4 as it has been declared previously.
    [Show full text]
  • Basic Description for Ground and Air Hazardous
    BASIC DESCRIPTION FOR GROUND AND AIR GROUND AND AIR HAZARDOUS MATERIALS SHIPMENTS GROUND SHIPMENTS AIR SHIPMENTS SHIPMENTS HAZARD DOT DOT CLASS OR MAXIMUM EXEMPTION, GROUND EXEMPTION, HAZARDOUS MATERIALS DESCRIPTIONS DIVISION I.D. NUMBER LABEL(S) REQUIRED OR QUANTITY PER SPECIAL SERVICE TO LABEL(S) REQUIRED OR MAXIMUM NET CARGO SPECIAL NON-BULK AND PROPER SHIPPING NAME (Subsidiary if (ALSO MARK PACKING EXEMPTION, SPECIAL PERMIT INNER PERMIT CANADA EXEMPTION, SPECIAL PERMIT QUANTITY PER AIRCRAFT PERMIT SPECIAL EXCEPTIONS PACKAGING (ALSO MARK ON PACKAGE) applicable) ON PACKAGE) GROUP OR EXCEPTION RECEPTACLE OR 173.13 PERMITTED OR EXCEPTION PACKAGE** QUANTITY OR 173.13 PROVISIONS §173.*** §173.*** (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) Accellerene, see p-Nitrosodimethylaniline Accumulators, electric, see Batteries, wet etc Accumulators, pressurized, pneumatic or hydraulic (containing non-flammable gas), see Articles pressurized, pneumatic or hydraulic (containing non-flammable gas) FLAMMABLE FLAMMABLE Acetal 3 UN1088 II LIQUID * YES LIQUID * 5 L 150 202 FLAMMABLE Acetaldehyde 3 UN1089 I LIQUID YES Forbidden None 201 May not be regulated when shipped via UPS Acetaldehyde ammonia 9 UN1841 III ground YES CLASS 9 * 30 kg 30 kg 155 204 FLAMMABLE FLAMMABLE Acetaldehyde oxime 3 UN2332 III LIQUID * YES LIQUID * 25 L 150 203 CORROSIVE, CORROSIVE, Acetic acid, glacial or Acetic acid solution, FLAMMABLE FLAMMABLE A3, A6, with more than 80 percent acid, by mass 8 (3) UN2789 II LIQUID * YES LIQUID * 1 L A7, A10 154 202 Acetic
    [Show full text]
  • The True Formula
    ON THE TRUE FORMULA FOR PERMANGANATES. DISSERTATION PRESENTED TO THE FACULTY OF THE UNIVERSITT7 ' OF VIRGINIA. In application fir the Degree of Dadar of 'Pflilawplzj'. BY CHARLES M. B‘RADBURY, 0F VIRGINIA. THESIS —Permanga;zz}: acid is moiwéaszc, and the per-:V _ mangamztes are represented 6}! the generalfbmwla R (Mn 04 p. -' : . ; V To His Fat/tor, 31m ‘18. granary, (35511. 77:13 Paper is Inscribed IN TOKEN OF AFFECTION, BY film 9mm, Preface. The greater part of the following paper was written nearly a year ago. As it was nearing completion, I found, from an allusion in .an article by M. Raoult, of Paris, (see Bzzlleiz'n dc Soc. C/u'm. de Paris, XLVI, p. 805), that my conclusion as to the true formula for permanganates had been reached already by that eminent chemist, by means of a new method, origi- nated by himself, for determining molecular weights. Upon examining M. Raoult‘s original papem‘fHéWIz—Iifilc C/zz'm. ct dc Ply/5., (6), VIII, July, 1886, p. 3 30, however, it was found that nothing was given concerning permanganates, beyond the simple statement that they were shown by the method to be monobasic. T Dr. Victor Meyer and Dr. Auwers, of Gottingen, have recently extended and simplified the method of M. Raoult, (see Berk/zit a’n’ Dads. Chem. 656115., for February 27 and March 12, 1888), and I am therefore enabled to add materially to the evidence already collected in the dissertation, by a con- vincing application of this method. ‘ Had the detailed results of M.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • 2020 Emergency Response Guidebook
    2020 A guidebook intended for use by first responders A guidebook intended for use by first responders during the initial phase of a transportation incident during the initial phase of a transportation incident involving hazardous materials/dangerous goods involving hazardous materials/dangerous goods EMERGENCY RESPONSE GUIDEBOOK THIS DOCUMENT SHOULD NOT BE USED TO DETERMINE COMPLIANCE WITH THE HAZARDOUS MATERIALS/ DANGEROUS GOODS REGULATIONS OR 2020 TO CREATE WORKER SAFETY DOCUMENTS EMERGENCY RESPONSE FOR SPECIFIC CHEMICALS GUIDEBOOK NOT FOR SALE This document is intended for distribution free of charge to Public Safety Organizations by the US Department of Transportation and Transport Canada. This copy may not be resold by commercial distributors. https://www.phmsa.dot.gov/hazmat https://www.tc.gc.ca/TDG http://www.sct.gob.mx SHIPPING PAPERS (DOCUMENTS) 24-HOUR EMERGENCY RESPONSE TELEPHONE NUMBERS For the purpose of this guidebook, shipping documents and shipping papers are synonymous. CANADA Shipping papers provide vital information regarding the hazardous materials/dangerous goods to 1. CANUTEC initiate protective actions. A consolidated version of the information found on shipping papers may 1-888-CANUTEC (226-8832) or 613-996-6666 * be found as follows: *666 (STAR 666) cellular (in Canada only) • Road – kept in the cab of a motor vehicle • Rail – kept in possession of a crew member UNITED STATES • Aviation – kept in possession of the pilot or aircraft employees • Marine – kept in a holder on the bridge of a vessel 1. CHEMTREC 1-800-424-9300 Information provided: (in the U.S., Canada and the U.S. Virgin Islands) • 4-digit identification number, UN or NA (go to yellow pages) For calls originating elsewhere: 703-527-3887 * • Proper shipping name (go to blue pages) • Hazard class or division number of material 2.
    [Show full text]
  • 132 Subpart A—General Subpart B—Table of Hazardous Materials
    § 172.1 49 CFR Ch. I (10–1–11 Edition) 172.606 Carrier information contact. this part, that person shall perform the function in accordance with this part. Subpart H—Training [Amdt. 172–29, 41 FR 15996, Apr. 15, 1976, as 172.700 Purpose and scope. amended by Amdt. 172–32, 41 FR 38179, Sept. 172.701 Federal-State relationship. 9, 1976] 172.702 Applicability and responsibility for training and testing. Subpart B—Table of Hazardous 172.704 Training requirements. Materials and Special Provisions Subpart I—Safety and Security Plans § 172.101 Purpose and use of haz- 172.800 Purpose and applicability. ardous materials table. 172.802 Components of a security plan. (a) The Hazardous Materials Table 172.804 Relationship to other Federal re- (Table) in this section designates the quirements. materials listed therein as hazardous 172.820 Additional planning requirements materials for the purpose of transpor- for transportation by rail. tation of those materials. For each 172.822 Limitation on actions by states, listed material, the Table identifies the local governments, and Indian tribes. hazard class or specifies that the mate- APPENDIX A TO PART 172—OFFICE OF HAZ- rial is forbidden in transportation, and ARDOUS MATERIALS TRANSPORTATION gives the proper shipping name or di- COLOR TOLERANCE CHARTS AND TABLES rects the user to the preferred proper APPENDIX B TO PART 172—TREFOIL SYMBOL shipping name. In addition, the Table APPENDIX C TO PART 172—DIMENSIONAL SPEC- IFICATIONS FOR RECOMMENDED PLACARD specifies or references requirements in HOLDER this subchapter pertaining to labeling, APPENDIX D TO PART 172—RAIL RISK ANAL- packaging, quantity limits aboard air- YSIS FACTORS craft and stowage of hazardous mate- rials aboard vessels.
    [Show full text]
  • Bacitracin B:0050 Medical Surveillance: Evaluation by a Qualified Allergist
    B Bacitracin B:0050 Medical Surveillance: Evaluation by a qualified allergist. Kidney function tests. First Aid: In case of large-scale exposure, the directions for Molecular Formula: C H N O S 66 103 17 16 medicines (nonspecific, n.o.s.) would be applied as follows: Synonyms: Ayfivin; Baciguent; Baci-Jel; Baciliquin; Move victim to fresh air; call emergency medical care. If Bacitek ointment; Fortracin; Parentracin; Penitracin; not breathing, give artificial respiration. If breathing is diffi- Topitracin; Zutracin cult, give oxygen. In case of contact with material, immedi- CAS Registry Number: 1405-87-4 ® ately flush skin or eyes with running water for at least RTECS Number: CP0175000 15 min. Speed in removing material from skin is of extreme UN/NA & ERG Number: UN3249 (medicine, solid, toxic, importance. Remove and isolate contaminated clothing and n.o.s.)/151 shoes at the site. Keep victim quiet and maintain normal EC Number: 215-786-2 body temperature. Effects may be delayed; keep victim Regulatory Authority and Advisory Bodies under observation. Listed on the TSCA inventory. Storage: Color Code—Green: General storage may be used. List of Acutely Toxic Chemicals, Chemical Emergency Shipping: The DOT category of medicine, solid, toxic, n.o.s. Preparedness Program (EPA) and formerly on CERCLA/ calls for the label of “POISONOUS/TOXIC MATERIALS.” SARA 40CFR302, Table 302.4 Extremely Hazardous Bacitracin would fall in Hazard Class 6.1 and in Packing Substances List. Dropped from listing in 1988. Group III. Listed on Canada’s DSL List. Spill Handling: Evacuate and restrict persons not wearing WGK (German Aquatic Hazard Class): No value assigned.
    [Show full text]
  • United States Patent (19) 11) 4,338,237 Sulzbach Et Al
    United States Patent (19) 11) 4,338,237 Sulzbach et al. 45 Jul. 6, 1982 (54) PROCESS FOR THE PREPARATION OF 57 ABSTRACT AQUEOUS, COLLOIDAL DISPERSIONS OF COPOLYMERS OF THE An improved process for the preparation of aqueous, TETRAFLUOROETHYLENE/ETHYLENE colloidal dispersions of copolymers comprising at most TYPE 60 mole % of units of tetrafluoroethylene, 60 to 40 mole % of units of ethylene and 0 to 15 mole % of units of at 75 Inventors: Reinhard A. Sulzbach; Robert least one other a-olefinic monomer, which can be copo Hartwimmer, both of Burghausen, lymerized with tetrafluoroethylene and ethylene, in the Fed. Rep. of Germany presence of manganese compounds as the catalyst is 73 Assignee: Hoechst Aktiengesellschaft, described. In this process, the emulsion polymerization Frankfurt, Fed. Rep. of Germany is carried out in an aqueous phase in the presence (a) of 21 Appl. No.: 275,881 a chain transfer agent of the formula X-CH2-COOR (X = Cl, Br, COOH, COOR, COCH5, CH3, C2H5 or 22 Filed: Jun. 22, 1981 C3H7; and R = C1-C4-alkyl), and (b) of a compound 30 Foreign Application Priority Data which stabilizes the dispersion and has the formula Jun. 28, 1980 IDE Fed. Rep. of Germany ....... 3O24450 NH-O-C-Y 51 Int. Cl. ................................................ C08K 5/32 52 U.S. C. ...................................... 524/777; 526/91; O 526/211; 526/255; 524/767 58 Field of Search ..................... 260/29.6 N, 29.6 T, (Y-COONH4, COOH, CH3, CH2OH, CH2COOH or 260/29.6 F; 526/91, 255, 211 CH2COONH4). (b) can additionally contain an ammo nium salt of an inorganic non-metal acid, for example 56 References Cited ammonium chloride or fluoride, Terpolymers or quater U.S.
    [Show full text]
  • 150 Subpart A—General Subpart B—Table of Hazardous Materials
    § 172.1 49 CFR Ch. I (10–1–19 Edition) APPENDIX B TO PART 172—TREFOIL SYMBOL shipping name. In addition, the Table APPENDIX C TO PART 172—DIMENSIONAL SPEC- specifies or references requirements in IFICATIONS FOR RECOMMENDED PLACARD this subchapter pertaining to labeling, HOLDER packaging, quantity limits aboard air- APPENDIX D TO PART 172—RAIL RISK ANAL- YSIS FACTORS craft and stowage of hazardous mate- rials aboard vessels. AUTHORITY: 49 U.S.C. 5101–5128, 44701; 49 CFR 1.81, 1.96 and 1.97. (b) Column 1: Symbols. Column 1 of the Table contains six symbols (‘‘ + ’’, ‘‘A’’, SOURCE: Amdt. 172–29, 41 FR 15996, Apr. 15, ‘‘D’’, ‘‘G’’, ‘‘I’’ and ‘‘W’’) as follows: 1976, unless otherwise noted. (1) The plus (+) sign fixes the proper shipping name, hazard class and pack- Subpart A—General ing group for that entry without regard to whether the material meets the defi- § 172.1 Purpose and scope. nition of that class, packing group or This part lists and classifies those any other hazard class definition. When materials which the Department has the plus sign is assigned to a proper designated as hazardous materials for shipping name in Column (1) of the purposes of transportation and pre- § 172.101 Table, it means that the mate- scribes the requirements for shipping rial is known to pose a risk to humans. papers, package marking, labeling, and When a plus sign is assigned to mix- transport vehicle placarding applicable tures or solutions containing a mate- to the shipment and transportation of rial where the hazard to humans is sig- those hazardous materials.
    [Show full text]