Bakalářská Práce Software Pro Rehabilitaci Paže Ve Virtuální Realitě

Total Page:16

File Type:pdf, Size:1020Kb

Bakalářská Práce Software Pro Rehabilitaci Paže Ve Virtuální Realitě Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Bakalářská práce Software pro rehabilitaci paže ve virtuální realitě Plzeň 2020 Jakub Kodera Místo této strany bude zadání práce. Prohlášení Prohlašuji, že jsem bakalářskou práci vypracoval samostatně a výhradně s použitím citovaných pramenů. V Plzni dne 7. května 2020 Jakub Kodera Abstract Arm rehabilitation software in virtual reality. The work is a part of a larger project, that is trying to achieve rehabilitation of the upper limb, in pa- tients suffering from a neurological disorder, in virtual reality. The result of this work is an application, that allows patients to perform rehabilitation exercises. The technologies used to develop the software are discussed here, mainly the HTC Vive system and the Unity game engine. The application is designed so that it can be further expanded. The application provides patients with a vizualization of the movement, that they are to perform. The therapeut obtains data and statistics of the exercises performed by the patient. Abstrakt Práce je součástí projektu, který se zabývá rehabilitací horní končetiny, u pacientů trpících neurologickou poruchou, ve virtuální realitě. Výsledkem této práce je aplikace umožňující provádět rehabilitačních cvičení. Jsou zde probírány technologie použité při vývoji softwaru. Zejména systém HTC Vive a herní engine Unity. Aplikace je navržena tak, aby ji bylo možné dále rozšiřovat. Aplikace poskytuje pacientům vizualizaci prováděného pohybu. Terapeut aplikací získá data a statistiky o cvičeních vykonaných pacientem. Obsah 1 Úvod7 2 Roztroušená skleróza mozkomíšní8 2.1 Průběh nemoci.........................8 2.1.1 Typy roztroušené sklerózy............... 10 2.2 Symptomy............................ 11 2.3 Léčba.............................. 12 2.3.1 Rehabilitace....................... 13 3 Virtuální realita 14 3.1 Obecně.............................. 14 3.1.1 Historie a současnost.................. 15 3.1.2 Využití.......................... 16 3.2 Volba systému VR....................... 17 3.3 HTC Vive............................ 18 3.3.1 Vznik.......................... 18 3.3.2 Specifikace........................ 19 3.3.3 Systém sledování zařízení................ 21 4 Unity 24 4.1 Obecně.............................. 24 4.1.1 Editor.......................... 25 4.1.2 Scény.......................... 26 4.1.3 Herní objekty...................... 26 4.1.4 Skriptování....................... 27 4.2 Animace............................. 28 4.3 VR integrace.......................... 30 5 Software 31 5.1 Návrh.............................. 31 5.2 Možnosti softwaru........................ 32 5.2.1 Použití HTC Vive.................... 32 5.2.2 Role pacienta...................... 33 5.2.3 Role terapeuta..................... 35 5.3 Implementace.......................... 38 5.3.1 Uživatelské rozhraní.................. 40 5 5.3.2 Cvičení......................... 40 5.3.3 Tunel.......................... 46 5.3.4 Animace......................... 47 5.3.5 Konfigurace....................... 48 5.4 Testování............................ 50 5.5 Nedostatky a potencionální budoucí rozšíření......... 51 6 Závěr 53 Seznam zkratek 54 Literatura 55 A Přílohy 58 A.1 Seznam obrázků......................... 58 A.2 Uživatelská příručka...................... 58 A.2.1 Sestavení......................... 58 A.2.2 Spuštění......................... 58 A.2.3 Binding trackerů.................... 59 A.2.4 Definice vlastního pohybu............... 59 A.3 Obsah DVD........................... 60 6 1 Úvod Práce je součástí většího projektu, jehož cílem je umožnit provádění reha- bilitačních cvičení horní končetiny ve virtuální realitě. Práce je zaměřena na pacienty, kteří trpí nějakou neurologickou chorobou, která je v pohybech horní končetinou značně omezuje. Pacienti navštěvují rehabilitace, kde s po- mocí terapeuta provádějí pohyby a hry, které mají za účel jejich zdravotní stav zlepšit. Cílem této práce je vytvořit aplikaci, která pacientům umožní provádět tato cvičení ve virtuální realitě. Aplikace bude schopná pacientům prováděná cvičení vizualizovat ve virtuálním světě a terapeutům by měla poskytnout informace o pacientem vykonaných cvičeních. Při práci probíhala spolupráce s týmem Fakultní nemocnice Královské Vinohrady(FNKV), který se touto problematikou zabývá. Na základě této spolupráce probíhala tvorba specifikace a vlastností softwaru. Tato práce přímo staví na již hotové práci, jejímž výsledkem je modul, umožňující ana- lýzu pohybu v reálném čase [14]. Současně s touto prací probíhá vývoj dalších dvou prací [9][12], které rehabilitační aplikaci poskytují data o terapeutem předcvičených pohybech, na základě kterých proběhne vyhodnocování paci- entova pohybu. V práci bude nejprve probrána jedna z nejčastějších neurologických cho- rob, kterou pacienti trpí. Následně proběhne diskuze technologií použitých při vývoji aplikace. Nakonec bude popsána vlastní implementace rehabilitač- ního softwaru. V práci je postupně popsáno, jaké problémy bylo potřebné při její realizaci řešit. 7 2 Roztroušená skleróza mozkomíšní Cílem této kapitoly je seznámit čtenáře s nemocí, pro jejíž rehabilitaci byl software primárně vytvářen. Roztroušená skleróza mozkomíšní (Sclerosis multiplex cerebrospinalis) je chronické onemocnění centrální nervové soustavy (mozku a míchy) [1]. V České republice se jedná o poměrně časté onemocnění, trpí jím přibližně 10000 až 13000 lidí [24], tzn. zhruba každý 1000, přičemž výskyt nemoci u žen je asi 2x-3x častější než u mužů [15]. Dodnes nelze jednoznačně říci co je příčinou vzniku nemoci. To má za důsledek, že jí nelze předejít. Její vývoj je dnes přičítán jak faktorům genetickým, tak faktorům zevního prostředí [1]. Na základě praxe a experimentů jsou známy mechanismy a spouštěče, které vedou k rozvinutí nemoci. Nemoc se typicky začne projevovat mezi 20.- 30. rokem života. Dosud nebyl nalezen lék, který by průběh nemoci zastavil úplně. Sama o sobě není smrtelná, ovšem jelikož se jedná o onemocnění celoživotní, může pacienta v určitých oblastech značně omezovat [5]. 2.1 Průběh nemoci Roztroušená skleróza, dále jenRS, se řadí mezi autoimunitní, demyielini- zační choroby [1]. Základní funkcí imunitního systému člověka je chránit tělo před infekcemi a napadání cizích, nebezpečných buněk. U autoimu- nitních onemocnění ovšem dochází k tomu, že buňky imunitního systému začnou napadat a ničit buňky tkání organismu. Takovýchto nemocí je celá řada, typicky se dělí podle toho jaký typ tkáně napadají [15]. PřiRS dochází k tomu, že T-lymfocyty, makrofágy a další bílé krvinky imunitního systému, začnou přecházet přes hematoencefalickou bariéru (přechod mezi vlásečni- cemi krevní soustavy a mozkové tkáně). Následně začnou považovat myelin za cizí a postupně napadají a ničí myelinové pochvy v bílé hmotě mozku a míchy, odtud název demyielinizační. Přičemž nelze jednoznačně určit, co tuto reakci imunitního systému způsobuje [1]. Myelinová pochva vytváří lipidový (tukový) obal okolo axonů, dlouhých výběžků neuronů (buňky nervové soustavy), které zajišťují přenos akčních potenciálů mezi jednotlivými buňkami. Pochva je přerušována Ranvierovými zářezy, viz obrázek 2.1. Myelin je v centrální nervové soustavě tvořen oligo- 8 Obrázek 2.1: Neuron - základní jednotka nervové soustavy1 dendrocyty a jeho účelem je chránit a vyživovat samotná nervová vlákna. Myelin také umožňuje přeskakování impulsů z jednoho Ranvierova zářezu na druhý, místo toho aby se vzruch musel šířit po celém vlákně, čímž šíření jednotlivých signálů značně urychluje [5]. Při rozpadu myelinových pochev dochází ke chronickému zánětu, a vzniká až několik nepravidelně rozmístěných ložisek, kterým se také říká plaky nebo jinak léze. Odtud také pochází název roztroušená skleróza, jelikož po ode- znění zánětu vznikají v místech postižení jizvy, řecké skleros znamená tuhý. Roztroušená protože ložiska mohou vznikat na různých místech mozku a mí- chy. Velikost ložisek může být různá, od milimetrů po centimetry [5]. V urči- tých případech jsou nervová vlákna schopna alespoň částečné reparace, tzv. remyelinizace [1]. Ovšem postupem času dochází k vyčerpání regeneračních schopností oligodendrocytů. Důsledkem toho sice dojde k obnovení vzruchů, jejich vedení je ale pomalejší [5]. V pozdějších, někdy ale i v časných, fázích nemoci může také docházet k úplnému zničení samotných axonů, v takových to případech již není možná obnova funkce dané buňky [1]. Vlastní průběh nemoci je poměrně různorodý a nevypočitatelný, může se 1https://velkaencyklopedie.estranky.cz/fotoalbum/biologie/ biologie-lidske-telo/nervova-soustava/neuron.-.html 9 u každého pacienta lišit [5]. Typickým průběhem nemoci je střídání atak (re- lapsů) a remisí. Ataka je období nemoci, kdy dochází k rozvoji neurologické dysfunkce, tedy období, kdy se buď zhoršují stávající příznaky, nebo dochází k rozvinutí nových. Po atakách následuje období, kdy dochází k úplnému, nebo alespoň částečnému, uzdravení (remisi). Pacient se cítí dobře a neuro- logický nález je také v normě [1]. U některých pacientů dochází k tomu, že první záchvat zanechá trvalé následky, ale nemoc se dále nezhoršuje, nebo může od prvního záchvatu docházet k neustálému zhoršování. Po první atace typicky dochází k dalším relapsům po dvou letech, ovšem může nastat i dříve, ale jsou i případy, kdy se další ataka neprojeví nikdy [5]. První atace nejčas- těji předchází nějaký negativní vnější faktor, například virové onemocnění, psychický a fyzický stres, ale může se projevit i zcela náhle [1]. Podle prů- běhu se RS dělí na benigní a
Recommended publications
  • Evaluating Performance Benefits of Head Tracking in Modern Video
    Evaluating Performance Benefits of Head Tracking in Modern Video Games Arun Kulshreshth Joseph J. LaViola Jr. Department of EECS Department of EECS University of Central Florida University of Central Florida 4000 Central Florida Blvd 4000 Central Florida Blvd Orlando, FL 32816, USA Orlando, FL 32816, USA [email protected] [email protected] ABSTRACT PlayStation Move, TrackIR 5) that support 3D spatial in- teraction have been implemented and made available to con- We present a study that investigates user performance ben- sumers. Head tracking is one example of an interaction tech- efits of using head tracking in modern video games. We nique, commonly used in the virtual and augmented reality explored four di↵erent carefully chosen commercial games communities [2, 7, 9], that has potential to be a useful ap- with tasks which can potentially benefit from head tracking. proach for controlling certain gaming tasks. Recent work on For each game, quantitative and qualitative measures were head tracking and video games has shown some potential taken to determine if users performed better and learned for this type of gaming interface. For example, Sko et al. faster in the experimental group (with head tracking) than [10] proposed a taxonomy of head gestures for first person in the control group (without head tracking). A game ex- shooter (FPS) games and showed that some of their tech- pertise pre-questionnaire was used to classify participants niques (peering, zooming, iron-sighting and spinning) are into casual and expert categories to analyze a possible im- useful in games. In addition, previous studies [13, 14] have pact on performance di↵erences.
    [Show full text]
  • Motion Tracking in Field Sports Using GPS And
    Motion tracking in field sports using GPS and IMU M. Roobeek Master of Science Thesis Delft Center for Systems and Control Motion tracking in field sports using GPS and IMU Master of Science Thesis For the degree of Master of Science in Systems & Control at Delft University of Technology M. Roobeek February 16, 2017 Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of Technology The work in this thesis was conducted on behalf of, and carried out in cooperation with JOHAN Sports. Their cooperation is hereby gratefully acknowledged. Copyright c Delft Center for Systems and Control (DCSC) All rights reserved. Abstract Injuries are a sportsman’s worst nightmare: They withhold players from playing, they weaken teams and they force clubs to buy a bench-full of substitutes. On top of that, injuries can cause an awful lot of pain. Regulating match and training intensity can drastically decrease the risk of getting injured. Furthermore, it can optimally prepare players for matchday. To enable player load regulation, accurate measurements of player positions, velocities and especially accelerations are required. To measure these quantities, JOHAN Sports develops a sports player motion tracking system. The device that is used for motion tracking contains a 9-DoF MEMS Inertial Measurement Unit (IMU) and a GPS receiver. These low-cost MEMS sensors are combined via sensor fusion. The challenge in this filtering problem lies in the limited and low-quality sensor measurements combined with the high-dynamic player motion consisting of rapid orientation changes and sensed impacts in every step. Being able to overcome these challenges paves the way for injury prevention, saving sports clubs, teams and players a lot of misery.
    [Show full text]
  • Augmented and Virtual Reality in Operations
    Augmented and Virtual Reality in Operations A guide for investment Introduction Augmented Reality and Virtual Reality (AR/VR) are not new, but recent advances in computational power, storage, graphics processing, and high-resolution displays have helped overcome some of the constraints that have stood in the way of the widespread use of these immersive technologies. Global spending on AR/VR is now expected to reach $17.8 billion in 2018, an increase of nearly 95% over the $9.1 billion estimate for 2017.1 Given this impetus, we wanted to understand more about the current state of play with AR/VR in the enterprise. We surveyed executives at 700+ companies, including 600 companies who are either experimenting with or implementing AR/VR; spoke with AR/VR-focused leadership at global companies, start-ups, and vendors; and analyzed over 35 use cases, with a particular focus on: • The use of AR/VR for internal industrial company operations, including, but not limited to, design, engineering, and field services • The automotive, utility, and discrete manufacturing sectors. This research focuses on organizations that have initiated their AR/VR journey, whether by experimentation or implementation, and aims to answer a number of questions: • How is AR/VR being used today? • Where should organizations invest – what are the use cases that generate the most value? • How can companies either begin or evolve their initiatives? Outside of this report, terms you will commonly find when reading about AR/VR are mixed reality, hybrid reality, or merged reality in which both the physical and the virtual or digital realities coexist or even merge.
    [Show full text]
  • Virtual Reality 3D Space & Tracking
    Virtual Reality 3D Space & Tracking Ján Cíger Reviatech SAS [email protected] http://janoc.rd-h.com/ 16.10.2014 Ján Cíger (Reviatech SAS) RV01 16.10.2014 1 / 57 Outline Who am I? Tracking Coordinates in 3D Space Introduction Position in 3D Technologies Orientation in 3D VRPN Euler angles What is VRPN Axis/angle representation Simple Example Rotation matrices (3 × 3) Quaternions Resources Ján Cíger (Reviatech SAS) RV01 16.10.2014 2 / 57 Who am I? Who am I? PhD from VRlab, EPFL, Switzerland I AI for virtual humans, how to make autonomous characters ("NPCs") smarter I Lab focused on human character animation, motion capture, interaction in VR I ≈ 20 PhD students, several post-docs, many master students. VRlab: http://vrlab.epfl.ch IIG: http://iig.epfl.ch Ján Cíger (Reviatech SAS) RV01 16.10.2014 3 / 57 Who am I? Who am I? SensoramaLab, Aalborg University, Denmark I Building a new lab focusing on new media, interaction, use in rehabilitation I Large projection system, tracking, many interactive demos I Teaching bachelor & master students, project supervision. Ján Cíger (Reviatech SAS) RV01 16.10.2014 4 / 57 Who am I? Who am I? Reviatech SAS I Applied research, looking for new technologies useful for our products/customers I Tracking, augmented reality, AI, building software & hardware prototypes. http://www.reviatech.com/ Ján Cíger (Reviatech SAS) RV01 16.10.2014 5 / 57 Coordinates in 3D Space Position in 3D Outline Who am I? Tracking Coordinates in 3D Space Introduction Position in 3D Technologies Orientation in 3D VRPN Euler angles What is VRPN Axis/angle representation Simple Example Rotation matrices (3 × 3) Quaternions Resources Ján Cíger (Reviatech SAS) RV01 16.10.2014 6 / 57 Coordinates in 3D Space Position in 3D 3D Position Carthesian I 3 perpendicular axes I Left or right handed! I Z-up vs Y-up! I Usually same scale on all axes http://viz.aset.psu.edu/gho/sem_notes/3d_ I Common units – meters, fundamentals/html/3d_coordinates.html millimetres, inches, feet.
    [Show full text]
  • Virtual & Augmented Reality
    EXCERPTED FROM THE ORIGINAL: See inside cover for details. FINANCIAL BACKING GLOBAL INTEREST SHIPPING OUT SELLING OUT INTEREST IN THE PAST READY TO BUILD A WAVE OF CONTENT ON THE WAY RETAIL VALUE HOME REDESIGN, REIMAGINED EASIER TO IMAGINE YOURSELF AT HOME Video • Jaunt The Ecosystem • NextVR Virtual Reality / Augmented Reality • VRSE • Oculus Story Studio • GoPro • IG Port Processors Games • TI Applications • Sony • Qualcomm • Ubisoft 3D Audio • STMicro Graphics • CCP Games • Nvidia • TI • Realtek • Oculus Story Studio • AMD • Wolfson • Himax • Tammeka Games • Qualcomm • Realtek • MediaTek • Pixel Titans • Intel • Capcom Augmented Reality Virtual Reality Engineering • Microsoft HoloLens • Facebook Oculus Head–mounted devices • Autodesk • Google Glass • Samsung Gear VR • Dassault Systèmes • Magic Leap • Google Cardboard • IrisVR • Atheer • HTC Vive • Visidraft • Osterhout Design • Sony PSVR • MakeVR Memory Group • Vuzix iWear (DRAM/SSD) • VR Union Claire • Micron Healthcare • Samsung • Psious • SK Hynix • zSpace • Toshiba • Conquer Mobile • 3D Systems Social • Altspace VR • High Fidelity • Podrift Commerce • Sixense {shopping} • Matterport {real estate} Display • Samsung • JDI Cameras • Himax • 360Heros • Crystal • GoPro Odyssey 3D Lenses • Nokia OZO • Wearality • Jaunt NEO • Zeiss • Matterport Pro 3D Components • Canon • Nikon Haptics • Largan • Alps Position/ Room Tracker • AAC • Hon Hai • Nidec • Pegatron • Flex • Jabil • HTC Motion Sensors • Leap Motion • InvenSense • TI • STMicro • Honeywell The Ecosystem Virtual Reality / Augmented
    [Show full text]
  • Virtual Reality and Augmented Reality a Survey from Scania’S Perspective
    EXAMENSARBETE INOM MASKINTEKNIK, AVANCERAD NIVÅ, 30 HP STOCKHOLM, SVERIGE 2019 Virtual Reality and Augmented Reality A Survey from Scania’s Perspective KARL INGERSTAM KTH SKOLAN FÖR INDUSTRIELL TEKNIK OCH MANAGEMENT Virtual Reality and Augmented Reality A Survey from Scania’s Perspective Karl Ingerstam 2019 Master of Science Thesis TPRMM 2019 KTH – Industrial Engineering and Management Production Engineering SE-100 44 Stockholm Abstract Virtual reality and augmented reality are technological fields that have developed and expanded at a great pace the last few years. A virtual reality is a digitally created environment where computer- generated elements are displayed to a user via different interfaces for the respective senses. Video is used for displaying images, creating a realistic environment, while audio is played to stimulate hearing and other sorts of feedback is used to stimulate the sense of touch in particular. Augmented reality is a sub-category of virtual reality where the user sees the real surroundings, but computer-generated imagery is displayed on top of objects in the environment. This type of technology brings a lot of new possibilities and potential use cases in all sorts of areas, ranging from personal entertainment, communication and education to medicine and heavy industry. Scania is a global manufacturer of heavy trucks and buses, and provider of related services, based in Sweden. By studying Scania’s different departments and surveying the fields of virtual reality and augmented reality, the aim of this thesis is to identify situations and use cases where there is potential for Scania to implement virtual reality and augmented reality technology. This thesis also studies what obstacles implementation of these technologies bring.
    [Show full text]
  • Augmented Reality in Industry 4.0 and Future Innovation Programs
    technologies Article Augmented Reality in Industry 4.0 and Future Innovation Programs Gian Maria Santi , Alessandro Ceruti * , Alfredo Liverani and Francesco Osti Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy; [email protected] (G.M.S.); [email protected] (A.L.); [email protected] (F.O.) * Correspondence: [email protected] Abstract: Augmented Reality (AR) is worldwide recognized as one of the leading technologies of the 21st century and one of the pillars of the new industrial revolution envisaged by the Industry 4.0 international program. Several papers describe, in detail, specific applications of Augmented Reality developed to test its potentiality in a variety of fields. However, there is a lack of sources detailing the current limits of this technology in the event of its introduction in a real working environment where everyday tasks could be carried out by operators using an AR-based approach. A literature analysis to detect AR strength and weakness has been carried out, and a set of case studies has been implemented by authors to find the limits of current AR technologies in industrial applications outside the laboratory-protected environment. The outcome of this paper is that, even though Augmented Reality is a well-consolidated computer graphic technique in research applications, several improvements both from a software and hardware point of view should be introduced before its introduction in industrial operations. The originality of this paper lies in the detection of guidelines to improve the Augmented Reality potentialities in factories and industries. Keywords: augmented reality; mixed reality; Industry 4.0; factory automation; maintenance; design Citation: Santi, G.M.; Ceruti, A.; for disassembly; object tracking Liverani, A.; Osti, F.
    [Show full text]
  • Low-Cost and Home-Made Immersive Systems
    The International Journal of Virtual Reality, 2012, 11(3):9-17 9 Low-cost and home-made immersive systems Sébastien Kuntz , Ján Cíger VRGeeks, Paris, France Based on our experience we have settled on the following: Abstract²A lot of professionals or hobbyists at home would x )RU DQ LPPHUVLYH ZDOO ZH QHHG WR WUDFN WKH KHDG¶V like to create their own immersive virtual reality systems for position7KHKHDG¶VRULHQWDWLRQFDQEHRPLWWHGLIZH cheap and taking little space. We offer two examples of such assume that the user keeps their head facing the screen. ³KRPH-PDGH´ V\VWHPV XVLQJ WKH FKHDSHVW KDUGZDUH SRVVLEOH x The orientation is essential for an HMD, but we also while maintaining a good level of immersion: the first system is EHOLHYH WKDW ZH VKRXOG WUDFN WKH KHDG¶V position to based on a projector (VRKit-:DOO DQGFRVWV§¼ZKLOHWKH obtain a more natural viewpoint control. Furthermore, second system is based on a head-mounted display the movement parallax provides an important cue for (VRKit-+0' DQG FRVWV EHWZHHQ ¼ DQG ¼ :H DOVR the perception of depth. propose a standardization of those systems in order to enable x Tracking of at least one hand (both position and simple application sharing. Finally, we describe a method to orientation) seems important in order to be able to calibrate the stereoscopy of a NVIDIA 3D Vision system. interact with the virtual environment in both systems. x Having a few buttons and a joystick to simplify the Index Terms²Input/output, low cost VR, immersion, interaction is interesting too (action selection, interaction. navigation in the environment, etc).
    [Show full text]
  • Developing a Virtual Reality Application for Realistic Architectural Visualizations
    Soyhan Yazgan Developing a Virtual Reality Application for Realistic Architectural Visualizations Metropolia University of Applied Sciences Bachelor of Engineering Information Technology Bachelor’s Thesis 26 June 2020 Abstract Author Soyhan Yazgan Title Developing a Virtual Reality Application for Realistic Architectural Visualizations Number of Pages 30 pages Date 26 June 2020 Degree Bachelor of Engineering Degree Programme Information Technology Professional Major Software Engineering Instructors Janne Salonen, Supervisor The aim of this thesis is to understand how Virtual Reality works, what are its weaknesses and how to improve on them. It also tries to make use of Virtual Reality for architects. In this thesis, problems and limitations of Virtual Reality are discussed, how Virtual Reality can be used for architecture, how realistic graphics can be made and how Unreal Engine 4, a game development engine, can be used as a creation tool. As a result, an application was made to be used with both a Virtual Reality kit and with regular PC with keyboard and mouse. This application is a virtual tour of an apartment where furniture can be moved around, and their materials can be changed in real-time. Keywords virtual reality, architecture, visualization, render Contents List of Abbreviations 1 Introduction 1 2 Background Information 3 2.1 Virtual Reality 3 2.1.1 What is VR 3 2.1.2 Stereoscopic View 3 2.1.3 HTC Vive 4 2.1.4 Future Improvements 5 2.1.5 Uses of VR 6 2.2 Architectural Visualization 6 2.2.1 3D Models 6 2.2.2 Still 3D Renders 7
    [Show full text]
  • Leveraging Augmented Reality for Highway Construction
    Leveraging Augmented Reality for Highway Construction PUBLICATION NO. FHWA-HRT-20-038 NOVEMBER 2020 Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296 FOREWORD Augmented reality (AR) is an immersive technology that combines computer-generated information with real-world imagery in real time. AR enhances the user’s perception of reality and enriches information content. In the context of highway construction, enriched content can help project managers and engineers deliver projects faster, safer, and with greater accuracy and efficiency. Navigating through the phases of a construction project allows managers to catch errors before construction and potentially improve design and construction details. Managers can also use AR tools for training, inspection, and stakeholder outreach. This study focused on documenting current AR technologies and applications, with an emphasis on the state of the practice for using AR technologies in design, construction, and inspection applications for highways. This study included a literature review and interviews with researchers and vendors. This report is intended for State departments of transportation, the Federal Highway Administration, highway contractors and designers, and academic institutions involved in highway construction research. Cheryl Allen Richter, P.E., Ph.D. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation (USDOT) in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.
    [Show full text]
  • Head Tracking Based on Accelerometer Sensors
    Head Tracking based on accelerometer sensors CarloAlberto Avizzano, Patrizio Sorace, Damaso Checcacci*, Massimo Bergamasco PERCRO, Scuola Superiore S.Anna P.zza dei Martiti 33, Pisa, 56100 (ITALY) E-mail [email protected] Abstract point of view with natural movements of the head, greatly benefit the kind of interaction in these applications. The present paper presents a novel user interface for Several devices have been developed and navigation in virtual environments and remote control of commercialized on the market: the most well known are devices. The system proposed is head-mounted allowing the Intersense products which allow for measurement of for the control of up to six degree of freedom while head position in rooms as large as 30mt. Magnetic sensors keeping hands free. were provided for use in well conditioned spaces by The device is composed of six linear accelerometers Polhemus and Ascent and allow the accurate measurement arranged on a couple of glasses and a specific embedded of several sensors at once. The Virtual Track controller that allows for the measuring of glass (http://www.vrealities.com/virtuatrack.html ) is a 3DOF acceleration information. This is then translated in motion (Roll, Pitch and Yaw) head mounted sensor which can be control information for navigation in virtual environments connected to Personal Computer (via the serial port) for and/or as other devices input. interaction with VR games and applications. The operation of the system is achieved by measuring the ambient magnetic vector fields. The application interface allows 1 Introduction the mouse emulation. TrackIR is a monitor mounted sensor which allows the detection of the head position.
    [Show full text]
  • Blender, Unity ● Motion Tracking ○ How Tracking Works ○ Position Tracking ○ Tracking Systems ○ Motion Tracking in Blender ● Conclusions ● Bibliography
    Introduction to mixed realities Course 03 Content ● Recapitulation Course 2 ○ 3D Modeling, Blender, Unity ● Motion Tracking ○ How tracking works ○ Position Tracking ○ Tracking Systems ○ Motion Tracking in Blender ● Conclusions ● Bibliography 2 R - Basic Elements ● 3D Modelling - Polygon Modeling - Basic elements, Shaders, Textures, UV Mapping, Rigging 3 R - Basic Elements ● Blender ○ Scene Collection ○ Add ○ Shading 4 Interface to the Virtual World Input VR systems require not just a means for the user to tell the system what they want but a means to track at least some part of their body User monitoring includes the continuous tracking of both user movements and user-initiated actions, such as pressing a button or issuing a voice command to the system Continuous tracking of the user's movements is what allows the system to render and display the virtual world from a user-centric perspective-providing the effect of physical immersion 5 User Monitoring in VR/AR In user monitoring there are active ways the user inputs information into the system; these can include the use of spoken commands, physical controls like wands, joysticks, steering wheels, dashboards, and keyboards, props, and platforms In user monitoring, there are also passive ways in which information is supplied to the computer. Passive methods tell the computer how and where the participant is moving and where they are looking. These methods include tracking of the body (including hands, eyes, and feet) and position tracking that tells the computer the participant's location
    [Show full text]