Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions

Total Page:16

File Type:pdf, Size:1020Kb

Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating ITALO DELALIBERA JÚNIOR in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, Department of Entomology and Acarology marital status, family/parental status, income derived from a public assistance program, political beliefs, ESALQ-University of São Paulo or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program Piracicaba, Brazil or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint For additional copies of this publication, contact: Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in Richard C. Reardon the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or U.S. Forest Service, FHTET letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil 180 Canfield Street Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: [email protected]. Morgantown, WV 26505 304-285-1566 [email protected] Federal Recycling Program Printed on recycled paper CONTENTS Table F: Exotic Nematodes Released, by Target Pest Orthoptera: Gryllotalpidae ...........................25 Introduction..........................................1 Coleoptera: Scarabaeidae ...........................25 Table A: Exotic Viruses Released, by Target Pest Curculionidae ...........................26 Diptera: Culicidae ..................................26 ACKNOWLEDGMENTS Coleoptera: Scarabaeidae ............................4 Lepidoptera: Zygaenidae .............................7 Lepidoptera: Erebidae ..............................30 The first edition of this publication would not have been possible without the Erebidae ...............................7 Hymenoptera: Siricidae . .30 help of many people including P. Allsopp, T. Andreadis, J. Becnel, A. Bellotti, Noctuidae ..............................8 Table G: Accidental Introductions of Pathogens G. Blissard, D. Boucias, G. Carner, A. Diss, J. Eilenberg, H. Evans, B. Federici, Hymenoptera: Diprionidae ............................8 and Nematodes, by Pest Species J. Fuxa, P. Gullan, I. Hall, L. Harrington, D. Haugen, E. R. Hoebeke, K. Hodge, J. Huber, R. Humber, C. Ignoffo, P. Klasmer, M. Klein, C. Lange, J. Liebherr, Table B: Exotic Bacteria Released, by Target Pest Lepidoptera: Zygaenidae ............................33 J. Martin, S. Merkel, M. Montgomery, D. Moore, C. Nielsen, D. Pilarska, Coleoptera: Scarabaeidae ...........................10 Crambidae .............................33 Erebidae ..............................33 J. Podgwaite, G. Poinar, B. Ratcliffe, M. Schlabach, A. Sharov, D. Smith, Table C: Exotic Fungi Released, by Target Pest L. Smith, L. Solter, D. Sosa-Gomez, P. Stock, D. Streett, K. Teramoto, F. Vega, Hymenoptera: Siricidae . .34 Orthoptera: Acrididae ...............................11 L. Volkman, J. Weiser, S. Woods, O. Zethner, S. Zinder, Yang Zhong-qi and Diprionidae ...........................35 Hemiptera: Cercopidae..............................11 many more. We also sincerely thank the excellent Entomology and Mann Formicidae ...........................36 Libraries at Cornell University and the helpful and very knowledgeable librarians Cicadellidae .............................12 who work there. Finally, we wish to thank Dick Reardon, U.S. Forest Service, Aphididae...............................12 Appendix I: Taxonomic List of the Pathogens Forest Health Technology Enterprise Team (FHTET), for supporting the project. Aleyrodidae .............................13 and Nematodes ....................................38 For the second edition, we also thank G. Blissard, M. Cock, J. Corley, Coccidae ...............................14 Appendix II: Taxonomic List of the Insect and J.J. Dombroskie, J. Eilenberg, E. Eskiviski, R. Giblin-Davis, T. Glare, Z. Handoo, Diaspididae .............................15 Mite Pests.........................................40 R. Humber, B. Hurley, L. Lacey, D. Shapiro, L. Solter, S. Subbotin, S. Wraight, Thysanoptera: Thripidae.............................17 References . .42 and B. Zelazny. S. Gardescu and W. Harding designed and formatted the revised Coleoptera: Scarabaeidae ...........................17 Indexes layout. Once again, we thank Dick Reardon, FHTET, for his support of this Curculionidae ...........................19 project. Insect and Mite Pests Diptera: Culicidae ..................................19 We thank Vince D’Amico for designing the lovely cover images for the first and Species.......................................52 Lepidoptera: Erebidae ..............................19 second editions of the catalogue. Families ......................................53 Acari: Prostigmata: Eriophyidae .......................21 Pathogens and Nematodes Tetranychidae .....................21 Families ......................................53 Table D: Exotic Microsporidia Released, by Target Pest Species . 54 Orthoptera: Acrididae ...............................22 Release/Introduction Countries or Regions ...........55 Diptera: Culicidae ..................................22 Source Countries or Regions .......................56 Lepidoptera: Crambidae .............................22 Addendum to Table C ................................57 Erebidae ..............................23 Table E: Exotic Oomycete Released, by Target Pest Diptera: Culicidae ..................................24 INTRODUCTION 1 INTRODUCTION Classical biological control is a strategy that has been defined as “The 1. The target pest was an insect or mite. intentional introduction of an exotic biological control agent for permanent 2. The microbial pathogen or nematode was not native (an exotic) to establishment and long-term pest control” (Eilenberg et al. 2001). the area of release. We have included programs where the species of Numerous summaries of the many classical biological control programs microbe or nematode was exotic (introduced) as well as programs have been published (e.g., Cock et al. 2016, Hajek et al. 2007, Winston where only the strain or biotype released was exotic. et al. 2014). This strategy has been used extensively to control weeds and arthropods pests. For control of weeds phytophagous arthropods have We included programs for which, whether the releases were successful principally been used and for control of arthropod pests parasitoids and or not, the establishment of the microbe appeared to be a goal (i.e., long- predators have principally been used (Hajek 2004). term establishment and control) and establishment was either investigated or discussed or, for older programs, we can infer that establishment of Most programs using pathogens and nematodes for control of insects and the pathogen or nematode was a goal of the program. Note: Intentionally, mites have focused on mass production and inundative release.
Recommended publications
  • Morphological and Molecular Characterization of Entomophthorales
    Acta Mycologica Article ID: 5522 DOI: 10.5586/am.5522 ORIGINAL RESEARCH PAPER in MICROSCOPIC FUNGI Publication History Received: 2020-02-27 Morphological and Molecular Accepted: 2020-06-26 Published: 2020-11-27 Characterization of Entomophthorales Handling Editor (Entomophthoromycota: Malgorzata Ruszkiewicz-Michalska; Institute Entomophthoromycotina) from Argentina for Agricultural and Forest Environment, Polish Academy of Sciences; University of Łódź; 1* 2 Romina G. Manfrino , Louela A. Castrillo , https://orcid.org/0000-0001- 1 3 8901-0552 Claudia C. López Lastra , Andrea V. Toledo , , 1 4 Authors Contributions Walter Ferrari , Annette B. Jensen RGM and WF conducted the DNA 1Centro de Estudios Parasitólogicos y de Vectores – CEPAVE (CONICET, Consejo Nacional de extraction and PCR assays; ABJ, Investigaciones Científcas y Tecnológicas; UNLP, Universidad Nacional de La Plata), La Plata, AVT, and LAC conducted the Buenos Aires, Argentina phylogenetic analyses; RGM, 2Robert W. Holley Center for Agriculture & Health, U.S. Department of Agriculture, CCLL, and LAC wrote the Agriculture Research Service, Ithaca, 14853, NY, USA manuscript; CCLL and ABJ 3Facultad de Ciencias Agrarias y Forestales, Centro de Investigacioness de Fitopatología – secured funding CIDEFI (CICPBA, Comisión de Investigaciones Científcas de la Provincia de Buenos Aires; UNLP, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina Funding 4Department of Agriculture and Ecology, University of Copenhagen, Thorvaldsensvej 40, This study was supported by the Frederiksberg C, 1871, Denmark National Research Council of Argentina (CONICET) and by *To whom correspondence should be addressed. Email: [email protected] University of La Plata (UNLP). Competing Interests Abstract No competing interests have been declared. We characterized 17 insect-pathogenic entomophthoralean fungal isolates (Entomophthoromycotina: Entomophthorales) using morphological and Copyright Notice molecular techniques.
    [Show full text]
  • Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
    J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work.
    [Show full text]
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Bayle-Barelle 1808) (Lepidoptera, Zygaenidae, Procridinae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stapfia Jahr/Year: 1998 Band/Volume: 0055 Autor(en)/Author(s): Tarmann Gerhard Michael Artikel/Article: Die Weinzygaene Theresimima ampellophaga (Bayle-Barelle 1808) (Lepidoptera, Zygaenidae, Procridinae). Kehrt ein verschwundener Weinschädling zurück? 57-84 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Stapfia 55 57-84 11. September 1998 Die Weinzygaene Theresimima ampellophaga (BAYLE-BARELLE 1808) (Lepidoptera, Zygaenidae, Procridinae) Kehrt ein verschwundener Weinschädling zurück?* Gerhard M. TARMANN Abstract: The Vine Bud Moth or European Grapeleaf Skeletonizer Theresimima ampellophaga (BAYLE-BARELLE 1808) - reappearence of a vine pest? The Vine Bud Moth or European Grapleaf Skeletonizer Theresimima ampellophaga (BAYLE- BARELLE 1808) was thought to be under control for many years. The last harmful infestations are recorded from Hungary in 1954 (ISSEKUTZ 1957a, 1957b). Only a few records are known from later years. A possible reason for the decline of populations may be found in more effective use of pesticide and insecticide. In 1990 Th. ampellophaga was rediscovered on Crimea (Ukraine) after almost 50 years of absence (EFETOV 1990b). For the first time the larvae were found on decorative vines (Parthenocissus). Between 1990 and 1997 the Vine Bud Moth spread all over southern Crimea and has developed very strong populations. This fact leads to the conclusion that neighbouring countries might be in immediate danger. The present paper gives an overview about historical and recent observations of Th. ampellophaga with special emphasis to the situation on Crimea. Pheromone recognition and pest control methods are mentioned. The systematic position and the historical and recent geographical distributions are discussed.
    [Show full text]
  • Protein Composition of the Occlusion Bodies of Epinotia Aporema Granulovirus
    bioRxiv preprint doi: https://doi.org/10.1101/465021; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Protein composition of the occlusion bodies of Epinotia aporema 2 granulovirus 3 4 Tomás Masson, María Laura Fabre, María Leticia Ferrelli, Matías Luis Pidre, Víctor 5 Romanowski. 6 1 Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de 7 Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. 8 9 Abstract 10 Within family Baculoviridae, members of the Betabaculovirus genus are employed as 11 biocontrol agents against lepidopteran pests, either alone or in combination with 12 selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus 13 (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. 14 aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key 15 role in baculovirus horizontal transmission, we investigated the composition of 16 EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins 17 that are included in the OBs during the final stages of larval infection. Our data 18 provides experimental validation of several annotated hypothetical coding sequences. 19 Proteogenomic mapping against genomic sequence detected a previously unannotated 20 ac110-like core gene and a putative translation fusion product of ORFs epap48 and 21 epap49. Comparative studies of the proteomes available for the family Baculoviridae 22 highlight the conservation of core gene products as parts of the occluded virion.
    [Show full text]
  • Dwarf-Cashew Resistance to Whitefly (Aleurodicus Cocois) Linked To
    Research Article Received: 12 February 2019 Revised: 14 June 2019 Accepted article published: 25 June 2019 Published online in Wiley Online Library: 27 July 2019 (wileyonlinelibrary.com) DOI 10.1002/ps.5531 Dwarf-cashew resistance to whitefly (Aleurodicus cocois) linked to morphological and histochemical characteristics of leaves Elaine SS Goiana,a Nivia S Dias-Pini,a* Celli R Muniz,a Arlete A Soares,b James C Alves,b Francisco C Vidal-Netoa and Cherre S Bezerra Da Silvac Abstract BACKGROUND: The cashew whitefly (CW), Aleurodicus cocois, is an important pest of cashew in Brazil. The use of resistant plants may be an effective strategy for the control of this pest. In a preliminary assay, we found that dwarf-cashew clones show different levels of resistance to CW. Here, we hypothesized that such resistance is associated with morphological characteristics of cashew leaves and their content of phenolic compounds. RESULTS: We determined (i) the attractiveness and suitability for oviposition of five dwarf-cashew clones towards CW, (ii) the leaf morphology and chemistry of those clones, and (iii) the relationship between leaf characteristics and resistance to CW. In greenhouse multiple-choice assays, PRO143/7 and CCP76 showed, respectively, the lowest and highest counts of both CW adults and eggs. Scanning electron microscopy (SEM) analysis revealed that PRO143/7 and EMBRAPA51 have, respectively, the highest and lowest numbers of leaf glandular trichomes. We found a negative correlation between number of trichomes in the abaxial surface of cashew leaves and CW oviposition. In addition, confocal microscopy analysis and histochemical tests with ferrous sulfate indicated a higher accumulation of phenolic compounds in the resistant clone PRO143/7 relative to the other clones.
    [Show full text]
  • WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • Two New Species of Entomophthoraceae (Zygomycetes, Entomophthorales) Linking the Genera Entomophaga and Eryniopsis
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1993 Band/Volume: 45 Autor(en)/Author(s): Keller Siegfried, Eilenberg Jorgen Artikel/Article: Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. 264- 274 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis S. Keller1 & J. Eilenberg2 •Federal Research Station for Agronomy, Reckenholzstr. 191, CH-8046 Zürich, Switzerland 2The Royal Veterinary and Agricultural University, Department of Ecology and Molecular Biology, Bülowsvej 13, DK 1870 Frederiksberg C, Copenhagen, Denmark Keller, S. & Eilenberg, J. (1993). Two new species of Entomophthoraceae (Zygomycetes, Entomophthorales) linking the genera Entomophaga and Eryniopsis. - Sydowia 45 (2): 264-274. Two new species of the genus Eryniopsis from nematoceran Diptera are descri- bed; E. ptychopterae from Ptychoptera contaminala and E. transitans from Limonia tripunctata. Both produce primary conidia and two types of secondary conidia. The primary conidia of E. ptychopterae are 36-39 x 23-26 urn and those of E. transitans 32-43 x 22-29 um. The two species are very similar but differ mainly in the shape of the conidia and number of nuclei they contain. Both species closely resemble mem- bers of the Entomophaga grilly group and probably form the missing link between Eryniopsis and Entomophaga. Keywords: Insect pathogenic fungi, taxonomy, Diptera, Limoniidae, Ptychop- teridae. The Entomophthoraceae consists of mostly insect pathogenic fun- gi whose taxonomy has not been lully resolved. One controversial genus is Eryniopsis which is characterized by unitunicate, plurinucleate and elongate primary conidia usually produced on un- branched conidiophores and discharged by papillar eversion (Hum- ber, 1984).
    [Show full text]
  • Natural Occurrence of the Nuc1eopolyhedrosis Virus of The
    ENTOMOPHAGA 25 ( 3 ). 1980, 261-267 NATURAL OCCURRENCE OF THE NUCLEOPOLYHEDROSIS VIRUS OF THE GYPSY MOTH, LYMANTRIA DISPAR [LEP. : LYMANTRIIDAE] IN WILD BIRDS AND MAMMALS (I) R. A. LAUTENSCHLAGER (2), J. D. PODGWAITE (3) & D. E. WATSON (3) (2) Northeastern Forest Experiment Station Forest Service, U. S. Dep. Agriculture, 370 Reed Road, Broomall, Pa. 19008 (4). (3) U.S_D.A., Forest Service, Northeastern Forest Experiment Station, Forest Insect & Disease Labo­ ratory, Hamden, Connecticut 06514, U.S.A_ Three species of birds and 5 species of mammals were captured in the wild from 2 plots in which mortality from naturally occurring nucleopolyhedrosis virus (NPV) among gypsy moth, Lymantria dispar (L.), larvae was 15 %and 70 %. Bioassays of intestinal contents showed that blue jays, Cyanocitta cristata (L.), towhees, Pipilo erythrophthalmus (L.), white-footed mice, Peromyscus leucopus (RAFINESQUE), redback voles, Clethrionomys gapperi (VIGERS), raccoons, Procyon lotor (L.), and a chipmunk, Tamias striatus (L.), contained infectious NPV (poly­ hedra) in their alimentary tracts, whereas robins, Turdus migratorius (L.), and masked shrews, Sorex cinereus (KERR), did not. Comparisons among mice and voles indicated that those collected from the plot in which the NPV mortality was greatest (70 %) contained the most virus. We concluded that birds and mammals can passively transport infectious gypsy moth NPV in the wild. Nucleopolyhedrosis viruses (NPVs) are among the primary natural regulators in dense populations of many insect species, and some appear promising as applied control agents in pest management programs. Understanding the epidemiology of these viruses is critical to predicting population trends and implementing appropriate pest management strategies. Recent studies have emphasized the mechanisms of NPV transmission within and between insect generations.
    [Show full text]
  • Biocontrol Science and Technology
    This article was downloaded by:[NEICON Consortium] On: 11 September 2007 Access Details: [subscription number 781557153] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Biology and prey range of Cryptognatha nodiceps (Coleoptera: Coccinellidae), a potential biological control agent for the coconut scale, Aspidiotus destructor (Hemiptera: Diaspididae) V. F. Lopez; M. T. K. Kairo; J. A. Irish Online Publication Date: 01 August 2004 To cite this Article: Lopez, V. F., Kairo, M. T. K. and Irish, J. A. (2004) 'Biology and prey range of Cryptognatha nodiceps (Coleoptera: Coccinellidae), a potential biological control agent for the coconut scale, Aspidiotus destructor (Hemiptera: Diaspididae)', Biocontrol Science and Technology, 14:5, 475 - 485 To link to this article: DOI: 10.1080/09583150410001683493 URL: http://dx.doi.org/10.1080/09583150410001683493 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]