Arthropod Management in Vineyards

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Management in Vineyards Arthropod Management in Vineyards Noubar J. Bostanian • Charles Vincent Rufus Isaacs Editors Arthropod Management in Vineyards: Pests, Approaches, and Future Directions Editors Dr. Noubar J. Bostanian Dr. Charles Vincent Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada Horticultural Research and Horticultural Research and Development Center Development Center 430 Gouin Blvd. 430 Gouin Blvd. Saint-Jean-sur-Richelieu, QC, Canada Saint-Jean-sur-Richelieu, QC, Canada Dr. Rufus Isaacs Department of Entomology Michigan State University East Lansing, MI, USA ISBN 978-94-007-4031-0 ISBN 978-94-007-4032-7 (eBook) DOI 10.1007/978-94-007-4032-7 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012939840 © Springer Science+Business Media B.V. 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Noubar J. Bostanian and Charles Vincent dedicate this volume to Charles-Henri de Coussergues and the late Victor Dietrich. Their queries and enthusiasm encouraged us to initiate research projects with them in viticultural entomology. Rufus Isaacs dedicates this volume to G. Stanley Howell, a pioneering viticulturist with a great interest in insects and their interactions with his beloved grapevines. Foreword I consider myself an old school IPM’er. That is because as a graduate student at the University of California Berkeley, I had the privilege of knowing and studying with some of the pioneering people who helped develop the IPM paradigm. Robert van den Bosch was on my PhD oral exam committee and Ken Hagen was on my thesis committee; two of the three authors who wrote the seminal 1959 Hilgardia paper that proposed the concept of integrated control which would become IPM. I was taught that an IPM program was based on knowledge of the ecology of the crop, the pest, its natural enemies, timely monitoring, adherence to an economic threshold and choosing a control action designed to minimize economic, environmental and health risks. I learned that IPM was an ecosystem approach to pest management. Furthermore, it is not static, but one that changes over time as we gain more know- ledge about all of the above. Over the years many defi nitions of IPM have been proposed, with arguments ensuing about what is ‘real’ IPM. Arthropod Management in Vineyards has come along at the right time to present the most recent information and discussions on the basic tenets of IPM as they apply to modern vineyard man- agement, including IPM principles, discussion of economic threshold and action thresholds, monitoring and arthropod population modeling. In an ideal world, IPM decision-making is objective, based on sound science, quantitative pest monitoring, and experience. However, once I moved to being a private IPM practitioner out on commercial farms, I realized that arthropod pest man- agement decisions are an outcome of a fascinating combination of knowledge, moni- toring, time management, price of the crop, the perception of risk from pest damage, one’s mood at the time the decision of what to do takes place, the growers willingness to take risks, what the neighbors are doing, and several other things that I am forget- ting to mention. In the real world of pest management, time is money, and there is never enough of either one. Moreover, at least in the United States, many pest man- agement consultants still derive much of their income from the input products they sell, creating an inherent confl ict of interest in pest management decision-making. The challenge in implementing IPM in vineyards becomes one of taking the informa- tion presented in this book and using it to push back against the non-objective issues that interfere with science based pest management decision-making. vii viii Foreword After many years of wrestling with the question of why there was not more IPM practiced in vineyards, I came to the conclusion that the goal in sound pest manage- ment decision-making was to match perceived risk of pest damage occurring with that of real risk. When a grower or a pest management practitioner makes a decision to implement a control tactic they do so because they perceive that the risk of pest damage occurring is unacceptable. The challenge is to determine that the perceived risk is in fact real. If perceived risk is high and real risk is low, management actions are taken un-necessarily. If perceived risk is low and real risk is high then no action is taken and economic levels of damage can occur. Risk of pest damage can be short term. For example, it might occur next week or the week after, or it can be long term and measured in years in perennial crops such as grapes. Poor planning in location and establishment of the vineyard and/or poor management of the landscape in which the vineyard occurs can increase long term risk. In either case, the informa- tion presented in this book will help grape growers and IPM practitioners determine if perceived risk is real risk. In conclusion, I think it is very helpful to look at vineyard pest management as a continuum from no IPM being implemented on one end, to high-level IPM being implemented on the other end. IPM is not a static list of things to do or a recipe, like in a cookbook, that when followed always ends up with the same result. It is a para- digm. In the real world, grape growers are distributed all along the pest management continuum, some using no IPM, some implementing some aspects of IPM, and some practicing high level, landscape-based IPM. The reasons for their location on the continuum are many and varied. Nevertheless, the goal of everyone should be to move along the pest management continuum enhancing their IPM programs over time. The information presented in this book will be of great help to grape growers and pest management practitioners all along the pest management continuum. For those growers, consultants, or researchers just beginning to develop IPM programs for their own regional pest challenges, it will provide basic, well-established reference information highlighting approaches and success stories that will provide a great foundation on which to build. For those with sophisticated IPM programs already in place, it will provide the cutting edge information and theories that will allow them to push the envelope of IPM as they move into the future. VP Professional Services Clifford P. Ohmart SureHarvest Soquel, CA 95073 Preface Wherever there are vineyards, there are insects and mites. Arthropods have inhabited vineyards for as long as the grapevine has been cultivated in the pursuit of fresh fruit, juice, raisins, or wine. Domestication of wild grapevines across the globe has provided a habitat of great suitability for specialist grapevine herbivores, and has opened up new possibilities for some generalist insects and mites with a pen- chant for the vine. Additionally, invasive insects transported to new grape produc- tion regions are fi nding their second homes most agreeable, disrupting established IPM programs and requiring rapid responses. The changing distribution of the grape industries coupled with the dynamic nature of pest and predator populations ensures that arthropod management in vineyards will remain an essential component of viticulture. Vineyard managers have been battling unwanted six and eight legged creatures for thousands of years, and while human management of vineyards can exert great control over the system, at times arthropod pests can gain the upper hand. Whether phylloxera in the 1800s, glassy wing sharpshooter in the later 1900s or stink bugs in present day eastern US viticulture, vineyard managers must remain informed, pre- pared, and vigilant to ensure economical production of the highest quality grapes without succumbing to new pest arthropods. Failure to implement effective arthro- pod management practices can result in complete loss of this high value crop or the inability to make quality value-added products, and so it is essential that arthropods are managed using the latest technologies. This collection of chapters by experts in their fi elds has been assembled to take a snapshot of the science of arthropod management in vineyards.
Recommended publications
  • Bugila Phd Thesis Document Final
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UTL Repository Host-parasitoid relationships of Anagyrus sp. near pseudococci (Girault), (Hymenoptera, Encyrtidae), as a basis to improve biological control of pest mealybugs (Hemiptera, Pseudococcidae) TESE APRESENTADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA AGRONÓMICA Abdalbaset Abusalah Ali Bugila Orientador: Professor Doutor José Carlos Franco Santos Silva Co-orientador: Professora Doutora Manuela Rodrigues Branco Simões JÚRI: Presidente : Reitor da Universidade de Lisboa Vogais: Doutora Laura Monteiro Torres Professora Catedrática, Escola de Ciências Agrárias e Veterinárias da Universidade de Trás-os-Montes e Alto Douro Doutor António Maria Marques Mexia Professor Catedrático, Instituto Superior de Agronomia da Universidade de Lisboa Doutor David João Horta Lopes Professor Auxiliar com agregação, Universidade dos Açores; Doutor José Carlos Franco Santos Silva Professor Auxiliar, Instituto Superior de Agronomia da Universidade de Lisboa Doutora Elisabete Tavares Lacerda de Figueiredo Oliveira Professora Auxiliar, Instituto Superior de Agronomia da Universidade de Lisboa. LISBOA 2014 Index Abstract vii ....................................................................................................................... Resumo viii ………………………………………………………………………..….…. 1. Introduction 1 ………………………………………………………………….….. 1.1. State of the art 2 …………………………………………………………….…. 1.2. Objectives 4 …………………………………………………………………..... 1.3. References 5 ……………………………………………………………….…..
    [Show full text]
  • Envenomations in Humans Caused by The
    linica f C l To o x l ic a o n r l o u g o y J Amaral et al., J Clin Toxicol 2018, 8:4 Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000392 ISSN: 2161-0495 Case Report Open Access Envenomations in Humans Caused by the Venomous Beetle Onychocerus albitarsis: Observation of Two Cases in São Paulo State, Brazil Amaral ALS1*, Castilho AL1, Borges de Sá AL2 and Haddad V Jr3 1Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil 2Private Clinic, Botucatu, São Paulo State, Brazil 3Departamento de Dermatologia e Radioterapia, Faculdade de Medicina, Universidade Estadual Paulista – UNESP, CP 557, CEP 18618-000, Botucatu, São Paulo State, Brazil *Corresponding author: Antonio L. Sforcin Amaral, Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil, Email: [email protected] Received date: July 23, 2018; Accepted date: August 21, 2018; Published date: August 24, 2018 Copyright: ©2018 Amaral ALS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Beetles (Coleoptera) are the most diverse group of animals in the world and occur in many environments. In Atlantic and Amazon rainforests, the scorpion-beetle Onychocerus albitarsis (Cerambycidae), can be found. It has venom glandules and inoculators organs in the antenna extremities. Two injuries in humans are reported, showing different patterns of skin reaction after the stings.
    [Show full text]
  • NON-REGULATED PESTS (Non-Actionable)
    Import Health Standard Commodity Sub-class: Fresh Fruit/Vegetables Grape, Vitis vinifera from Australia ISSUED Issued pursuant to Section 22 of the Biosecurity Act 1993 Date Issued: 20 December 2000 1 NEW ZEALAND NATIONAL PLANT PROTECTION ORGANISATION The official contact point in New Zealand for overseas NPPOs is the Ministry for Primary Industries (MPI). All communication pertaining to this import health standard should be addressed to: Manager, Import and Export Plants Ministry for Primary Industries PO Box 2526 Wellington NEW ZEALAND Fax: 64-4-894 0662 E-mail: [email protected] http://www.mpi.govt.nz 2 GENERAL CONDITIONS FOR ALL PLANT PRODUCTS All plants and plant products are PROHIBITED entry into New Zealand, unless an import health standard has been issued in accordance with Section 22 of the Biosecurity Act 1993. Should prohibited plants or plant products be intercepted by MPI, the importer will be offered the option of reshipment or destruction of the consignment. The national plant protection organisation of the exporting country is requested to inform MPI of any change in its address. The national plant protection organisation of the exporting country is required to inform MPI of any newly recorded organisms which may infest/infect any commodity approved for export to New Zealand. Pursuant to the Hazardous Substances and New Organisms Act 1996, proposals for the deliberate introduction of new organisms (including genetically modified organisms) as defined by the Act should be referred to: IHS Fresh Fruit/Vegetables. Grape, Vitis vinifera from Australia. (Biosecurity Act 1993) ISSUED: 20 December 2000 Page 1 of 16 Environmental Protection Authority Private Bag 63002 Wellington 6140 NEW ZEALAND Or [email protected],nz Note: In order to meet the Environmental Protection Authority requirements the scientific name (i.e.
    [Show full text]
  • Habitat Management in Vineyards Habitat Management in Vineyards
    Habitat Management in Vineyards Habitat Management in Vineyards Acknowledgements: Special thanks to all collaborating farmers, Captain Family Vineyards, Quintessa Vineyards, Foster’s Group, Ridge California, Icon States, Robert Sinsky Vineyards, Joseph Phelps Vineyards, Saintsbury Vineyards, Medlock-Ames, Spootswoode. The efforts of Ana Cecilia Galvis for assembling and formatting this manual are greatly appreciated. The following organizations provided funds to produce this manual: EPA, USDA - SARE, and Organic Farming Research Foundation (OFRF). Habitat Management in Vineyards Habitat Management in Vineyards A growers manual for enhancing natural enemies of pests. Miguel A. Altieri Clara I. Nicholls Houston Wilson Albie Miles Laboratory of Agroecology http://agroecology.berkeley.edu College of Natural Resources University of California 2010 Habitat Management in Vineyards Typical grape production in and soil-borne organisms that and environmental costs can be California is done in monocul- inhabit a vineyard system, the quite significant. Economically, tures which are expanding at a more diverse the community of in viticulture the burdens in- rapid rate resulting in the sim- pest-fighting beneficial organ- clude the need to supply crops plification of the landscape. One isms (predators, parasitoids, with costly external inputs such of the known problems with and entomopathogens) the farm as insecticides, since vineyards monocultures is that the diver- can support. deprived of functional biodiver- sity, abundance and activity of sity
    [Show full text]
  • Penestragania Apicalis (Osborn & Ball, 1898), Another Invasive
    ©Arbeitskreis Zikaden Mitteleuropas e.V. - download unter www.biologiezentrum.at Cicadina 13 (2013): 5‐15 Penestragania apicalis (Osborn & Ball, 1898), another invasive Nearctic leafhopper found in Europe (Hemiptera: Cicadellidae, Iassinae) Herbert Nickel*, Henry Callot, Eva Knop, Gernot Kunz, Klaus Schrameyer, Peter Sprick, Tabea Turrini‐Biedermann, Sabine Walter Summary: In 2010 the Nearctic leafhopper Penestragania apicalis (Osb. & Ball) was found for the first time in Europe. Altogether there are now 16 known localities in France, Switzerland, Germany and Austria indicating that the species is well es‐ tablished for a rather long period and more widespread in Europe and perhaps worldwide. As in North America it lives on honeylocust (Gleditsia triacanthos L.), overwinters in the egg stage and probably has one or two generations a year, with adults at least from late June until early October. It is yet unclear if it causes relevant damage to the host plant in Europe. Keywords: alien species, neozoa, plant pests, Iassinae, Gleditsia 1. Introduction In 2012 a leafhopper was found in several localities in central Europe that was hitherto unknown to European hemipterists. Extensive search in taxonomic litera‐ ture from all around the world revealed that it was Penestragania apicalis (Osborn & Ball, 1898). This species was originally described from Iowa and Nebraska as a member of the genus Macropsis Lewis, 1834 (see Osborn & Ball 1898a), later placed into Bythoscopus Germar, 1833, Stragania Stål, 1862 (see Metcalf 1966a), and finally Penestragania Beamer & Lawson, 1945. The latter was originally erected as a subge‐ nus only and later raised to genus level by Blocker (1979) who limited the genus Stragania to the type species St.
    [Show full text]
  • UNIVERSITÀ DEGLI STUDI DEL MOLISE Department
    UNIVERSITÀ DEGLI STUDI DEL MOLISE Department of Agricultural, Environmental and Food Sciences Ph.D. course in: AGRICULTURE TECHNOLOGY AND BIOTECHNOLOGY (CURRICULUM: Sustainable plant production and protection) (CYCLE XXIX) Ph.D. thesis NEW INSIGHTS INTO THE BIOLOGY AND ECOLOGY OF THE INSECT VECTORS OF APPLE PROLIFERATION FOR THE DEVELOPMENT OF SUSTAINABLE CONTROL STRATEGIES Coordinator of the Ph.D. course: Prof. Giuseppe Maiorano Supervisor: Prof. Antonio De Cristofaro Co-Supervisor: Dr. Claudio Ioriatti Ph.D. student: Tiziana Oppedisano Matr: 151603 2015/2016 “Nella vita non c’è nulla da temere, c’è solo da capire.” (M. Curie) Index SUMMARY 5 RIASSUNTO 9 INTRODUCTION 13 Phytoplasmas 13 Taxonomy 13 Morphology 14 Symptomps 15 Transmission and spread 15 Detection 17 Phytoplasma transmission by insect vectors 17 Phytoplasma-vector relationship 18 Homoptera as vectors of phytoplasma 19 ‘Candidatus Phytoplasma mali’ 21 Symptomps 21 Distribution in the tree 22 Host plant 24 Molecular characterization and diagnosis 24 Geographical distribution 25 AP in Italy 25 Transmission of AP 27 Psyllid vectors of ‘Ca. P. mali’ 28 Cacopsylla picta Förster (1848) 29 Cacopsylla melanoneura Förster (1848) 32 Other known vectors 36 Disease control 36 Aims of the research 36 References 37 CHAPTER 1: Apple proliferation in Valsugana: three years of disease and psyllid vectors’ monitoring 49 CHAPTER 2: Evaluation of the current vectoring efficiency of Cacopsylla melanoneura and Cacopsylla picta in Trentino 73 CHAPTER 3: The insect vector Cacopsylla picta vertically
    [Show full text]
  • Changes in Arthropod Abundance and Diversity with Invasive
    CHANGES IN ARTHROPOD ABUNDANCE AND DIVERSITY WITH INVASIVE GRASSES A Thesis by ERIN E. CORD Submitted to the College of Graduate Studies Texas A&M University-Kingsville in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Range and Wildlife Management CHANGES IN ARTHROPOD ABUNDANCE AND DIVERSITY WITH INVASIVE GRASSES A Thesis by ERIN E. CORD Approved as to style and content by: ______________________________ Andrea R. Litt, Ph.D. (Chairman of Committee) ___________________________ ___________________________ Timothy E. Fulbright, Ph.D. Greta L. Schuster, Ph.D. (Member) (Member) _____________________________ Scott E. Henke, Ph.D. (Chair of Department) _________________________________ Ambrose Anoruo, Ph.D. (Associate VP for Research & Dean, College of Graduate Studies) August 2011 ABSTRACT Changes in Arthropod Abundance and Diversity with Invasive Grasses (August 2011) Erin E. Cord, B.S., University Of Delaware Chairman of Committee: Dr. Andrea R. Litt Invasive grasses can alter plant communities and can potentially affect arthropods due to specialized relationships with certain plants as food resources and reproduction sites. Kleberg bluestem (Dichanthium annulatum) is a non-native grass and tanglehead (Heteropogon contortus) is native to the United States, but recently has become dominant in south Texas. I sought to: 1) quantify changes in plant and arthropod communities in invasive grasses compared to native grasses, and 2) determine if grass origin would alter effects. I sampled vegetation and arthropods on 90 grass patches in July and September 2009 and 2010 on the King Ranch in southern Texas. Arthropod communities in invasive grasses were less diverse and abundant, compared to native grasses; I also documented differences in presence and abundance of certain orders and families.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • 197 Section 9 Sunflower (Helianthus
    SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow.
    [Show full text]
  • International Symposium on Biological Control of Arthropods 424 Poster Presentations ______
    POSTER PRESENTATIONS ______________________________________________________________ Poster Presentations 423 IMPROVEMENT OF RELEASE METHOD FOR APHIDOLETES APHIDIMYZA (DIPTERA: CECIDOMYIIDAE) BASED ON ECOLOGICAL AND BEHAVIORAL STUDIES Junichiro Abe and Junichi Yukawa Entomological Laboratory, Kyushu University, Japan ABSTRACT. In many countries, Aphidoletes aphidimyza (Rondani) has been used effectively as a biological control agent against aphids, particularly in greenhouses. In Japan, A. aphidimyza was reg- istered as a biological control agent in April 1999, and mass-produced cocoons have been imported from The Netherlands and United Kingdom since mass-rearing methods have not yet been estab- lished. In recent years, the effect of imported A. aphidimyza on aphid populations was evaluated in greenhouses at some Agricultural Experiment Stations in Japan. However, no striking effect has been reported yet from Japan. The failure of its use in Japan seems to be caused chiefly by the lack of detailed ecological or behavioral information of A. aphidimyza. Therefore, we investigated its ecological and behavioral attributes as follows: (1) the survival of pupae in relation to the depth of pupation sites; (2) the time of adult emergence in response to photoperiod during the pupal stage; (3) the importance of a hanging substrate for successful mating; and (4) the influence of adult size and nutrient status on adult longev- ity and fecundity. (1) A commercial natural enemy importer in Japan suggests that users divide cocoons into groups and put each group into a plastic container filled with vermiculite to a depth of 100 mm. However, we believe this is too deep for A. aphidimyza pupae, since under natural conditions mature larvae spin their cocoons in the top few millimeters to a maxmum depth of 30 mm.
    [Show full text]
  • In Mississippi
    Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi By TITLE PAGE Ryan J. Whitehouse Approved by: Richard L. Brown (Major Professor) Robert S. Anderson Gerald T. Baker Kenneth Willeford (Graduate Coordinator) George M. Hopper (Dean, College of Agriculture and Life Sciences) A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences in the Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology Mississippi State, Mississippi May 2020 Copyright by COPYRIGHT PAGE Ryan J. Whitehouse 2020 Name: Ryan J. Whitehouse ABSTRACT Date of Degree: May 1, 2020 Institution: Mississippi State University Major Field: Agricultural Life Sciences Major Professor: Richard L. Brown Title of Study: Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi Pages in Study: 262 Candidate for Degree of Master of Science A survey of Bariditae in Mississippi resulted in records of 75 species in 32 genera and included two undescribed species and 36 new state records. An additional two species were recognized as possibly occurring in Mississippi as well. Diagnoses for all of the genera and species in the state are provided and keys to the genera as well as all of the species were made. Species were found in every county within Mississippi and are representative of the Bariditae fauna of the southeastern United States. Open, prairie-like habitats and aquatic wetland habitats were the habitats with the highest biodiversity of Bariditae in the state. Species of Baris, Geraeus, Linogeraeus, and Odontocorynus, were found in the highest numbers and Linogeraeus and Sibariops were found to be the most speciose genera in the state.
    [Show full text]
  • Large-Scale Experimental Landscapes Reveal Distinctive Effects of Patch Shape and Connectivity on Arthropod Communities
    Landscape Ecol (2011) 26:1361–1372 DOI 10.1007/s10980-011-9656-5 RESEARCH ARTICLE Large-scale experimental landscapes reveal distinctive effects of patch shape and connectivity on arthropod communities John L. Orrock • Gregory R. Curler • Brent J. Danielson • David R. Coyle Received: 26 October 2010 / Accepted: 2 September 2011 / Published online: 14 September 2011 Ó Springer Science+Business Media B.V. 2011 Abstract The size, shape, and isolation of habitat nectivity (via habitat corridors) independently of area patches can affect organism behavior and population and edge effects. We found that patch shape, rather dynamics, but little is known about the relative role of than connectivity, affected ground-dwelling arthropod shape and connectivity in affecting ecological com- richness and beta diversity (i.e. turnover of genera munities at large spatial scales. Using six sampling among patches). Arthropod communities contained sessions from July 2001 until August 2002, we fewer genera and exhibited less turnover in high-edge collected 33,685 arthropods throughout seven 12-ha connected and high-edge unconnected patches relative experimental landscapes consisting of clear-cut to low-edge unconnected patches of similar area. patches surrounded by a matrix of mature pine forest. Connectivity, rather than patch shape, affected the Patches were explicitly designed to manipulate con- evenness of ground-dwelling arthropod communities; regardless of patch shape, high-edge connected patches had lower evenness than low- or high-edge unconnected patches. Among the most abundant arthropod orders, increased richness in low-edge unconnected patches was largely due to increased Electronic supplementary material The online version of richness of Coleoptera, whereas Hymenoptera played this article (doi:10.1007/s10980-011-9656-5) contains an important role in the lower evenness in connected supplementary material, which is available to authorized users.
    [Show full text]