Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7

Total Page:16

File Type:pdf, Size:1020Kb

Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7 Impacts of Invasive Species in Terrestrial and Aquatic Systems 2 in the United States Albert E. Mayfeld III, Steven J. Seybold, Wendell R. Haag, M. Tracy Johnson, Becky K. Kerns, John C. Kilgo, Daniel J. Larkin, Rima D. Lucardi, Bruce D. Moltzan, Dean E. Pearson, John D. Rothlisberger, Jefrey D. Schardt, Michael K. Schwartz, and Michael K. Young 2.1 Introduction have been estimated at $120 billion annually (Crowl et al. 2008; Pimentel et al. 2000, 2005). These costs include lost The introduction, establishment, and spread of invasive production and revenue from agricultural and forest prod- species in terrestrial and aquatic environments is widely ucts, compromised use of waterways and terrestrial habi- recognized as one of the most serious threats to the health, tats, harm to human and animal health, reduced property sustainability, and productivity of native ecosystems values and recreational opportunities, and diverse costs (Holmes et al. 2009; Mack et al. 2000; Pyšek et al. 2012; associated with managing (e.g., monitoring, preventing, USDA Forest Service 2013). In the United States, invasive controlling, and regulating) invasive species (Aukema species are the second leading cause of native species et al. 2011; Pimentel et al. 2005). The national signifcance endangerment and extinction, and their costs to society of these economic, ecological, and social impacts in the A. E. Mayfeld III (*) R. D. Lucardi U.S. Department of Agriculture, Forest Service, Southern Research U.S. Department of Agriculture, Forest Service, Southern Research Station, Insects, Diseases and Invasive Plants of Southern Forests, Station, Athens, GA, USA Asheville, NC, USA e-mail: [email protected] B. D. Moltzan U.S. Department of Agriculture, Forest Service, State and Private S. J. Seybold Forestry, Forest Health Protection, Washington Offce, U.S. Department of Agriculture, Forest Service, Pacifc Southwest Washington, DC, USA Research Station, Davis, CA, USA D. E. Pearson W. R. Haag U.S. Department of Agriculture, Forest Service, Rocky Mountain U.S. Department of Agriculture, Forest Service, Southern Research Research Station, Missoula, MT, USA Station, Center for Bottomland Hardwoods Research, Frankfort, KY, USA Ecology and Evolution, Division of Biological Sciences, University of Montana, Missoula, MT, USA M. T. Johnson U.S. Department of Agriculture, Forest Service, Pacifc Southwest J. D. Rothlisberger Research Station, Institute of Pacifc Islands Forestry, Volcano, HI, U.S. Department of Agriculture, Forest Service, Washington USA Offce, Washington, DC, USA B. K. Kerns J. D. Schardt U.S. Department of Agriculture, Forest Service, Pacifc Northwest Florida Fish and Wildlife Conservation Commission, Research Station, Corvallis, OR, USA Thomasville, GA, USA J. C. Kilgo M. K. Schwartz U.S. Department of Agriculture, Forest Service, Southern Research U.S. Department of Agriculture, Forest Service, National Station, Center for Forest Watershed Research, Genomics Center for Wildlife and Fish Conservation, New Ellenton, SC, USA Missoula, MT, USA D. J. Larkin M. K. Young Department of Fisheries, Wildlife and Conservation Biology and U.S. Department of Agriculture, Forest Service, Rocky Mountain the Minnesota Aquatic Invasive Species Research Center, Research Station and National Genomics Center for Wildlife and University of Minnesota, St. Paul, MN, USA Fish Conservation, Missoula, MT, USA © The Author(s) 2021 5 T. M. Poland et al. (eds.), Invasive Species in Forests and Rangelands of the United States, https://doi.org/10.1007/978-3-030-45367-1_2 6 A. E. Mayfeld et al. United States has prompted various actions by both legis- 2.1.2 Direct and Indirect Impacts: Density- lative and executive branches of the Federal Government Mediated vs Trait-Mediated (e.g., the Nonindigenous Aquatic Nuisance Prevention and Control Act of 1990; the Noxious Weed Control and Invasive species may affect native organisms positively or Eradication Act of 2002; Executive Order 13112 of 1999, negatively through direct and indirect interactions that are amended in 2016). transmitted through density- or trait-mediated mechanisms Because the concept of impact is inevitably infuenced (Fig. 2.1). These interactions may ultimately affect native by human perceptions and biases, the scientifc literature organisms at multiple ecological levels, i.e., organisms, pop- often characterizes the environmental effects of invasive ulations, communities, and ecosystems (e.g., Wootton and species in terms of “ecological impacts.” Ecological Emmerson 2005). Direct negative impacts of invasive spe- impacts refer to measurable changes to the properties of an cies include effects on the abundance, distribution, or func- ecosystem, which may be considered positive or negative tion of native species through predation (including, for our depending on context (Ricciardi et al. 2013). In this chap- purposes, infection, herbivory, or parasitism) or competition ter, we consider invasive species as a subset of non-native for resources with potentially lasting and profound changes species that substantially affect the composition, structure, to native biodiversity (Allen et al. 2004, 2015; Blackburn or function of native populations, communities, or ecosys- et al. 2014; Crowl et al. 2008; Wagner and Van Driesche tems, and particularly impact these systems in a manner 2010). that decreases the ecosystem values and services (e.g., Direct impacts of invaders are often obvious, such as economic, aesthetic, and/or social benefts) that they pro- when they damage, kill, consume, or overgrow native spe- vide to humans (NISC 2005; Pejchar and Mooney 2009; cies, but cryptic indirect effects can be similarly powerful Walsh et al. 2016). To more effectively manage invasive (White et al. 2006). Density-mediated indirect interactions species and mitigate their negative impacts on native sys- arise when the invader alters the abundance of a native spe- tems, a better understanding of the nature of their ecologi- cies, and this, in turn, alters the abundance of other native cal impacts and the mechanisms that underlie the impacts species via interaction chains (e.g., Ortega et al. 2006). Trait- is needed. mediated indirect interactions (also referred to as interaction modifcations (Wootton 1994)) arise when the invader alters interactions between species (two natives or a native and a 2.1.1 Conceptualizing Mechanisms non-native) in ways that change how strongly those species of Invasive Species Ecological Impacts interact, i.e., the per capita interaction strength (e.g., Pearson 2010). Such changes arise because the invader changes the The classic model developed by Parker et al. (1999), in traits (phenology, morphology, or behavior) rather than the which the impact of an invasive species is a function of its abundance of the intermediate species in ways that alter the range, abundance, and per capita effect, has provided a interaction strength between the invader and the receiver basic conceptual framework for quantifying impacts, but it species. For example, an invasive predator may kill some has rarely been applied to specifc systems (Pearson et al. individuals in a native herbivore’s population (a density- 2016a; Thiele et al. 2010). A more highly synthetic frame- mediated direct effect), which could reduce foraging on its work for understanding the full range of invader impacts preferred forage plant (a density-mediated indirect effect), remains elusive (Ricciardi et al. 2013), though approaches but it could also alter the herbivore’s behavior (trait effect) for broad categorization of impacts have been proposed due to predator avoidance such that the whole herbivore pop- (Blackburn et al. 2014). Here, we draw from basic commu- ulation dramatically reduces its impacts on its preferred plant nity ecology concepts to characterize the mechanisms and by shifting its foraging to other plant species (trait-mediated processes by which invasive species impact native systems indirect interaction; e.g., Schmitz et al. 1997). Although (Fig. 2.1). Because invasive predators, pathogens, consum- trait-mediated indirect interactions are more cryptic than ers, decomposers, and primary producers impact native density-mediated pathways, studies in native systems indi- species through different mechanisms (Fig. 2.1), and cate that they are ubiquitous and frequently as strong as or impacts can manifest differently in aquatic and terrestrial stronger than density-mediated interactions (Schmitz et al. systems (Cox and Lima 2006; Moorhouse and Macdonald 2004; Trussell et al. 2006; Werner and Peacor 2003). 2015), in this chapter, we review invasive species ecologi- Other mechanisms by which invasive species impact cal impacts taxonomically by invasive plants, pathogens, native systems further illustrate the cryptic or complex nature invertebrates, and vertebrates in terrestrial and aquatic sys- of their effects. In some systems, impacts can be transmitted tems in the United States. Examples of the consequences of genetically as non-native species alter the gene pools of several specifc invasive species are highlighted in boxes native species via introgression (Lockwood et al. 2007), or accompanied by fgures. initial invasions may facilitate additional invaders with 2 Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7 Invader Trophic level in the native system (taxonomic group) (terrestrial or aquatic) Predators/ Vertebrate animal pathogens Disturbance/ nutrient inputs Invertebrate Herbivores/ Microorganism
Recommended publications
  • Natural Occurrence of the Nuc1eopolyhedrosis Virus of The
    ENTOMOPHAGA 25 ( 3 ). 1980, 261-267 NATURAL OCCURRENCE OF THE NUCLEOPOLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR [LEP. : LYMANTRIIDAE] IN WILD BIRDS AND MAMMALS (I) R. A. LAUTENSCHLAGER (2), J. D. PODGWAITE (3) & D. E. WATSON (3) (2) Northeastern Forest Experiment Station Forest Service, U. S. Dep. Agriculture, 370 Reed Road, Broomall, Pa. 19008 (4). (3) U.S_D.A., Forest Service, Northeastern Forest Experiment Station, Forest Insect & Disease Labo­ ratory, Hamden, Connecticut 06514, U.S.A_ Three species of birds and 5 species of mammals were captured in the wild from 2 plots in which mortality from naturally occurring nucleopolyhedrosis virus (NPV) among gypsy moth, Lymantria dispar (L.), larvae was 15 %and 70 %. Bioassays of intestinal contents showed that blue jays, Cyanocitta cristata (L.), towhees, Pipilo erythrophthalmus (L.), white-footed mice, Peromyscus leucopus (RAFINESQUE), redback voles, Clethrionomys gapperi (VIGERS), raccoons, Procyon lotor (L.), and a chipmunk, Tamias striatus (L.), contained infectious NPV (poly­ hedra) in their alimentary tracts, whereas robins, Turdus migratorius (L.), and masked shrews, Sorex cinereus (KERR), did not. Comparisons among mice and voles indicated that those collected from the plot in which the NPV mortality was greatest (70 %) contained the most virus. We concluded that birds and mammals can passively transport infectious gypsy moth NPV in the wild. Nucleopolyhedrosis viruses (NPVs) are among the primary natural regulators in dense populations of many insect species, and some appear promising as applied control agents in pest management programs. Understanding the epidemiology of these viruses is critical to predicting population trends and implementing appropriate pest management strategies. Recent studies have emphasized the mechanisms of NPV transmission within and between insect generations.
    [Show full text]
  • Invasive Alien Species: the Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts
    CBD Distr. GENERAL CBD/COP/14/INF/9 12 November 2018 ENGLISH ONLY CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL DIVERSITY Fourteenth meeting Item 26 of the provisional agenda* Sharm El-Sheikh, Egypt, 17-29 November 2018 INVASIVE ALIEN SPECIES: THE APPLICATION OF CLASSICAL BIOLOGICAL CONTROL FOR THE MANAGEMENT OF ESTABLISHED INVASIVE ALIEN SPECIES CAUSING ENVIRONMENTAL IMPACTS Note by the Executive Secretary BACKGROUND 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Conference of the Parties, a document on the application of classical biological control for the management of established invasive alien species causing environmental impacts. 2. The document is relevant to the work of the Convention on Biological Diversity, in particular with regard to addressing (a) tools for conducting analysis for the management of invasive alien species, (b) the risks associated with trade in live alien organisms, and (c) achieving Aichi Biodiversity Target 9. 3. The document is being circulated in the form and language in which it was received by the Secretariat. * CBD/COP/14/1. The application of classical biological control for the management of established invasive alien species causing environmental impacts Summary for Policy Makers Prepared by: International Union for Conservation of Nature (IUCN), Species Survival Commission Invasive Species Specialist Group (ISSG) *Note that the full report follows on from this Summary for Policy Makers document. Summary for policy makers Convention on Biological Diversity (CBD) COP13 Decision XIII on Invasive Alien Species (IAS) recognized ‘that classical biological control can be an effective measure to manage already established invasive alien species’, and encouraged ‘Parties, other Governments and relevant organizations, when using classical biological control to manage already established invasive alien species, … [to take] into account the summary of technical considerations1’ that was annexed to the decision.
    [Show full text]
  • Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
    United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S.
    [Show full text]
  • Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State
    JHR 49: 129–159 (2016)Sawflies( Hymenoptera, Symphyta) newly recorded from Washington State 129 doi: 10.3897/JHR.49.7104 RESEARCH ARTICLE http://jhr.pensoft.net Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State Chris Looney1, David R. Smith2, Sharon J. Collman3, David W. Langor4, Merrill A. Peterson5 1 Washington State Dept. of Agriculture, 1111 Washington St. SE, Olympia, Washington, 98504, USA 2 Systematic Entomology Laboratory, Agricultural Research Service, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560, USA 3 Washington State University Extension, 600 128th St. SE, Everett, Washington, 98208, USA 4 Natural Resources Canada, Canadian Forest Service, 5320 122 Street NW, Edmonton, Alberta, T6H 3S5, Canada 5 Biology Department, Western Washington University, 516 High St., Bellingham, Washington, 98225, USA Corresponding author: Chris Looney ([email protected]) Academic editor: H. Baur | Received 5 November 2015 | Accepted 27 January 2016 | Published 28 April 2016 http://zoobank.org/319E4CAA-6B1F-408D-8A84-E202E14B26FC Citation: Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104 Abstract Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects.
    [Show full text]
  • The Application of Classical Biological Control for the Management Of
    Secretariat of the CBD Technical Series No. 91 Convention on Biological Diversity The Application of91 Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts CBD Technical Series No. 91 The Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts Published by the Secretariat of the Convention on Biological Diversity. ISBN: 9789292256623 (Print version) ISBN: 9789292256630 (Web version) Copyright © 2020, Secretariat of the Convention on Biological Diversity The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the Convention on Biological Diversity concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views reported in this publication do not necessarily represent those of the Convention on Biological Diversity. This publication may be reproduced for educational or non-profit purposes without special permission from the copyright holders, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Citation Sheppard AW, Paynter Q, Mason P, Murphy S, Stoett P, Cowan P, Brodeur J, Warner K, Villegas C, Shaw R, Hinz H, Hill, M and Genovesi P (2019) IUCN SSC Invasive Species Specialist Group. The Application of Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts. The Secretariat of the Convention on Biological Diversity Technical Series No. 91. Montreal, Canada 88 pages.
    [Show full text]
  • Biological Control of Arthropod Pests of C '" the Northeastern and North Central Forests in the United States: a Review and Recommendations
    Forest Health Technology , ..~ , Enterprise Team TECHNOLOGY TRANSFER Biological Control . Biological Control of Arthropod Pests of c '" the Northeastern and North Central Forests in the United States: A Review and Recommendations Roy G. Van Driesche Steve Healy Richard C. Reardon ,­ Forest Health Technology Enterprise Team - Morgantown, WV '.","' USDA Forest Service '. FHTET -96-19 December 1996 --------- Acknowledgments We thank: Richard Dearborn, Kenneth Raffa, Robert Tichenor, Daniel Potter, Michael Raupp, and John Davidson for help in choosing the list of species to be included in this report. Assistance in review ofthe manuscript was received from Kenneth Raffa, Ronald Weseloh, Wayne Berisford, Daniel Potter, Roger Fuester, Mark McClure, Vincent Nealis, Richard McDonald, and David Houston. Photograph for the cover was contributed by Carole Cheah. Thanks are extended to Julia Rewa for preparation, Roberta Burzynski for editing, Jackie Twiss for layout and design, and Patricia Dougherty for printing advice and coordination ofthe manuscript. Support for the literature review and its publication came from the USDA Forest Service's Forest Health Technology Enterprise Team, Morgantown, West Virginia, 26505. Cover Photo: The hemlock woolly adelgid faces a challenge in the form ofthe newly-discovered exotic adelgid predator, Pseudoscymnus tsugae sp. nov. Laboratory and preliminary field experiments indicate this coccinellid's potential to be one ofthe more promising biological control agents this decade. Tiny but voracious, both the larva and adult (shown here) attack all stages ofthe adelgid. The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis ofrace, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status.
    [Show full text]
  • 4 Economic Value of Arthropod Biological Control
    ©CAB International – for Steven Naranjo 4 Economic Value of Arthropod Biological Control STEVEN E. NARANJO1*, GEORGE B. FRISVOLD2 AND PETER C. ELLSWORTH3 1USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ, USA; 2Department of Agricultural and Resource Economics, University of Arizona, Tucson, AZ, USA; 3Department of Entomology, University of Arizona, Maricopa Agricultural Center, Maricopa, AZ, USA Integrated pest management (IPM) is the strategic control are very low, successful programmes have integration of multiple control tactics resulting in the resulted in essentially permanent pest control with amelioration of pest damage that takes into consid- very favourable economic outcomes (Cock et al., eration environmental safety, and the reduction of 2015; Naranjo et al., 2015). risk and favourable economic outcomes for growers A second approach – augmentative biological and society at large. For thousands of years, natural control – involves the initial (inoculation) or enemies of pests have been harnessed for crop pro- repeated (inundation) introduction of native or tection (Simmonds et al., 1976). Maximizing this exotic natural enemies to suppress pest populations. source of natural control is a foundational element Augmentative biological control has been widely in IPM for suppressing the growth of incipient pest and successfully deployed in many parts of the populations (Stern et al., 1959). Biological control world. It is perhaps most well known in protected has been defined as the purposeful use of natural agricultural production, particularly in Europe and enemies, such as predators, parasitoids and patho- in developing regions such as China, India and gens, to regulate another organism’s populations to Latin America (van Lenteren et al., 2017).
    [Show full text]
  • Pupation Site Selection and Enemy Avoidance in the Introduced Pine Sawfly (Diprion Similis)
    2017 Winter Ecology:Northeastern Insights from Naturalist Biology and History Vol. 24, Special Issue 7 2017 N.T.Northeastern Wheelwright, Naturalist et al. 24(Special Issue 7):B19–B31 Pupation Site Selection and Enemy Avoidance in the Introduced Pine Sawfly (Diprion similis) Nathaniel T. Wheelwright1,*, Liam U. Taylor1, Benjamin M. West1, Erin R. Voss1, Sabine Y. Berzins1, Andrew R. Villeneuve1, Hannah R. LeBlanc1, Victor B. Leos1, Samuel J. Mayne1, Sarah A. McCarthy1, Shan J. Nagar1, and Jenna S. Watling1 Abstract - Insects that pupate on the branches of trees and shrubs suffer mortality from both predators and parasitic wasps. Which natural enemy represents the greater threat and there- fore the stronger selection force on pupation site selection depends upon the time of year, the relative abundance of predators versus parasitoids, and the availability of alternative prey or hosts. Predation by foraging birds and mammals is likely to occur most commonly in winter when leaves have fallen, cocoons are conspicuous, and higher quality prey are scarcer. Inaccessibility and crypsis of pupation sites may provide protection from visu- ally hunting predators. Attacks by parasitic wasps, which take place only during warmer months, may not be as easily avoided by inaccessibility or crypsis. We studied the patterns and mortality risks of pupation site selection in Diprion similis (Hymenoptera: Diprionidae; Introduced Pine Sawfly). Cocoons that were smaller than average and situated in relatively inaccessible sites (thinner branches, underside of branches) were less likely to be attacked by predators; background matching in terms of branch size proved not to improve survival. In contrast, the probability that a cocoon would be attacked by parasitic wasps (primarily Monodontomerus dentipes; Hymenoptera: Torymidae) was unaffected by location along branches, indicating that parasitoids are more difficult to escape through pupation site selection.
    [Show full text]
  • Alien Forest Pests. Context for the Canadian Forest Service's
    Alien Forest Pests Context for the Canadian Forest Service’s Science Program Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Alien Forest Pests Context for the Canadian Forest Service’s Science Program Science Program Context Paper Published by Science Branch Canadian Forest Service Natural Resources Canada Ottawa, 1999 © Her Majesty the Queen in Right of Canada 1999 ISBN 0-662-64525-1 Cat. No. Fo42-300/1999 Copies of this publication may be obtained free of charge from: Natural Resources Canada Canadian Forest Service Ottawa, Ontario K1A 0E4 Phone: (613) 947-7341 A microfiche edition or photocopies of this publication may be purchased from: Micromedia Ltd. 240 Catherine St., Suite 305 Ottawa, Ontario K2P 2G8 Phone: (613) 237-4250 1-800-567-1914 Editing and Production: Catherine Carmody Design and Layout: Sandra Bernier Canadian Cataloguing in Publication Data Canadian Forest Service. Science Branch Alien forest pests: context for the Canadian Forest Service’s Science Program (Science Program context paper) Text in English and French on inverted pages. Title on added t.p.: Les ravageurs forestiers étrangers. Includes bibliographical references. ISBN 0-662-64525-1 Cat. No. Fo42-300/1999 1. Nonindigenous pests — Government policy — Canada. 2. Pest introduction — Government policy — Canada. 3. Forest insects — Government policy — Canada. 4. Forest policy — Canada. I. Title. II. Title: Les ravageurs forestiers étrangers. III.Series. SB990.5C3C32 1999 363.7'8 C99-980385-9E Photograph Credits Cover and page 1: Asian long-horned beetle (ALB), photo courtesy of Ken Law, USDA. Pages 3 and 4: White pine blister, photo courtesy of CFS Pacific Forestry Centre (PFC), Victoria, BC.
    [Show full text]
  • The Ecology of Invasions by Animals and Plants Frontispiece
    The Ecology of Invasions by Animals and Plants Frontispiece. Female gipsy moths, Lymantria dispar, depositing their egg-clusters on the trunk of an oak-tree in Massachusetts, 1895. (From E. H. Forbush and C. H. Fernald, 1896.) THE ECOLOGY OF INVASIONS BY ANIMALS AND PLANTS CHARLES S. EL TON SPRINGER-SCIENCE+BUSINESS MEDIA, B. V. ISBN 978-0-412-11430-4 ISBN 978-1-4899-7214-9 (eBook) DOI 10.1007/978-1-4899-7214-9 1·6 © 1958 by Charles S. Elton Originally published by Chapman and Hall Ltd in 1972 Softcover reprint ofthe hardcover 1st edition 1972 All rights reserved. No part of this book may be printed, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the Publisher. TO MY WIFE E. J. SCOVELL Contents PREFACE page 13 I. THE INVADERS IS 2. WALLACE'S REALMS: THE ARCHIPELAGO OF CONTINENTS 33 3· THE INVASION OF CONTINENTS so 4· THE FATE OF REMOTE ISLANDS 77 S· CHANGES IN THE SEA 94 6. THE BALANCE BETWEEN POPULATIONS 109 7• NEW FOOD-CHAINS FOR OLD I2S 8. THE REASONS FOR CONSERVATION 143 9· THE CONSERVATION OF VARIETY IS4 REFERENCES r6o INDEX 175 7 Illustrations PLATES Gipsy moths, Lymantria dispar Frontispiece [between pages 32 and 33] 1. Dr Karl Meyer explaining methods of field survey for sylvatic plague to public health students 2. Dissecting ground squirrels to obtain organs for plague testing 3· Ground squirrel, Citellus beecheyi: a host of plague in California 4· Mycelial fans of the chestnut blight fungus, Endothia parasitica 5· American chestnut, Castanea dentata, almost killed by Endothia parasitica 6 & 7· Muddy salt-marsh dominated by Spartina townsendii in a tidal inlet on the Sussex coast 8.
    [Show full text]
  • Appendix: Regional Summaries: Northwest Region
    This work was supported in part by the U.S. Department of Agriculture, Forest Service. The findings and conclusions in this publication are those of the authors and should not be 352 construed to represent any official USDA or U.S. Government determination or policy. Appendix: Regional Summaries Ostertag R, Giardina CP, Cordell S (2008) Understory colo- of the Pacifc Islands Committee, Council of Western nization of Eucalyptus plantations in Hawaii in relation to State Foresters, Majuro, Republic of the Marshall Islands) light and nutrient levels. Restor Ecol 16(3):475–485 Spatz DR, Zilliacus KM, Holmes ND et al (2017) Globally Ostertag R, Cordell S, Michaud J et al (2009) Ecosystem and threatened vertebrates on islands with invasive species. restoration consequences of invasive woody species Sci Adv 3(10):e1603080. https://doi.org/10.1126/ removal in Hawaiian lowland wet forest. Ecosystems sciadv.1603080 12:503–515 Stratton LC, Goldstein G (2001) Carbon uptake, growth and Ostertag R, Warman L, Cordell S, Vitousek PM (2015) Using resource-use effciency in one invasive and six native plant functional traits to restore Hawaiian rainforest. J Hawaiian dry forest tree species. Tree Physiol Appl Ecol 52:805–809 21:1327–1334 Pattison RR, Goldstein G, Ares A (1998) Growth, biomass Timm OE, Giambelluca TW, Diaz HF (2015) Statistical allocation and photosynthesis of invasive and native downscaling of rainfall changes in Hawai‘i based on the Hawaiian rainforest species. Oecologia 117:449–459 CMIP5 global model projections. J Geophys Res-Atmos Pitt WC, Beasley J, Witmer GW (2017) Ecology and 120(1):92–112.
    [Show full text]
  • Picea Mariana)
    176 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 6. Black spruce (Picea mariana) 1. Taxonomy and use 1.1. Taxonomy Black spruce [Picea mariana (Mill.) B.S.P.], known by many alternate common names including bog spruce, swamp spruce, Canadian spruce, eastern spruce, and shortleaf black spruce (Viereck and Johnston, 1990; Alden, 1997), is one of the most common and important boreal species native to North America, especially in eastern Canada. Black spruce is one of about 40 species in the genus Picea of the family Pinaceae, all of which are found in cooler portions of the northern hemisphere (Farrar, 1995). Ten spruce species are native to North America (Weng and Jackson, 2000). There is no consensus among taxonomists regarding subdivision of the genus, but Picea is often described as having three sections (Eupicea, also known as Picea or Morinda; Castica; and Omorika), with black spruce generally placed among the Eupicea (Dallimore and Jackson, 1948; Alden, 1987). Mikkola (1969) suggested dividing the genus into only two sections, Abies and Omorika. Fowler (1983) recommended adopting Mikkola’s classification, but splitting the section Omorika into two subsections, Omorikoides and Glaucoides, and placing black spruce into the former subsection based upon species crossability. Other examples of taxonomic classification have also been proposed for the genus (e.g., see Weng and Jackson, 2000). Black spruce is closely related to red spruce (P. rubens Sarg.), a sympatric species with which it is known to naturally hybridise (Perron and Bousquet, 1997). It is also considered to be closely related to the relict European species Serbian spruce (P.
    [Show full text]