Syllabus 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work. -
Key to Phycomycetes Predaceous Or Parasitic in Nematodes Or Amoebae I
©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Key to Phycomycetes predaceous or parasitic in Nematodes or Amoebae I. Zoopagales By R. Dayal Department of Plant Pathology, Faculty of Agriculture, Banaras Hindu University, Varanasi 210005 Summary A key to 10 recognised genera and 92 species of predaceous or parasi- tic fungi in nematodes or amoebae, belonging to the order Zoopagales, is given here. The key is intended primarily for those working in predaceous fungi. It is not phylogenetic but rather an arrangement for easy identification. No claim is made that these are all valid species; it will become evident as the key is used that further study must be made into some which are with difficulty separated from others, except by their host. The literature con- cerning these fungi has increased to such an extent that workers studying the group have for some time felt the need for a convenient aid to identi- fication. This can be overcome only by furnishing with as many tools as possible for identification or recognition of genera and species. This paper is intended as one of the tools. It is a collection of 10 recognized genera and 92 species, brought together so that this information may be more ea- sily available. Guide to the Key The measurements given in the key are those most frequently met within nematode infested cultures; in pure cultures traps are usally ab- sent. Conidial dimensions are usually smaller and the morphology of the conidiophore may also alter considerably. Chlamydospores are formed more frequently in older cultures, but not in all the species. -
Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). -
The Flora Mycologica Iberica Project Fungi Occurrence Dataset
A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF). -
Molecular Systematics of the Marine Dothideomycetes
available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. -
Preliminary Classification of Leotiomycetes
Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades. -
The Fungi Constitute a Major Eukary- Members of the Monophyletic Kingdom Fungi ( Fig
American Journal of Botany 98(3): 426–438. 2011. T HE FUNGI: 1, 2, 3 … 5.1 MILLION SPECIES? 1 Meredith Blackwell 2 Department of Biological Sciences; Louisiana State University; Baton Rouge, Louisiana 70803 USA • Premise of the study: Fungi are major decomposers in certain ecosystems and essential associates of many organisms. They provide enzymes and drugs and serve as experimental organisms. In 1991, a landmark paper estimated that there are 1.5 million fungi on the Earth. Because only 70 000 fungi had been described at that time, the estimate has been the impetus to search for previously unknown fungi. Fungal habitats include soil, water, and organisms that may harbor large numbers of understudied fungi, estimated to outnumber plants by at least 6 to 1. More recent estimates based on high-throughput sequencing methods suggest that as many as 5.1 million fungal species exist. • Methods: Technological advances make it possible to apply molecular methods to develop a stable classifi cation and to dis- cover and identify fungal taxa. • Key results: Molecular methods have dramatically increased our knowledge of Fungi in less than 20 years, revealing a mono- phyletic kingdom and increased diversity among early-diverging lineages. Mycologists are making signifi cant advances in species discovery, but many fungi remain to be discovered. • Conclusions: Fungi are essential to the survival of many groups of organisms with which they form associations. They also attract attention as predators of invertebrate animals, pathogens of potatoes and rice and humans and bats, killers of frogs and crayfi sh, producers of secondary metabolites to lower cholesterol, and subjects of prize-winning research. -
Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista) -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
Ten Principles for Conservation Translocations of Threatened Wood- Inhabiting Fungi
Ten principles for conservation translocations of threatened wood- inhabiting fungi Jenni Nordén 1, Nerea Abrego 2, Lynne Boddy 3, Claus Bässler 4,5 , Anders Dahlberg 6, Panu Halme 7,8 , Maria Hällfors 9, Sundy Maurice 10 , Audrius Menkis 6, Otto Miettinen 11 , Raisa Mäkipää 12 , Otso Ovaskainen 9,13 , Reijo Penttilä 12 , Sonja Saine 9, Tord Snäll 14 , Kaisa Junninen 15,16 1Norwegian Institute for Nature Research, Gaustadalléen 21, NO-0349 Oslo, Norway. 2Dept of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland. 3Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK 4Bavarian Forest National Park, D-94481 Grafenau, Germany. 5Technical University of Munich, Chair for Terrestrial Ecology, D-85354 Freising, Germany. 6Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O.Box 7026, 750 07 Uppsala, Sweden. 7Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. 8School of Resource Wisdom, P.O. Box 35, FI-40014 University of Jyväskylä, Finland. 9Organismal and Evolutionary Biology Research Programme, P.O. Box 65, FI-00014 University of Helsinki, Finland. 10 Section for Genetics and Evolutionary Biology, University of Oslo, Blindernveien 31, 0316 Oslo, Norway. 11 Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. 12 Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland. 13 Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway. 14 Artdatabanken, Swedish University of Agricultural Sciences, P.O. Box 7007, SE-75007 Uppsala, Sweden. -
Culture Inventory
For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1 -
Chondrostereum Purpureum As a Biological Control Agent
Jan Lemola The efficacy of Chondrostereum purpureum as a biological control agent A comparative analysis of the decay fungus (Chondrostereum purpureum), a chemical herbicide and mechanical cutting to con- trol sprouting of broad-leaved tree species. Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Environmental Engineering Thesis 7. 11. 2014 Abstract Jan Lemola Author(s) The efficacy of Chondrostereum purpureum as a biological con- Title trol agent Number of Pages 33 pages + 3 appendices Date 7 November 2014 Degree Bachelor of Engineering Degree Programme Environmental Engineering Specialisation option Renewable Energy Instructor(s) Leena Hamberg, Researcher (Metla) Carola Fortelius, Lecturer (Metropolia) In forestry, manual control of broad-leaved trees is tedious and costly. To reduce costs, chemicals have been applied to keep these species in control. However, some chemicals are not recommended to use because of possibly adverse effects on the environment. Instead of chemicals, biological alternatives, such as a fungus, Chondrostereum purpureum, might be used to prevent sprouting. C. purpureum is a common decay fungus in Finland; it has been investigated at Metla, to find out whether it could be used as a bio- logical control agent against sprouting of broad-leaved tree species. This thesis project is related to the Metla research project. The aim of the thesis project is to investigate, how efficiently C. purpureum prevents sprouting of broad-leaved tree species such as birch, aspen, rowan and willow when compared to chemical treatment and mechanical cutting only, and whether C. purpureum is able to penetrate into the roots of these broad-leaved trees. In the field, freshly cut weed trees were inoculated with C.