Hajek CBC Pathogens List 2020.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hajek CBC Pathogens List 2020.Pdf 1 Classical biological control of insects and mites: A comprehensive list of pathogen and nematode introductions (2020) Ann E. Hajek, Sana Gardescu, and Italo Delalibera Júnior (Hajek & Gardescu: Cornell University, Dept. of Entomology, Ithaca NY USA; Delalibera: ESALQ-University of São Paulo, Dept. of Entomology & Acarology, Piracicaba, Brazil) Prepared 2020, based primarily on: Classical biological control of insects and mites: A worldwide catalogue of pathogen and nematode introductions (2016) USDA FHTET-2016-06. (See that publication for explanations of categories and details.) This list is summarized in an article submitted in 2020 to the journal BioControl by Hajek, Gardescu, and Delalibera: "Summary of classical biological control introductions of entomopathogens and nematodes for insect control." Pathogen and nematode groups of biological control agents are presented in the following order: Virus, Bacteria, Fungus, Microsporidia, Oomycota, Nematoda. Within each agent group, the list is alphabetical by (1) Biological control agent released, then (2) Target pest order, family, and species (insect or mite host), and then (3) Release country. Release countries are categorized here into 8 major global regions. Agent establishment (persistence for at least 1 year) of the pathogen or nematode in the area of release is based on interpretation of the cited publications; not all references provided such information. Control success, for the agents that were considered to have established, is defined as follows: control = pest populations decreased below a density that causes damage or problems; for agricultural systems, this would be the economic injury level; partial control = had an impact on pest populations but other control measures were still needed to reach acceptably low pest population densities; negligible control = agent establishment continued but had little effect on the pest population. Additions made after the Hajek et al. (2016) catalogue are shown in red text. A numbered list of citations is provided at the end: numbers 1-217 are as in Hajek et al. 2016; 1A-1C are from the addendum in Hajek et al. 2016; and 218-225 are references added here in 2020. Agent group Biological control Biological control agent species Source of biological Pest Order Pest Family Target pest species Year(s) of Release country Pest origin in Release Islands Agent Control Results from introduction Citations agent (Family: Genus) control agent 1st release release area Region establishment success Virus Agrotis segetum Agrotis segetum granulovirus Austria Lepidoptera Noctuidae Agrotis segetum (Denis & 1975-80 DENMARK Native Europe continent established negligible Released in Lammefjord. Caused 65-70% reduction in 211, 212, 217 granulovirus (AsGV); (Baculoviridae: Schiffermüller); Turnip moth control damage soon after release and thought to have Betabaculovirus) spread 10 m from release. One year after release, ca. 99% of infectivity of virus applied to soils had been lost. Virus Anticarsia Anticarsia gemmatalis multiple Brazil Lepidoptera Erebidae Anticarsia gemmatalis Hübner; 1990-91 USA: Louisiana Native North America continent established partial Released in soybean fields. Established, causing 25- 54 gemmatalis nucleopolyhedrovirus (AgMNPV); Velvetbean caterpillar control 100% infection the year of release and 4-49% multiple NPV (Baculoviridae: Alphabaculovirus) infection for years 2-4 after release, even in rotated fields. Virus Anticarsia Anticarsia gemmatalis multiple Santa Catarina, Brazil Lepidoptera Erebidae Anticarsia gemmatalis Hübner; 1979-80 USA: South Native North America continent not 59-86% infection the season of release but no 10, 27 gemmatalis nucleopolyhedrovirus (AgMNPV); Velvetbean caterpillar Carolina infections found 1 year after release. multiple NPV (Baculoviridae: Alphabaculovirus) Virus Gilpinia hercyniae Gilpinia hercyniae mainland Canada Hymenoptera Diprionidae Gilpinia hercyniae (Hartig) [= 1943-45 CANADA: Non-native North America island established control Established and by 1946 reported as prevalent over 6, 41, 119 NPV nucleopolyhedrovirus (GhNPV); Diprion hercyniae Hartig]; Newfoundland considerable areas surrounding release areas. (Baculoviridae: Gammabaculovirus) European spruce sawfly Virus Gilpinia hercyniae Gilpinia hercyniae New Brunswick, Hymenoptera Diprionidae Gilpinia hercyniae (Hartig) [= 1950 CANADA: Non-native North America continent established control Released in an isolated host population in Sault Ste. 24, 41 NPV nucleopolyhedrovirus (GhNPV); Canada Diprion hercyniae Hartig]; Ontario Marie, 160 km (100 miles) beyond western distribution (Baculoviridae: Gammabaculovirus) European spruce sawfly of insect. Established and spread rapidly through infested area. Epizootics occurred yearly (1950-1959), hosts kept below economic damage level. Virus Harrisina brillians Harrisina brillians granulovirus Mexico & Arizona Lepidoptera Zygaenidae Harrisina brillians Barnes & 1981-82 USA: California Non-native North America continent established control Released in Tulare County in central California. 182, 224 granulovirus (HbGV); (Baculoviridae: USA McDunnough; Western grapeleaf Established; epizootics develop in high density host Betabaculovirus) skeletonizer populations. Overall, lowers general equilibrium density of host populations. Virus Lymantria dispar Lymantria dispar multiple Serbia, Yugoslavia Lepidoptera Erebidae Lymantria dispar (L.); Gypsy 1972 SARDINIA Native Europe island established control Established; high levels of larval mortality year of 114 multiple NPV nucleopolyhedrovirus (LdMNPV); moth release, > 40% infection the next year and spread (Baculoviridae: Alphabaculovirus) over 300 hectares. Virus Lymantria Lymantria monacha Sweden & West Lepidoptera Erebidae Lymantria monacha L.; Nun moth 1973-74 DENMARK Native Europe continent established ? (unclear) Released in Silkeborg in 1973: 90% infection year of 210 monacha NPV nucleopolyhedrovirus (LmNPV); Germany release and, in 1974, no serious defoliation within and (Baculoviridae: Alphabaculovirus) directly around virus-release stands while insecticides had to be applied to other areas. In 1975, no virus was found in the few larvae collected. Released in Grindsted in 1974: the population collapsed that year but it is suggested that other factors, including the native virus, played important parts. Virus Neodiprion sertifer Neodiprion sertifer Sweden Hymenoptera Diprionidae Neodiprion sertifer (Geoffrey); 1950+ CANADA: Non-native North America continent established control Released in southern Ontario near Strathroy. Over 23, 40, 45, NPV nucleopolyhedrovirus (NeseNPV); European pine sawfly Ontario 90% mortality 14 days after release and virus 119 (Baculoviridae: Gammabaculovirus) persisted. Widely distributed for release in pine plantations, e.g., one introduction in 1951 controlled an infestation over 100 acres within 3 years. After introduction, this virus replaced insecticides for controlling hosts and provided long term control. Today, host is a minor pest of plantations and ornamentals but occasionally can increase locally as natural spread and effectiveness of the virus is much reduced at low host densities. Virus Neodiprion sertifer Neodiprion sertifer Canada Hymenoptera Diprionidae Neodiprion sertifer (Geoffrey); 1961 UK: SCOTLAND Native Europe island established ? (unclear) 85% of colonies had infected individuals 24 days after 41, 163, 221 NPV nucleopolyhedrovirus (NeseNPV); European pine sawfly release, resulting in very good control. In 1962, found (Baculoviridae: Gammabaculovirus) to persist in treated areas but minimal spread. (The virus is potentially also native there.) 2 Agent group Biological control Biological control agent species Source of biological Pest Order Pest Family Target pest species Year(s) of Release country Pest origin in Release Islands Agent Control Results from introduction Citations agent (Family: Genus) control agent 1st release release area Region establishment success Virus Neodiprion sertifer Neodiprion sertifer New Jersey USA; Hymenoptera Diprionidae Neodiprion sertifer (Geoffrey); 1952 USA: Illinois Non-native North America continent established control By 19 days after treatment, 82-100% control. In 1953, 20, 45 NPV nucleopolyhedrovirus (NeseNPV); originally Canada European pine sawfly spread was up to 80 m from treated area. Excellent (Baculoviridae: Gammabaculovirus) control achieved. Virus Neodiprion sertifer Neodiprion sertifer Canada Hymenoptera Diprionidae Neodiprion sertifer (Geoffrey); 1953 USA: Indiana Non-native North America continent established control Reported as maintaining adequate control over 168 NPV nucleopolyhedrovirus (NeseNPV); European pine sawfly several years through recurring epizootics after (Baculoviridae: Gammabaculovirus) establishment. Virus Neodiprion sertifer Neodiprion sertifer Canada Hymenoptera Diprionidae Neodiprion sertifer (Geoffrey); 1951-52 USA: New Jersey Non-native North America continent established control Established and spread (ca. 300 m from individual 45 NPV nucleopolyhedrovirus (NeseNPV); European pine sawfly trees after release). Released also in 1952. Provided (Baculoviridae: Gammabaculovirus) complete control. Virus Oryctes rhinoceros Oryctes rhinoceros nudivirus Samoa Coleoptera Scarabaeidae Oryctes monoceros (Olivier); 1973 SEYCHELLES (in Native Indian Ocean island established control Released on Mahé, Praslin Island group and La 112, 113 nudivirus (OrNV) [= Rhabdionvirus oryctes African rhinoceros beetle or the Indian Ocean) Digue.
Recommended publications
  • Protein Composition of the Occlusion Bodies of Epinotia Aporema Granulovirus
    bioRxiv preprint doi: https://doi.org/10.1101/465021; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Protein composition of the occlusion bodies of Epinotia aporema 2 granulovirus 3 4 Tomás Masson, María Laura Fabre, María Leticia Ferrelli, Matías Luis Pidre, Víctor 5 Romanowski. 6 1 Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de 7 Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina. 8 9 Abstract 10 Within family Baculoviridae, members of the Betabaculovirus genus are employed as 11 biocontrol agents against lepidopteran pests, either alone or in combination with 12 selected members of the Alphabaculovirus genus. Epinotia aporema granulovirus 13 (EpapGV) is a fast killing betabaculovirus that infects the bean shoot borer (E. 14 aporema) and is a promising biopesticide. Because occlusion bodies (OBs) play a key 15 role in baculovirus horizontal transmission, we investigated the composition of 16 EpapGV OBs. Using mass spectrometry-based proteomics we could identify 56 proteins 17 that are included in the OBs during the final stages of larval infection. Our data 18 provides experimental validation of several annotated hypothetical coding sequences. 19 Proteogenomic mapping against genomic sequence detected a previously unannotated 20 ac110-like core gene and a putative translation fusion product of ORFs epap48 and 21 epap49. Comparative studies of the proteomes available for the family Baculoviridae 22 highlight the conservation of core gene products as parts of the occluded virion.
    [Show full text]
  • Genomic Structural and Transcriptional Variation of Oryctes Rhinoceros Nudivirus (Ornv) in Coconut Rhinoceros Beetle
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.119867; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genomic structural and transcriptional variation of Oryctes rhinoceros nudivirus (OrNV) in Coconut Rhinoceros Beetle Kayvan Etebari1*, Rhys Parry1, Marie Joy B. Beltran2 and Michael J. Furlong1 1- School of Biological Sciences, The University of Queensland, Brisbane, Australia. 2- National Crop Protection Centre, College of Agriculture and Food Science, University of the Philippines Los Baños College, Laguna 4031, the Philippines. * Corresponding Author Kayvan Etebari School of Biological Sciences, Goddard Bldg. (No. 8) The University of Queensland St Lucia QLD 4072, Australia Tel: (+61 7) 3365 7086 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.27.119867; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Oryctes rhinoceros nudivirus (OrNV) is a large circular double-stranded DNA virus which has been used as a biological control agent to suppress Coconut Rhinoceros Beetle (Oryctes rhinoceros) in Southeast Asia and the Pacific Islands. Recently a new wave of O. rhinoceros incursions in Oceania in previously non-infested areas is thought to be related to the presence of low virulence isolates of OrNV or virus tolerant haplotypes of beetles.
    [Show full text]
  • Invasive Alien Species: the Application of Classical Biological Control for the Management of Established Invasive Alien Species Causing Environmental Impacts
    CBD Distr. GENERAL CBD/COP/14/INF/9 12 November 2018 ENGLISH ONLY CONFERENCE OF THE PARTIES TO THE CONVENTION ON BIOLOGICAL DIVERSITY Fourteenth meeting Item 26 of the provisional agenda* Sharm El-Sheikh, Egypt, 17-29 November 2018 INVASIVE ALIEN SPECIES: THE APPLICATION OF CLASSICAL BIOLOGICAL CONTROL FOR THE MANAGEMENT OF ESTABLISHED INVASIVE ALIEN SPECIES CAUSING ENVIRONMENTAL IMPACTS Note by the Executive Secretary BACKGROUND 1. The Executive Secretary is circulating herewith, for the information of participants in the fourteenth meeting of the Conference of the Parties, a document on the application of classical biological control for the management of established invasive alien species causing environmental impacts. 2. The document is relevant to the work of the Convention on Biological Diversity, in particular with regard to addressing (a) tools for conducting analysis for the management of invasive alien species, (b) the risks associated with trade in live alien organisms, and (c) achieving Aichi Biodiversity Target 9. 3. The document is being circulated in the form and language in which it was received by the Secretariat. * CBD/COP/14/1. The application of classical biological control for the management of established invasive alien species causing environmental impacts Summary for Policy Makers Prepared by: International Union for Conservation of Nature (IUCN), Species Survival Commission Invasive Species Specialist Group (ISSG) *Note that the full report follows on from this Summary for Policy Makers document. Summary for policy makers Convention on Biological Diversity (CBD) COP13 Decision XIII on Invasive Alien Species (IAS) recognized ‘that classical biological control can be an effective measure to manage already established invasive alien species’, and encouraged ‘Parties, other Governments and relevant organizations, when using classical biological control to manage already established invasive alien species, … [to take] into account the summary of technical considerations1’ that was annexed to the decision.
    [Show full text]
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M
    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
    [Show full text]
  • PRODUCTION of CYDIA POMONELLA GRANULOVIRUS (Cpgv) in a HETERALOGOUS HOST, THAUMATOTIBIA LEUCOTRETA (MEYRICK) (FALSE CODLING MOTH)
    PRODUCTION OF CYDIA POMONELLA GRANULOVIRUS (CpGV) IN A HETERALOGOUS HOST, THAUMATOTIBIA LEUCOTRETA (MEYRICK) (FALSE CODLING MOTH). A thesis submitted in fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY By CRAIG BRIAN CHAMBERS December 2014 ABSTRACT Cydia pomonella (Linnaeus) (Family: Tortricidae), the codling moth, is considered one of the most significant pests of apples and pears worldwide, causing up to 80% crop loss in orchards if no control measures are applied. Cydia pomonella is oligophagous feeding on a number of alternate hosts including quince, walnuts, apricots, peaches, plums and nectarines. Historically the control of this pest has been achieved with the use of various chemical control strategies which have maintained pest levels below the economic threshold at a relatively low cost to the grower. However, there are serious concerns surrounding the use of chemical insecticides including the development of resistance in insect populations, the banning of various insecticides, regulations for lowering of the maximum residue level and employee and consumer safety. For this reason, alternate measures of control are slowly being adopted by growers such as mating disruption, cultural methods and the use of baculovirus biopesticides as part of integrated pest management programmes. The reluctance of growers to accept baculovirus or other biological control products in the past has been due to questionable product quality and inconsistencies in their field performance. Moreover, the development and application of biological control products is more costly than the use of chemical alternatives. Baculoviruses are arthropod specific viruses that are highly virulent to a number of lepidopteran species. Due to the virulence and host specificity of baculoviruses, Cydia pomonella granulovirus has been extensively and successfully used as part of integrated pest management systems for the control of C.
    [Show full text]
  • USO DE Galleria Mellonella L. (LEP.: PYRALIDAE) COMO PRESA
    Rev. Col. Ciencia. Vol. 1, No. 2. Abril – septiembre, 2020. ISSN L 2710-7434 pp. 31-44 USO DE Galleria mellonella L. (LEP.: PYRALIDAE) COMO PRESA CENTINELA PARA EVALUAR EL IMPACTO DE ENEMIGOS NATURALES SOBRE Diatraea tabernella DYAR (LEP.: CRAMBIDAE) EN CAÑA DE AZÚCAR EN PANAMÁ. Galleria mellonella L. (LEP.: PYRALIDAE) AS SENTINEL PREY TO EVALUATE THE IMPACT OF NATURAL ENEMIES OF Diatraea tabernella DYAR (LEP.: CRAMBIDAE) IN SUGARCANE IN PANAMA. 1Randy Atencio V., 2François-Régis Goebel, 3Abby Guerra y 3Silvia Lopéz 1Universidad de Montpellier, Escuela Doctoral GAIA, Francia. [email protected] 2CIRAD (Centro de Cooperación Internacional en la Investigación Agronómica para el Desarrollo), unidad AÏDA (Agroecología y Manejo Sostenible de Cultivos Anuales), en Montpellier, Francia. [email protected] 3Laboratorio de Biotecnología, Compañía Azucarera La Estrella S.A., Panamá (Grupo CALESA). [email protected] ; [email protected] RESUMEN Para identificar los potenciales depredadores y parasitoides de D. tabernella en caña de azúcar diferentes estadios de G. mellonella fueron utilizados como presa centinela durante un periodo de 12 meses en campos de caña de azúcar en Panamá para investigar una alternativa en la evaluación del impacto de los enemigos naturales sobre el barrenador el tallo de la caña de azúcar. Un total de 2233 artrópodos fueron capturados y la familia predominante en las capturas fue Formicidae con 6 especies colectadas. Las especies más abundantes fueron: Solenopsis sp. (63%) y Camponotus spp. (15.6%). Las especies con el mayor impacto sobre los huevos, larvas y pupas de G. mellonella (+84.1% de depredación) fueron: Linepithema sp., Camponotus spp.
    [Show full text]
  • Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus
    Biological characteristics of experimental genotype mixtures of Cydia pomonella Granulovirus (CpGV): Ability to control susceptible and resistant pest populations Benoit Graillot, Sandrine Bayle, Christine Blachère-Lopez, Samantha Besse, Myriam Siegwart, Miguel Lopez-Ferber To cite this version: Benoit Graillot, Sandrine Bayle, Christine Blachère-Lopez, Samantha Besse, Myriam Siegwart, et al.. Biological characteristics of experimental genotype mixtures of Cydia pomonella Granulovirus (CpGV): Ability to control susceptible and resistant pest populations. Viruses, MDPI, 2016, 8 (5), 12 p. 10.3390/v8050147. hal-01594837 HAL Id: hal-01594837 https://hal.archives-ouvertes.fr/hal-01594837 Submitted on 20 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biological Characteristics of Experimental Genotype Mixtures of Cydia Pomonella Granulovirus (CpGV): Ability to Control Susceptible and Resistant Pest Populations Benoit Graillot 1,2, Sandrine Bayle 1, Christine
    [Show full text]
  • Common Themes in Three Independently Derived Endogenous
    Available online at www.sciencedirect.com ScienceDirect Common themes in three independently derived endogenous nudivirus elements in parasitoid wasps Gaelen R Burke Endogenous Viral Elements (EVEs) are remnants of viral parasitism, including the use of venom, teratocytes (cells genomes that are permanently integrated into the genome of derived from the egg serosal membrane that dissociate another organism. Parasitoid wasps have independently and secrete products while circulating in hosts), and the acquired nudivirus-derived EVEs in three lineages. Each production of virions or virus-like particles in wasps’ parasitoid produces virions or virus-like particles (VLPs) that reproductive tracts in a developmentally controlled fash- are injected into hosts during parasitism to function in ion [4–7]. To date, EVEs have been genetically charac- subversion of host defenses. Comparing the inventory of terized in five lineages of parasitoid wasps from two nudivirus-like genes in different lineages of parasitoids can families of large DNA viruses [8 ,9 ,10 ,11 ,12,13]. provide insights into the importance of each encoded function Other examples of non-integrated persistent viral asso- in virus or VLP production and parasitism success. ciations are also known [14]. Comparisons revealed the following conserved features: first, retention of genes encoding a viral RNA polymerase and Three lineages of parasitoid EVEs derive from ancestors infectivity factors; second, loss of the ancestral DNA in the family Nudiviridae (Figure 1). Nudiviruses are polymerase gene; and third, signatures of viral ancestry in non-occluded viruses with circular dsDNA genomes patterns of gene retention. related to baculoviruses and hytrosaviruses of insects [15,16]. Pathogenic nudiviruses can infect many orders of Address insects as well as crustaceans [17].
    [Show full text]
  • Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States 7
    Impacts of Invasive Species in Terrestrial and Aquatic Systems 2 in the United States Albert E. Mayfeld III, Steven J. Seybold, Wendell R. Haag, M. Tracy Johnson, Becky K. Kerns, John C. Kilgo, Daniel J. Larkin, Rima D. Lucardi, Bruce D. Moltzan, Dean E. Pearson, John D. Rothlisberger, Jefrey D. Schardt, Michael K. Schwartz, and Michael K. Young 2.1 Introduction have been estimated at $120 billion annually (Crowl et al. 2008; Pimentel et al. 2000, 2005). These costs include lost The introduction, establishment, and spread of invasive production and revenue from agricultural and forest prod- species in terrestrial and aquatic environments is widely ucts, compromised use of waterways and terrestrial habi- recognized as one of the most serious threats to the health, tats, harm to human and animal health, reduced property sustainability, and productivity of native ecosystems values and recreational opportunities, and diverse costs (Holmes et al. 2009; Mack et al. 2000; Pyšek et al. 2012; associated with managing (e.g., monitoring, preventing, USDA Forest Service 2013). In the United States, invasive controlling, and regulating) invasive species (Aukema species are the second leading cause of native species et al. 2011; Pimentel et al. 2005). The national signifcance endangerment and extinction, and their costs to society of these economic, ecological, and social impacts in the A. E. Mayfeld III (*) R. D. Lucardi U.S. Department of Agriculture, Forest Service, Southern Research U.S. Department of Agriculture, Forest Service, Southern Research Station, Insects, Diseases and Invasive Plants of Southern Forests, Station, Athens, GA, USA Asheville, NC, USA e-mail: [email protected] B.
    [Show full text]
  • Classical Biological Control of Insects and Mites: a Worldwide Catalogue of Pathogen and Nematode Introductions
    United States Department of Agriculture Classical Biological Control of Insects and Mites: A Worldwide Catalogue of Pathogen and Nematode Introductions Forest Forest Health Technology FHTET-2016-06 Service Enterprise Team July 2016 The Forest Health Technology Enterprise Team (FHTET) was created in 1995 by the Deputy Chief for State and Private Forestry, Forest Service, U.S. Department of Agriculture, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET Classical Biological Control of Insects and Mites: as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ A Worldwide Catalogue of The use of trade, firm, or corporation names in this publication is for the information Pathogen and Nematode Introductions and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. ANN E. HAJEK Department of Entomology Cover Image Cornell University Dr. Vincent D’Amico, Research Entomologist, U.S. Forest Service, Urban Forestry Unit, NRS-08, Newark, Delaware. Ithaca, New York, USA Cover image represents a gypsy moth (Lymantria dispar) larva silking down from the leaves of an oak (Quercus) tree and being exposed to a diversity of pathogens (a fungus, SANA GARDESCU a bacterium, a virus and a microsporidium) and a nematode that are being released by a Department of Entomology human hand for biological control (not drawn to scale). Cornell University Ithaca, New York, USA In accordance with Federal civil rights law and U.S.
    [Show full text]
  • Sawflies (Hymenoptera, Symphyta) Newly Recorded from Washington State
    JHR 49: 129–159 (2016)Sawflies( Hymenoptera, Symphyta) newly recorded from Washington State 129 doi: 10.3897/JHR.49.7104 RESEARCH ARTICLE http://jhr.pensoft.net Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State Chris Looney1, David R. Smith2, Sharon J. Collman3, David W. Langor4, Merrill A. Peterson5 1 Washington State Dept. of Agriculture, 1111 Washington St. SE, Olympia, Washington, 98504, USA 2 Systematic Entomology Laboratory, Agricultural Research Service, USDA, c/o National Museum of Natural History, NHB 168, Washington, D.C. 20560, USA 3 Washington State University Extension, 600 128th St. SE, Everett, Washington, 98208, USA 4 Natural Resources Canada, Canadian Forest Service, 5320 122 Street NW, Edmonton, Alberta, T6H 3S5, Canada 5 Biology Department, Western Washington University, 516 High St., Bellingham, Washington, 98225, USA Corresponding author: Chris Looney ([email protected]) Academic editor: H. Baur | Received 5 November 2015 | Accepted 27 January 2016 | Published 28 April 2016 http://zoobank.org/319E4CAA-6B1F-408D-8A84-E202E14B26FC Citation: Looney C, Smith DR, Collman SJ, Langor DW, Peterson MA (2016) Sawflies (Hymenoptera, Symphyta) newly recorded from Washington State. Journal of Hymenoptera Research 49: 129–159. doi: 10.3897/JHR.49.7104 Abstract Examination of museum specimens, unpublished collection data, and field surveys conducted between 2010 and 2014 resulted in records for 22 species of sawflies new to Washington State, seven of which are likely to be pest problems in ornamental landscapes. These data highlight the continued range expansion of exotic species across North America. These new records also indicate that our collective knowledge of Pacific Northwest arthropod biodiversity and biogeography is underdeveloped, even for a relatively well known and species-poor group of insects.
    [Show full text]
  • The Genome and Occlusion Bodies of Marine Penaeus Monodon Nudivirus
    Yang et al. BMC Genomics 2014, 15:628 http://www.biomedcentral.com/1471-2164/15/628 RESEARCH ARTICLE Open Access The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV and PemoNPV) suggest that it should be assigned to a new nudivirus genus that is distinct from the terrestrial nudiviruses Yi-Ting Yang1,2, Der-Yen Lee3, Yongjie Wang4,5,Jer-MingHu6,Wen-HsiungLi7,8, Jiann-Horng Leu9,10, Geen-Dong Chang11,Huei-MienKe7,12, Shin-Ting Kang1,2,Shih-ShunLin13, Guang-Hsiung Kou2* andChu-FangLo1,2,14* Abstract Background: Penaeus monodon nudivirus (PmNV) is the causative agent of spherical baculovirosis in shrimp (Penaeus monodon). This disease causes significant mortalities at the larval stage and early postlarval (PL) stage and may suppress growth and reduce survival and production in aquaculture. The nomenclature and classification status of PmNV has been changed several times due to morphological observation and phylogenetic analysis of its partial genome sequence. In this study, we therefore completed the genome sequence and constructed phylogenetic trees to clarify PmNV’s taxonomic position. To better understand the characteristics of the occlusion bodies formed by this marine occluded virus, we also compared the chemical properties of the polyhedrin produced by PmNV and the baculovirus AcMNPV (Autographa californica nucleopolyhedrovirus). Results: We used next generation sequencing and traditional PCR methods to obtain the complete PmNV genome sequence of 119,638 bp encoding 115 putative ORFs. Phylogenetic tree analysis showed that several PmNV genes and sequences clustered with the non-occluded nudiviruses and not with the baculoviruses. We also investigated the characteristics of PmNV polyhedrin, which is a functionally important protein and the major component of the viral OBs (occlusion bodies).
    [Show full text]