Worldwide Biological Control of Arthropods from a Pacific Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Worldwide Biological Control of Arthropods from a Pacific Perspective Worldwide Biological Control of Arthropods from a Pacific Perspective Ross H. Miller Western Pacific Tropical Research Center University of Guam Characteristics of Many Small Pacific Islands • Small in area • Tropical or subtropical climate • Relatively low plant & animal species richness • Highly vulnerable to invasive species • Fragile and moderately resilient ecosystems • Relatively low fresh water supplies - fresh water lens and/or runoff from high islands • Subject to frequent tropical storms and typhoons • Small farms: many < 5 ha • Low GDP & per capita income – limited or no internal funds for BC exploration, quarantine, follow-up • Limited or no BC quarantine facilities • Limited expertise or capacity for BC • Varying access to technical expertise, training, capacity building • Limited and expensive transportation – for people or BC agents • Island groups organized into coalitions or federations; Often associated with a dominant regional power • Major industry – varies: fishing, tourism, agriculture, military Guam’s Agricultural Community •Small family plots < 5 ha •Retirees – supplemental income •Subsistence farmers – immigrants •Relatively few commercial farmers - generally small scale compared to mainland •Golf courses – hotels/resorts •Small but vocal •Politically connected and very active •Very supportive of agriculture activities •Guardians of “traditional” cultural values E 90 120 Feb 60 DecJan Mar SE Nov Apr NE May Jun 150 30 Jul Oct Direction Degrees Direction Aug Sep S 180 0 N 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 Wind Speed (m/s) Wind Speed (m/s) 60 40 Wind:Mean Rainfall Speed 1945-1997 and Direction Temperature 1945-1997 35 50 30 40 25 30 20 Rainfall (cm) Rainfall 15 20 C Temperature 10 10 5 0 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Fig. 5. Rainfall and temperature data for Guam. Probability: Tropical Cyclone Within 180 Miles of Guam Month Tropical Storm Typhoon January 1 every 15 years 1 every 15 years February 1 every 46 years 1 every 46 years March 1 every 46 years 1 every 46 years April 1 every 23 years 1 every 12 years May 1 every 23 years 1 every 9 years June 1 every 8 years 1 every 46 years July 1 every 4 years 1 every 23 years August 1 every 3 years 1 every 23 years September 1 every 2 years 1 every 8 years October 1 every 2 years 1 every 6 years November 1 every 2 years 1 every 7 years December 1 every 7 years 1 every 8 years Year 2.5 every 1 year 1 every 1 year Probability of a Significant Storm Striking the Western Pacific Increases During El Nino Year (ie. Now) Obstacles to Biological Control in Small Pacific Islands • Annual Typhoons and Tropical Storms • High Pesticide Use on Small-Area Farms • Farmer community unaware of Biological Control • BC Obstructionists – anti Biological Control individuals or agencies - “I’ll do what I want types” Opportunities for Biological Control in Small Pacific Islands • Insular environment • Relatively simple species complexes • Nearly all pest species are exotic invasive species • Streamlined local permitting process The World’s Least Wanted IUCN–The World Conservation Union recently released a list titled 100 of the World’s Worst Invasive Alien Species. Among the invertebrates included are these 14 insects now in North America. Argentine ant (Linepithema humile) Asian longhorned beetle (Anoplophora glabripennis) Asian tiger mosquito (Aedes albopictus) Big-headed ant (Pheidole megacephala) Common malaria mosquito (Anopheles quadrimaculatus) Common wasp (Vespula vulgaris) Crazy ant (Anoplolepis gracilipes) Cypress aphid (Cinara cupressi) Formosan subterranean termite (Coptotermes formosanus shiraki) Gypsy moth (Lymantria dispar) Khapra beetle (Trogoderma granarium) Little fire ant (Wasmannia auropunctata) Red imported fire ant (Solenopsis invicta) Sweet potato whitefly (Bemisia tabaci) CTAHR University of Hawaii Cooperative Extension Two Pacific BC Activities Based on Prior/Ongoing US BC Programs Aphid Biological Control – Guam, CNMI, Palau: Outgrowth of Russian wheat aphid BC in western US using aphidiids collected worldwide and released in US Papaya Mealybug Biological Control – Guam, Palau: Based on APHIS BC project for Florida and Caribbean using parasitoids obtained via APHIS from Puerto Rico Aphids Island surveys, quarantine introduction, mass rearing, release, follow-up Guam Releases: > 10 K aphidiids A. colemani A. gossypii (Chilean strain) T. citricida Recovered A. craccivora P. nigronervosa D. rapae A. gossypii (Washington state strain) T. citricida Recovered A. craccivora P. nigronervosa L. testaceipes A. gossypii (Oklahoma 1970’s) T. citricida Established on Guam A. craccivora P. nigronervosa A. gossypii A. colemani (introduced) Saipan A. craccivora D. rapae (introduced & recovered) P. nigronervosa L. testaceipes (introduced) T. citricida A. gossypii A. colemani (introduced) Tinian A. craccivora D. rapae (introduced) P. nigronervosa L. testaceipes (introduced) T. citricida A. gossypii A. colemani (introduced) Rota A. craccivora D. rapae (introduced) P. nigronervosa L. testaceipes (self introduced; T. Citricida established and spreading) •Aphis gossypii, P. nigronervosa, A. craccivora No parasitoids Palau •Guam reared L. testaceipes released against A. gossypii in Koror and Babeldaup •Follow-up surveys indicate it is not yet established To Date: no significant control of aphids by aphidiids in Micronesia Why??????? Micro-satellite and COx1 barcoding of aphid collections worldwide Based on primers developed for apple aphid in Canada – Aphis pomi Aphis gossypii – collection of distinct genotypes Pentalonia nigronervosa – 2 distinct species P. nigronervosa – banana, taro (rarely) P. caladii – elevation of forma “caladii” to full species status (ginger, taro, others) Canonical Discriminant Analysis Ordination of A. gossypii from Guam on three hosts Axis 2 contrasts between: Lengths of terminal process, tibia and siphunculus vs Lengths of rostrum, tarsus, and widths of appendages Scaevola cucumber Axis 2 Axis taro Axis1: contrasts between: Lengths of terminal process, setae, tibia and tarsus vs Lengths of siphunculus, rostrum, Axis 1 and antennal segment 5 1% COx1 Barcoding Data COx1 sequence divergence among A. gossypii samples much less than } among diverse Aphis species. Seq class 2 (on taro (+1 on melon)) } Seq class 8 (on Scaevola) } Other frangulae group species soybean aphid Musa | USA: Florida (CNC#HEM056689, CNC#HEM057951) Musa | Guam (CNC#HEM050440, CNC#HEM050586, CNC#HEM050454, CNC#HEM050645, CNC#HEM050588, CNC#HEM050597, CNC#HEM050645, Pentalonia nigronervosa CNC#HEM054616, CNC#HEM057382, CNC#HEM057383, CNC#HEM057384, CNC#HEM057385, CNC#HEM057386, CNC#HEM057387, CNC#HEM057390, Musa | CNMI: Tinian (CNC#HEM050482, CNC#HEM051909) Musa | Micronesia: Yap (CNC#HEM055095) Musa | Micronesia: Kosrae (CNC#HEM051969, CNC#HEM051972) Musa | Micronesia: Pohnpei (CNC#HEM057836, CNC#HEM057837, CNC#HEM057838) Heliconia | Guam (CNC#HEM057389 Zingiber | CNMI: Rota (CNC#HEM050476, CNC#HEM050476.2) Heliconia | Micronesia: Pohnpei (CNC#HEM057831) Cyrtosperma | Micronesia: .Pohnpei (CNC#HEM057827, CNC#HEM057828, , CNC#HEM057832, CNC#HEM057833) Colocasia esculenta | Micronesia: .Pohnpei (CNC#HEM057834) Alpinia | Micronesia.Pohnpei (CNC#HEM051824, CNC#HEM057825) Musa | Micronesia: Pohnpei (CNC#HEM057826) Zingiber | Micronesia: Pohnpei (CNC#HEM054529) Alpinia | Guam (CNC#HEM057388) Zingiber | Guam (CNC#HEM050456, CNC#HEM052080, CNC#HEM054584) Zingiber | CNMI: Rota (CNC#HEM050473) Hedychium | USA: Florida (CNC#HEM057500) Colocasia esculenta | Palau (CNC#HEM051902) Zingiber | Palau (CNC#HEM050519) Musa | Palau (CNC#HEM050520) Hedychium coronarium | USA: Hawai (CNC#HEM051881, CNC#HEM058112, CNC#HEM058125) Alpinia purpurata | USA: Hawai (CNC#HEM051823, CNC#HEM058113 Colcassia esculenta | USA: Hawai (CNC#HEM051862, CNC#HEM057377, CNC#HEM057379, CNC#HEM057381) Pentalonia caladii Zingiber | USA: Hawaii (CNC#HEM051859, CNC#HEM051894) Alpinia purpurata (USA: .Hawaii (CNC#HEM051823, CNC#HEM058113) Colocasia esculenta | USA: Hawaii (CNC#HEM058109) 1 % Papaya Mealybug - Paracoccus marginatus On Papaya On Plumeria On Hibiscus Papaya Mealybug (PPMB) •First described in 1992 from Florida & Caribbean •First reported in St. Martin 1995 •Spread to 13 Caribbean countries, 3 Central American countries, 3 South American countries, and Florida in US USDA & Mexico Collectors Apoanagyrus nr. californicus •Initially screened by USDA-ARS in Delaware Anagyrus loecki •Env. Impact Assmt. performed by USDA-APHIS Acerophagous papayae •Mass reared in Puerto Rico (collaboration between Pseudaphycus sp. USDA & PR Dept. Agric.) Pseudleptomastix mexicana •Released in Dominican Republic, Puerto Rico, Florida PPMB Established on Guam 2002, Palau 2003, Hawaii 2004 •Guam – Release of 46,200 BC agents, monthly for 5 months; pre & post Typhoon Chataan – 99% population reduction •Palau - Release of 24,568 BC agents; PPMB not detectable after 6 months •Pseudoleptomastix mexicana •Acerophagus papayae •Anagyrus sp. Has Become a Model for Transfer of Classical Biological Control Between Caribbean and Pacific Basins Meyerdirk et al. 2004 Red Imported Fire Ant Solenopsis invicta Photo; S. Porter •From Paraguay River drainage in South America (Brazil, Argentina, Paraguay) •Sting produces pustule •Monogyne or polygyne colonies •Exotic in Southern US, Caribbean, Australia, New Zealand, Taiwan Potential World Distribution of Solenopsis invicta based on Temperature & Precipitation* Red = can survive White = unlikely Light green = sufficient rainfall Olive brown = insufficient rain Yellow = possible Location
Recommended publications
  • Cinara Cupressivora W Atson & Voegtlin, 1999 Other Scientific Names: Order and Family: Hemiptera: Aphididae Common Names: Giant Cypress Aphid; Cypress Aphid
    O R E ST E ST PE C IE S R O FIL E F P S P November 2007 Cinara cupressivora W atson & Voegtlin, 1999 Other scientific names: Order and Family: Hemiptera: Aphididae Common names: giant cypress aphid; cypress aphid Cinara cupressivora is a significant pest of Cupressaceae species and has caused serious damage to naturally regenerating and planted forests in Africa, Europe, Latin America and the Caribbean and the Near East. It is believed to have originated on Cupressus sempervirens from eastern Greece to just south of the Caspian Sea (Watson et al., 1999). This pest has been recognized as a separate species for only a short time (Watson et al., 1999) and much of the information on its biology and ecology has been reported under the name Cinara cupressi. Cypress aphids (Photos: Bugwood.org – W .M . Ciesla, Forest Health M anagement International (left, centre); J.D. W ard, USDA Forest Service (right)) DISTRIBUTION Native: eastern Greece to just south of the Caspian Sea Introduced: Africa: Burundi (1988), Democratic Republic of Congo, Ethiopia (2004), Kenya (1990), Malawi (1986), Mauritius (1999), Morocco, Rwanda (1989), South Africa (1993), Uganda (1989), United Republic of Tanzania (1988), Zambia (1985), Zimbabwe (1989) Europe: France, Italy, Spain, United Kingdom Latin America and Caribbean: Chile (2003), Colombia Near East: Jordan, Syria, Turkey, Yemen IDENTIFICATION Giant conifer aphid adults are typically 2-5 mm in length, dark brown in colour with long legs (Ciesla, 2003a). Their bodies are sometimes covered with a powdery wax. They typically occur in colonies of 20-80 adults and nymphs on the branches of host trees (Ciesla, 1991).
    [Show full text]
  • Cinara Cupressivora
    62 Global review of forest pests and diseases Cinara cupressivora Order and Family: Hemiptera: Aphididae Common names: giant cypress aphid; cypress aphid Cinara cupressivora Watson & Voegtlin, 1999 is a significant pest of Cupressaceae species and has caused serious damage to naturally regenerated and planted forests in Africa, Europe, Latin America and the Caribbean and the Near East. It is believed to have originated on Cupressus sempervirens from eastern Greece to just south of the Caspian Sea (Watson et al., 1999). This pest has been recognized as a separate species for only a short time (Watson et al., 1999) and much of the information on its biology and ecology has been reported under the name Cinara cupressi. BUGWOOD.ORG/W.M. CIESLA/3948001 BUGWOOD.ORG/W.M. CIESLA/3948002 BUGWOOD.ORG/W.M. BUGWOOD.ORG/J.D. WARD/2912011 Cypress aphids DISTRIBUTION Native: Europe and the Near East: eastern Greece to Islamic Republic of Iran Introduced: Africa: Burundi (1988), Democratic Republic of Congo, Ethiopia (2004), Kenya (1990), Malawi (1986), Mauritius (1999), Morocco, Rwanda (1989), South Africa (1993), Uganda (1989), United Republic of Tanzania (1988), Zambia (1985), Zimbabwe (1989) Europe: France, Italy, Spain, United Kingdom Latin America and Caribbean: Chile (2003), Colombia Near East: Jordan, the Syrian Arab Republic, Turkey, Yemen IDENTIFICATION Giant conifer aphid adults are typically 2 to 5 mm in length, dark brown in colour with long legs (Ciesla, 2003a). Their bodies are sometimes covered with a powdery wax. They typically occur in colonies of 20 to 80 adults and nymphs on the branches of host trees (Ciesla, 1991).
    [Show full text]
  • Tapinoma Melanocephalum (Fabricius, 1793), a New Exotic Ant in Spain (Hymenoptera, Formicidae)
    Orsis17 07 Espadaler.qxd 17/12/02 07:45 Página 101 Orsis 17, 2002 101-104 Tapinoma melanocephalum (Fabricius, 1793), a new exotic ant in Spain (Hymenoptera, Formicidae) Xavier Espadaler Unitat d’Ecologia and CREAF. Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona). Spain Federico Espejo Killgerm. Enginy, 9 08840 Viladecans (Barcelona). Spain Manuscript received in April 2002 Several tramp ant species are found in the city of Barcelona (Espadaler & Co- llingwood 2001 and references): Lasius neglectus, Pheidole teneriffana, Para- trechina flavipes, Hypoponera punctatissima and Linepithema humile. Only the last species, the argentine ant, attains pest status in the city at present. To that small group we can now add a sixth species, the ghost ant, the first time it has been recorded in the Iberian Peninsula. Within the Iberian Tapinoma species, this ant is easily distinguished by its highly distinct bicoloured habitus (Fig. 1), with the yellowish gaster, legs and antennae, contrasting with the dark head and tho- rax. See Shattuck (1994): 147-148 for a complete historical taxonomic history and supplementary references. The ghost ant (Tapinoma melanocephalum) is a well known tramp species widely dispersed by human trade mainly throughout humid tropical regions (Wi- lliams 1994), although it has also been detected in the climatically much drier Arabic Peninsula (Collingwood & Agosti 1996; Collingwood et al. 1997). Its ori- gin is unknown (Wilson & Taylor 1967). Isolates have been found outside the tropics, probably carried with plant material or products from the tropics. Out- side this region, it seems to thrive only in heated buildings (DuBois & Danoff- Burg 1994) or inside structures (Klotz et al.
    [Show full text]
  • Tapinoma Melanocephalum (A) PEST INFORMATION
    Tapinoma melanocephalum Harris, R. (A) PEST INFORMATION A1. Classification Family: Formicidae Subfamily: Dolichoderinae h Tribe: Dolichoderini c esear Genus: Tapinoma es R Species: melanocephalum t, Landcar of d T har A2. Common names Ric Ghost ant (Naumann 1993). Also known as: tramp ant, black-headed ant, tiny yellow house ant, house infesting ant (Harada 1990), Awate-konuka-ari (Japan) (www39), albaricoque (Puerto Rico) (Smith 1965), hormiga bottegaria (Cuba) (Smith 1965). A3. Original name Formica melanocephala Fabricius. A4. Synonyms or changes in combination or taxonomy Myrmica pellucida Smith, Formica nana Jerdon, Formica familiaris Smith, Tapinoma (Micromyrma) melanocephalum var. australis Santschi, Tapinoma (Micromyrma) melanocephalum var. australe Santschi. Current subspecies: nominal plus Tapinoma melanocephalum var. coronatum Forel, Tapinoma melanocephalum var. malesianum Forel. A5. General description (worker) Identification Size: monomorphic. Total length around 1.5 mm, ranging between 1.3 and 1.9 mm. Colour: distinctively bicoloured (Fig. 1): head (including antennae, except for first 2 segments), and sides of alitrunk blackish-brown; dorsal alitrunk (except propodeum) and legs pale yellow. Gaster mostly pale, sometimes with brown INVASIVE ANT RISK ASSESSMENT Tapinoma melanocephalum patches. Surface sculpture: head and body mostly with fine sculpture, appearing slightly dull. General description: antennae 12-segmented. First antennal segment (scape) long, surpassing the posterior border of head. Eyes large, with 9–10 ommatidia in the longest row. Mandibles each with 3 large teeth and about 7 small denticles, and with the surface containing the teeth and that near the clypeus rounding gradually into one another (basal angle absent). Clypeus without longitudinal carinae, anterior margin slightly concave in the alitrunk in profile almost smoothly convex, with slight metanotal depression.
    [Show full text]
  • Ant, Red Imported Fire
    ALIEN PEST ALERT! Red Imported Fire Ant A Seriously Harmful Potential Invasive Species Neil J. Reimer and Carol Okada, Hawai‘i Department of Agriculture he red imported fire ant, Solenopsis invicta, na­ Ttive to South America, is a serious pest of agri­ cultural, urban, and native environments in areas that it has invaded. This species is not known to be present in Hawai‘i but is related to the tropical fire ant, Solenopsis geminata, which is present in Hawai‘i. The red imported fire ant, however, is much more aggressive. Workers and queen, relative sizes Infested areas Potential areas of infestation Mounds in a pasture Workers, actual sizes Distribution in the United States The red imported fire ant was accidentally introduced into culture regards it as a high priority to prevent the red Alabama in the 1930s and has since spread throughout imported fire ant from establishing in Hawaii. the southern USA. It now occurs in Alabama, Arkansas, California, Florida, Georgia, Louisiana, Mississippi, New Life cycle and biology Mexico, North Carolina, Oklahoma, South Carolina, Ten­ The life cycle of this ant is similar to many other pest nessee, Texas, and Puerto Rico. There have been spot in­ ants. The colonies (“mounds”) can contain 10–100 or festations in Arizona, but these have been eradicated. This more queens, which each lay up to 800 eggs per day. pest will continue to spread on the Mainland. Its distri­ After 7–10 days, the eggs hatch into larvae, which de­ bution appears to be limited by temperature and mois­ velop over a 6–10-day period before pupating.
    [Show full text]
  • Natural Occurrence of the Nuc1eopolyhedrosis Virus of The
    ENTOMOPHAGA 25 ( 3 ). 1980, 261-267 NATURAL OCCURRENCE OF THE NUCLEOPOLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR [LEP. : LYMANTRIIDAE] IN WILD BIRDS AND MAMMALS (I) R. A. LAUTENSCHLAGER (2), J. D. PODGWAITE (3) & D. E. WATSON (3) (2) Northeastern Forest Experiment Station Forest Service, U. S. Dep. Agriculture, 370 Reed Road, Broomall, Pa. 19008 (4). (3) U.S_D.A., Forest Service, Northeastern Forest Experiment Station, Forest Insect & Disease Labo­ ratory, Hamden, Connecticut 06514, U.S.A_ Three species of birds and 5 species of mammals were captured in the wild from 2 plots in which mortality from naturally occurring nucleopolyhedrosis virus (NPV) among gypsy moth, Lymantria dispar (L.), larvae was 15 %and 70 %. Bioassays of intestinal contents showed that blue jays, Cyanocitta cristata (L.), towhees, Pipilo erythrophthalmus (L.), white-footed mice, Peromyscus leucopus (RAFINESQUE), redback voles, Clethrionomys gapperi (VIGERS), raccoons, Procyon lotor (L.), and a chipmunk, Tamias striatus (L.), contained infectious NPV (poly­ hedra) in their alimentary tracts, whereas robins, Turdus migratorius (L.), and masked shrews, Sorex cinereus (KERR), did not. Comparisons among mice and voles indicated that those collected from the plot in which the NPV mortality was greatest (70 %) contained the most virus. We concluded that birds and mammals can passively transport infectious gypsy moth NPV in the wild. Nucleopolyhedrosis viruses (NPVs) are among the primary natural regulators in dense populations of many insect species, and some appear promising as applied control agents in pest management programs. Understanding the epidemiology of these viruses is critical to predicting population trends and implementing appropriate pest management strategies. Recent studies have emphasized the mechanisms of NPV transmission within and between insect generations.
    [Show full text]
  • Ant Venoms. Current Opinion in Allergy and Clinical
    CE: Namrta; ACI/5923; Total nos of Pages: 5; ACI 5923 Ant venoms Donald R. Hoffman Brody School of Medicine at East Carolina University, Purpose of review Greenville, North Carolina, USA The review summarizes knowledge about ants that are known to sting humans and their Correspondence to Donald R. Hoffman, PhD, venoms. Professor of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University, Recent findings 600 Moye Blvd, Greenville, NC 27834, USA Fire ants and Chinese needle ants are showing additional spread of range. Fire ants are Tel: +1 252 744 2807; e-mail: [email protected] now important in much of Asia. Venom allergens have been characterized and Current Opinion in Allergy and Clinical studied for fire ants and jack jumper ants. The first studies of Pachycondyla venoms Immunology 2010, 10:000–000 have been reported, and a major allergen is Pac c 3, related to Sol i 3 from fire ants. There are very limited data available for other ant groups. Summary Ants share some common proteins in venoms, but each group appears to have a number of possibly unique components. Further proteomic studies should expand and clarify our knowledge of these fascinating animals. Keywords ant, fire ant, jack jumper ant, phospholipase, sting, venom Curr Opin Allergy Clin Immunol 10:000–000 ß 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins 1528-4050 east [4] and P. sennaarensis in the middle east [5]. These Introduction two species are commonly referred to as Chinese needle Ants are among the most biodiverse organisms on earth. ants and samsum ants.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • ACE Preparation Course
    ACE Preparation Course: INSPECTION AND IDENTIFICATION ANT BIOLOGY AND IDENTIFICATION Ants as social insects All ants are social ◦ Two or more generations overlap ◦ Adults care for young ◦ Adults divided into castes Perennial nests Active all year Image from B. Hölldobler and E.O. Wilson From Hölldobler and Wilson 1990 Why identify? Not all ants are alike. Differ in: ◦ Nesting sites ◦ Food preferences ◦ Damage potential ◦ Behavior ◦ Stinging potential Identification is a challenge ◦ 8X as many structural pest species as cockroaches Basic ant anatomy 2 segmented club on a fire ant Antennae Most ants have elbowed (geniculate) antennae Enlarged end (distal) segments on an antenna called the club Usually two- or three-segmented if club is present Photo by M. Yoder, Texas A&M Univ. Petiole shape and number is important Two-segmented pedicel on a thief ant, Solenopsis molesta Single node, pointed on Formica ant (60X) Petiole shape Anal forms Round anal opening surrounded by a ring of hairs Slit-like anus Sting (not shown) Polymorphism: An easy field character Elbowed antennae (usually) Distinguishing reproductive ants Unequal wings Pinched “waist” * Worker ants usually needed for accurate Queen identification Worker Three subfamilies of ants make up the most important structural ant pests Simplifying ◦ Formicinae (formic acid sprayers) identification ◦ Dolichoderinae (stinky ants) ◦ Myrmicinae (ants with stingers) Characteristics • Single node (pedicel) Ants in the • Tip of abdomen with fringe of hairs subfamily Formicinae Common urban species
    [Show full text]
  • Invasive Alien Species: the Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts
    CBD Distr. GENERAL CBD/COP/14/INF/9 12 November 2018 ENGLISH ONLY CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL DIVERSITY Fourteenth meeting Item 26 of the provisional agenda* Sharm El-Sheikh, Egypt, 17-29 November 2018 INVASIVE ALIEN SPECIES: THE APPLICATION OF CLASSICAL BIOLOGICAL CONTROL FOR THE MANAGEMENT OF ESTABLISHED INVASIVE ALIEN SPECIES CAUSING ENVIRONMENTAL IMPACTS Note by the Executive Secretary BACKGROUND 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Conference of the Parties, a document on the application of classical biological control for the management of established invasive alien species causing environmental impacts. 2. The document is relevant to the work of the Convention on Biological Diversity, in particular with regard to addressing (a) tools for conducting analysis for the management of invasive alien species, (b) the risks associated with trade in live alien organisms, and (c) achieving Aichi Biodiversity Target 9. 3. The document is being circulated in the form and language in which it was received by the Secretariat. * CBD/COP/14/1. The application of classical biological control for the management of established invasive alien species causing environmental impacts Summary for Policy Makers Prepared by: International Union for Conservation of Nature (IUCN), Species Survival Commission Invasive Species Specialist Group (ISSG) *Note that the full report follows on from this Summary for Policy Makers document. Summary for policy makers Convention on Biological Diversity (CBD) COP13 Decision XIII on Invasive Alien Species (IAS) recognized ‘that classical biological control can be an effective measure to manage already established invasive alien species’, and encouraged ‘Parties, other Governments and relevant organizations, when using classical biological control to manage already established invasive alien species, … [to take] into account the summary of technical considerations1’ that was annexed to the decision.
    [Show full text]
  • An Overview of the Red Imported Fire Ant (Hymenoptera: Formicidae) in Mainland China
    Zhang et al.: Imported Fire Ants in Mainland China 723 AN OVERVIEW OF THE RED IMPORTED FIRE ANT (HYMENOPTERA: FORMICIDAE) IN MAINLAND CHINA RUNZHI ZHANG1,2, YINGCHAO LI1, NING LIU1 AND SANFORD D. PORTER3 1State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2E-mail: [email protected] 3USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology, 1600 SW 23rd Drive, Gainesville, FL 32608 ABSTRACT The red imported fire ant, Solenopsis invicta Buren is a serious invasive insect that is native to South America. Its presence was officially announced in mainland China in Jan 2005. To date, it has been identified in 4 provinces in mainland China (Guangdong, Guangxi, Hunan, Fujian) in a total of 31 municipal districts. The total area reported to be infested by S. invicta in late 2006 was about 7,120 ha, mainly in Guangdong Province (6,332 ha). Most of the re- ported human stings are in the heavily infested area around Wuchuan City. The most com- monly reported reactions have been abnormal redness of the skin, sterile pustules, hives, pain, and/or fever. It has been predicted that most of mainland China is viable habitat for red imported fire ants, including 25 of 31 provinces. The probable northern limit of expan- sion reaches Shandong, Tianjing, south Henan, and Shanxi provinces. Traditional and new insecticides including the bait N-butyl perfluorooctane sulfonamide and the contact insecti- cide Yichaoqing have been developed and used to control S. invicta. The Ministry of Agricul- ture and the Chinese government have established an 8-year eradication program (2006 to 2013) for S.
    [Show full text]
  • Encyclopedia of Social Insects
    G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated.
    [Show full text]