Localities for Eutrephoceras Sloani in North Cookanum

Total Page:16

File Type:pdf, Size:1020Kb

Localities for Eutrephoceras Sloani in North Cookanum EUTREPHOCERAS (NAUTILOIDEA) FROM THE PALEOCENE BEAUFORT FORMATION OF NORTH CAROLINA RICHARD H. BAILEY NORTHEASTERN UNIVERSITY, BOSTON, MASS. ABSTRACT characteristics for separation of species seem Well preserved specimens of Eutre­ to be conch shape and suture pattern. Speci­ phoceras sloani Rceside, collected from a mens of Eutrephoceras frequently have been recently exposed outcrop of the Paleocene subjected to post-depositional compression, Beaufort Formation in east-central North which greatly distorts the conch shape, and Carolina, represent the first reported Paleo­ complicates the separation of species. Detail­ cene nautiloids from Coastal Plain strata of ed consideration of suture patterns adds North Carolina. This species was formerly objectivity to the rather general comparisons known only from the Paleocene Black Mingo that have been made among species of Formation in eastern South Carolina, about Eutrephoceras in the past. All of the suture 280 km southwest of the North Carolina patterns (text fig. 5) used for species com­ Paleocene outcrops. The North Carolina parisons were taken from type specimens. Most of these suture patterns have not been specimens allow clarification and elaboration illustrated and compared graphically. of Reeside's original description. STRATIGRAPHY INTRODUCTION The new North Carolina outcrop consists Fossil nautiloids are generally rare m of 1.4 m of Paleocene strata which is dis- Paleocene strata of the Atlantic Coastal Plain. This scarcity of nautiloid specimens PA. probably results in part from a rather limited area of Paleocene outcrop; however, eco­ logical factors may also be important. A recently exposed Paleocene outcrop in east-central North Carolina yielded well preserved nautiloid specimens. These nauti­ loids, identified in this paper as Eutrepho­ ceras sloani Reeside, represent the first reported Paleocene cephalopods from North Carolina. The discovery of E. sloani, approx­ imately 2 80 km northeast of the eastern South Carolina outcrop from which it was previously kno~n, allows a significant exten­ sion of the geographic range of the species (text fig. 1). A difficulty encountered in the study of 0 I 2 3 4 5 km __j the genus Eutrephoceras is that Paleocene and Eocene species from the Atlantic Text fig. 1, Index map showing collection Coastal Plain are represented by few speci­ localities for Eutrephoceras sloani in North mens. Little is known of the range of varia­ Carolina (A and B, specimens collected in tion of most of the species discussed in this situ); locality of the first Paleocene outcrop paper. Kummel (1956, p. 379) stated that reported from North Carolina (C); and species in the long ranging Eutrephoceras collection localities of other species dis­ generic group seem to be gradational and cussed in this paper, (D) E. bryani, (E) E. generally lack definitive morphological cookanum, (F) E. berryi and E. carolinensis, features. The most important diagnostic (G) E. sloani. 235 236 Tulane Studies in Geology and Paleontology Vol. 12 continuously exposed along the banks of p. 230) and implies that the Paleocene Mosley Creek, a northward flowing tributary locality they discussed was inadvertently of the Neuse River. Along portions of the placed at West Landing. A thorough search creek, Paleocene rocks are disconformably of the Neuse River outcrop discussed above overlain by about 0.3 m of the Eocene yielded no Paleocene macrofossils. Several Castle Hayne Limestone (text fig. 3 ). The poorly exposed outcrops of Paleocene shale Paleocene-Eocene unconformity is marked were found along Mosley Creek, about 0.2 by a significant lithologic change. Paleocene km south of the creek's mouth. No macro­ fossils and clasts of indurated Paleocene sedi­ fossils were found at these localities. ment have been reworked into the basal Brown (1959, p. 8) established a sub­ Eocene strata, which overlies an undulating surface Paleocene unit, the Beaufort Forma­ erosional surface. tion, which has been identified in many wells in east-central North Carolina. Swift and Heron (1969 , p. 229) were the Wilson (1972, p. 129) identified two first to record the presence of Paleocene fossils commonly found in certain Paleocene rocks cropping out in North Carolina. Their rocks of New Jersey, the brachiopod Danian (lower Paleocene) age was assigned Olenothyris harlani (Morton) and the bivalve on the basis of planktonic foraminifera "Gryphaea vesicularis (Lamarck)," from the collected from an outcrop at West Landing outcrops along Mosley Creek. Wilson on the Neuse River near the nautiloid suggests that these rocks are probably an locality discussed in this paper (text fig. 1 ). extension of the subsurface Beaufort Forma­ At the Neuse River outcrop, 1 m of thinly tion. Swift and Heron (1969, p. 229) laminated Paleocene shale disconformably assigned the Paleocene shale along the Neuse overlies 2 m of the Cretaceous Peedee For­ River to the Black Mingo Formation, a mation. Extensive exploration along the Paleocene-Eocene unit which crops out in Neuse River between North Carolina state South Carolina. Based on the lithologic road 55 and the mouth of Mosley Creek similarity and the geographic proximity of revealed but one significant outcrop, located the subsurface Beaufort Formation to the 3.5 km downriver from West Landing (text Paleocene rocks which crop out in east­ fig. 1). This exposure is identical to the central North Carolina, it seems logical to section described by Swift and Heron ( 1969, apply the name Beaufort Formation to both. SOUTH CAROLINA NORTH CAROLINA MARYLANDVlR GINIA NEW JERSEY u SEVERAL CASTLE w z ~ MIDDLE AND HAYNE LS w u M UPPER EOCENE SHARK 0 w f-- UNITS RIVER FM ? L NANJEMOY FM MANASQUAN FM BLACK w ? A QUIA z u FM VINCENTOWN FM w MINGO u BEAUFORT 0 FM w ~ FM HORNERSTOWN _J ? <{ L BRIGHTSEAT FM FM Q.. ? I I I . I ? Text fig. 2. Correlations of Paleocene and Eocene units of part of the Atlantic Coastal Plain, modified after Loeblich and Tappan, 1957, p. 177; Hazel, 1968, p. 105; Enright, 1969,p. 17;and0l~on, 1970,p. 591. N o .4 Eutrephoceras in North Carolina 237 CASTLE HAYNE In the Atlantic Coastal Plain, specimens LS of Eutrephoceras have been reported from IND U RATED CA LCAREOUS SANDST ONE·, MOLL USK MOLDS· the Paleocene Vincentown Formation and PHOS PH A T E P EB BLES AT ' t he middle Eocene Shark River Formation UNCONFORMI T Y; BLO CKS OF PA L EOCENE REWORKED IN T O of New ] ersey, the Eocene Castle Hayne CASTL E HAYNE Limestone of North Carolina, and the Paleo­ cene-Eocene Black Mingo Formation of South Carolina (text fig. 2). Specimens of BEAUFORT FM Eutrephoceras have not been reported from the rather well exposed Paleocene strata of 1.2 CLAYEY AND SIL T Y, FINE Maryland and Virginia. · ~ TO V E RY FIN E S A ND; PHOSPHATE GR AINS COMMON; CALCAREOUS NODULE S; SYSTEMATIC PALEONTONOGY BURR OWS; ABUNDANT FORAMINIFERA; BRACHIOPOD Family NAUTILIDAE de Blainville, 1825 OLENO T HYRIS H ARLAN! 0.9 COMMON Genus EUTREPHOCERAS Hyatt, 1894 Type species: Eutreplzoceras dekayi Hyatt, 1894 EUTREPHOCERAS SLOANI Reeside 0.6 Plate 1, figs. 1-4; Plate 2, figs. 1-4; ez?)~l--- text figs. 4, 5 BRACHIOPOD BED ELttreplwceras slom1i REESIDE, 1924, p. 1-7, pls. 1-3, text fig. 1. 0.3 Material. - Three internal molds; no origjnal st1cll material; (Pl. 1, figs. 1-3) very slightly deformed conch with 8 camerae; (Pl. 1, fig. 4: Pl. 2, figs. 1-3) adapical portion of conch is severely crushed, l adoral portion and living chamber slightly deform 0 cd; (Pl. 2, fig. 4) lateral compression has distorted form and suture pattern. Description. North Carolina specimens arc involute, compressed with a very broadly C~crch.. d T ext fig. 3. Composite section of Paleo­ venter and with gently arched, nearly p~ rallel, lateral zones (text fig. 4), leading to an abrupt cene strata exposed in the banks of Mosley umbilical shoulder which forms a deeply impr~.:.ssed Creek from 0.2 km north of N.C. Route 55 umbilicus, 12 to 15 mm in diameter. Maximum to 1.8 km so u th of N.C. 55. Top of section diameter of largest conch (Pl. 2, fig. 4) is about co vered b y Pleistocene? sands; base of 150 mm, containing 12 camera to outer volution. Camerae of phragmacone expand rapidly and section in creek bed. adoral portion of living chamber is flared. Living chamber, as preserved on two specimen" (Pl. 2, figs. 1-4), consists of approximately one third of Thomas Gibson identified the following the last volution. Siphuncle is holochoanitic., nearly sp ecies of pl anktonic foraminifera from the central, perhaps slightly closer to dorsum than P aleocene rocks along Mosley Creek: venter, and has a maximum diameter of 6 mm (Pl. Trun corotataloides (Moro;:;ovella) aequa 1' fig. 1). (C ushman and Renz) External suture consists of a broadly and gently T. (Mo rozovella) apanthesma (Loeblich and arched ventral saddle, a very gently arched, <;yrn­ T appan) metrical lateral lobe, and a small umbilical sc~ddle T. (Morozovella) angulata (White) (text fig. 5). Internal suture consists of a gently T. (Planorotalites) pusilla (Bolli) arched dorsal lobe. T. (Planorotalites) pseudomenardii (Bolli) Discussion. - The holotype and only known T. (A carinina) mckennai (White) G lo b ige rina (Subbotirza) triloculinoides specimen of E. sloani is an incomplete in­ Plummer ternal mold with much of the ventral por This assemblage su ggests an early late Paleo­ tion and the adoral half of the last volution cene age for the exp osed Beaufort Forma­ missing. The siph uncle, body chamber, and tion (Gibson, pers. c omm . ). several partial sutures are preserved. 238 Tulane Studies in Geology and Paleontology Vol. 12 The suture diagrammed by Reeside ( 1924, p. 3, fig. 1) is atypical of the genus and appears to have been taken from a portion of the holot ype that was deformed an d eroded.
Recommended publications
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • View, CMM-I-2126
    SYSTEMATICS AND PALEOECOLOGY OF MIOCENE PORTUNID AND CANCRID DECAPOD FOSSILS FROM THE ST. MARYS FORMATION, MARYLAND A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Heedar Bahman August, 2018 © Copyright All rights reserved Except for previously published materials Thesis written by Heedar Bahman B.S., Kuwait University, 2011 M.S., Kent State University, 2018 Approved by Rodney M. Feldmann , Ph.D., Advisor Daniel Holm , Ph.D., Chair, Department of Geology James L. Blank , Ph.D., Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................... iii LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES ............................................................................................................ vii ACKNOWLEDGMENTS ............................................................................................... viii SUMMARY .........................................................................................................................1 INTRODUCTION ...............................................................................................................2 GEOLOGICAL SETTING ..................................................................................................5 METHODS ..........................................................................................................................7
    [Show full text]
  • Late Cretaceous Nautilid Juveniles of Cymatoceras Reussi and Eutrephoceras Aff
    SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 70 • 2014 • čís. 3–4 • s. 143–152 Series B – Historia Naturalis • vol. 70 • 2014 • no. 3–4 • pp. 143–152 LATE CRETACEOUS NAUTILID JUVENILES OF CYMATOCERAS REUSSI AND EUTREPHOCERAS AFF. SUBLAEVIGATUM – SCARCE FOSSILS UNDER RISK OF PYRITE DEGRADATION JIŘÍ FRANK JAN SKLENÁŘ BORIS EKRT National Museum, Department of Palaeontology, Václavské náměstí 68, 115 74 Praha 1, the Czech Republic; e-mails: [email protected]; [email protected]; [email protected] Frank, J., Sklenář, J. Ekrt, B. (2014): Late Cretaceous nautilid juveniles of Cymatoceras reussi and Eutrephoceras aff. sublaevigatum – scarce fossils under risk of pyrite degradation. – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 70(3-4): 143–152, Praha. ISSN 1804-6479. Abstract. The syntype collection of “Nautilus reussi” has been subject to a detailed revision resulting in confirmation of at least provisional validity of the species represented by a single juvenile specimen. This species, restricted now to the Late Coniacian, is inserted into the genus Cymatoceras Hyatt, 1884. The rest of the collection differs from the original description and is left separately as Eutrephoceras aff. sublaevi- gatum, being considered juveniles of the species. The lithology, geographic and stratigraphic position of the type locality of Cymatoceras reussi (FRITSCH IN FRITSCH ET SCHLÖNBACH, 1872) as well as the other sites are discussed here. The valuable material is endangered due to pyrite degradation as relics of this unstable sulphide are still at present hidden in the secondary limonitic material. The degradation products cause volumetric expansion resulting in formation of crevices and loss of integrity.
    [Show full text]
  • Tarawa Terrace Reported Depth to Water
    Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S. Marine Corps Base Camp Lejeune, North Carolina: Historical Reconstruction and Present-Day Conditions Chapter C: Simulation of Groundwater Flow TT-45 TT-29 TT-28 ABC One-Hour TT-30 Cleaners TT-27 TT-55 TT-26 TT-25 TT-53 TT-23 TT-67 TT-52 TT-31 STT-39 TT-54 Jacksonville 17 Tarawa Terrace 53 Piney Green ONSLOW 1105 24 COUNTY New 172 U.S. Marine Verona Corps Base Camp Lejeune 17 River Dixon 50 172 Sneads 210 Ferry Atlantic Ocean Wilmington 70 miles Holly Ridge ATSDR health study 1,000 Well TT-26 Well TT-23 100 Well TT-25 Finished water from water treatment plant 10 Well TT-54 Maximum contaminant level Well TT-67 1 Well TT-31 0.1 Finished water 0.01 sample from water PCE CONCENTRATION, IN MICROGRAMS PER LITER treatment plant 0.001 Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 Atlanta, Georgia– November 2007 Front cover: Historical reconstruction process using data, information sources, and water-modeling techniques to estimate historical exposures Maps: U.S. Marine Corps Base Camp Lejeune, North Carolina; Tarawa Terrace area showing historical water-supply wells and site of ABC One-Hour Cleaners Photographs on left: Ground storage tank STT-39 and four high-lift pumps used to deliver finished water from tank STT-39 to Tarawa Terrace water-distribution system Photograph on right: Equipment used to measure flow and pressure at a hydrant during field test of the present-day (2004) water-distribution system Graph: Reconstructed historical concentrations of tetrachloroethylene (PCE) at selected water-supply wells and in finished water at Tarawa Terrace water treatment plant Analyses of Groundwater Flow, Contaminant Fate and Transport, and Distribution of Drinking Water at Tarawa Terrace and Vicinity, U.S.
    [Show full text]
  • Tertiary Stratigraphy of South Carolina
    Tertiary Stratigraphy of South Carolina GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-B Tertiary Stratigraphy of South Carolina By C. WYTHE COOKE and F. STEARNS MAcNEIL SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1952, PAGES 19-29 GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-B A revised classification of Tertiary formations of the Coastal Plain, based mainly on new stratigraphic and paleontologic information UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1952 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary v GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price. 15 cents (paper cover) CONTENTS Page Page Abstract- ______ _____.. _________ 19 Paleocene (?) and Eocene series- -Continued Introduction ________._!________ 19 Deposits of Jackson age. 26 Paleocene (?) and Eocene series-. 19 Barnwell formation. _ _. 26 Deposits of Wilcox age _____ 20 Oligocene series______________ 27 Deposits of Claiborne age___ 21 Cooper marl._________ 27 Congaree formation____ 21 Miocene series_______________ 28 Warley Hill marl ______ 23 Hawthorn formation. _. 28 Me Bean formation___ 23 Santee limestone_____ 24 References. ____________l_-___. 28 Castle Hayne limestone- 25 ILLUSTRATION Figure 2. Correlation of Tertiary formations of South Carolina. 20 in 99308T—52 TERTIARY STRATIGRAPHY OF SOUTH CAROLINA By C. WYTHE COOKE AND F. STEARNS ABSTRACT bridges have been built, and places formerly inacces­ The following changes in the current classification of the sible are now within easy reach. The spoil bank of Tertiary formations of South Carolina are proposed: The Black the Santee-Cooper Diversion Canal, cut about 1940, Mingo formation, mainly of Wilcox age, may include some Paleo- has brought to the surface an abundance of fossils of cene deposits.
    [Show full text]
  • Cephalopods from the Late Eocene Hoko River Formation, Northwestern Washington Richard L
    Oi<~e2> K A.. Natural History Museum ifiCl^i Of Los Angeles County IVooCL Invertebrate Paleontology J. Vakom.. 62(1). 1988. pp. 76-82 Copyright 1488. The- Paleontologual Society 0022-3360,88/0062-0076S03.00 CEPHALOPODS FROM THE LATE EOCENE HOKO RIVER FORMATION, NORTHWESTERN WASHINGTON RICHARD L. SQUIRES Department of Geological Sciences, California State University, Northridge 91330 ABSTRACT—Rare specimens of the nautiloids Nautilus and Aturia and extremely rare specimens of a sepiamorph sepiid are described from the late Eocene Hoko River Formation, northern Olympic Peninsula, Washington. The well-preserved partial phragmocones are from channel-fill clastics deposited on the inner and middle slopes of a submarine-fan system. The Nautilus specimen is allied to N. cookanum Whitfield from middle Eocene strata, New Jersey, and is probably conspecific with Nautilus sp. (Miller) from late Eocene strata, northwestern Oregon, both of which were previously assigned to Eutrephoceras. This is the first record of Nautilus in the northeastern Pacific. The Aturia specimen is tentatively identified as A. cf. A. alabamensis (Morton), a species previously only known from late Eocene strata in the Atlantic-Gulf Coastal area and northeastern Mexico. Aturia alabamensis may be the same as numerous Eocene North American aturiid species. The two sepiamorph sepiid specimens resemble Belosepia Voltz but are probably generically distinct. They are only the second record of sepiids in the Eocene of the northeastern Pacific. INTRODUCTION rizian Stage (late Eocene). He also inferred, based on the benthic ATE EOCENE cephalopods are rare in the northeastern Pacific. foraminifers, that the formation was deposited in relatively cool, L moderately shallow ocean waters between lower neritic and up- The occurrence of three genera at a locality in northwestern permost bathyal depths.
    [Show full text]
  • Neoselachians from the Danian (Early Paleocene) of Denmark
    Neoselachians from the Danian (early Paleocene) of Denmark JAN S. ADOLFSSEN and DAVID J. WARD Adolfssen, J.S. and Ward, D.J. 2015. Neoselachians from the Danian (early Paleocene) of Denmark. Acta Palaeonto- logica Polonica 60 (2): 313–338. A diverse elasmobranch fauna was collected from the early Danian Rødvig Formation and the early to middle Danian Stevns Klint Formation at Stevns Klint and from the middle Danian Faxe Formation at Faxe, Denmark. Teeth from 27 species of sharks are described including the earliest records of Chlamydoselachus and Heptranchias howelli from Europe. The fauna collected at the Faxe quarry is rich in large species of shark including Sphenodus lundgreni and Cretalamna appendiculata and includes no fewer than four species of Hexanchiformes. The species collected yield an interesting insight into shark diversity in the Boreal Sea during the earliest Paleogene. The early Danian fauna recorded from the Cerithium Limestone represents an impoverished Maastrichtian fauna, whereas the fauna found in the slightly younger bryozoan limestone is representative of a pronounced cold water fauna. Several species that hitherto have only been known from the Late Cretaceous have been identified, clearly indicating that the K–T boundary was not the end of the Cretaceous fauna; it lingered and survived into the early Danian. Key words: Chondrichthyes, Faxe Formation, Cerithium Limestone, Danian, Paleocene, Denmark. Jan S. Adolfssen [[email protected]], Natural History Museum of Denmark, Østervoldgade 5-7, DK-1350 Copen hagen, Denmark. David. J. Ward [[email protected]], Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK. Received 21 October 2012, accepted 22 May 2013, available online 24 May 2013.
    [Show full text]
  • Cephalopod Diversity Within a Concretionary Inverval of the Pierre Shale (Upper Cretaceous) in Dawes County, Northwestern Nebraska
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 1993 Cephalopod Diversity within a Concretionary Inverval of the Pierre Shale (Upper Cretaceous) in Dawes County, Northwestern Nebraska Darryl Tharalson Chadron State College Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Life Sciences Commons Tharalson, Darryl, "Cephalopod Diversity within a Concretionary Inverval of the Pierre Shale (Upper Cretaceous) in Dawes County, Northwestern Nebraska" (1993). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 125. https://digitalcommons.unl.edu/tnas/125 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1993. Transactions of the Nebraska Academy of Sciences, XX: 87-95 CEPHALOPOD DIVERSITY WITHIN A CONCRETIONARY INTERVAL OF THE PIERRE SHALE (UPPER CRETACEOUS) IN DAWES COUNTY, NORTHWESTERN NEBRASKA Darryl Tharalson Science Department Chadron State College Chadron, Nebraska 69337-2690 ABSTRACT reported to have been collected at Chadron, Nebraska. Dunham (1961a, b; because the content of these two A concretionary interval within the Pierre Shale, where works is essentially identical, only the 1961a report it outcrops across northern Dawes County, is characterized subsequently will be referred to in the body of this by a diversity of cephalopod taxa. The interval falls within the ammonite zones of Exiteloceras jenneyi to Baculites paper) included a rather detailed description of the cuneatus of the upper Campanian.
    [Show full text]
  • FOR the COASTAL PLAIN of NORTH CAROLINA ~--E Roy"- Tj Y"",Cf'
    STRUCTURAL AND STRATIGRAPHIC FRAMEWORK FOR THE COASTAL PLAIN OF NORTH CAROLINA ~--e roY"- tJ y"",cf' Edited By Gerald R. Baum T:~-- w. Burleigh Harris ) And !~- Victor A. Zullo ;' -j Carolina Geological Society Field Trip Guidebook And October 19-21, 1979 Atlantic Coastal Plain Geological Association Wrightsville Beach, North Carolina Cover illustration: Major structural features of the North Carolina Coastal Plain. (Figure 1 from Harris, Zullo and Baum) Layout by Anne Virant-Lazar and Ben McKenzie Copies of this guidebook can be purchased fram: Geological Survey Section Department of Natural Resources and Community Development P. O. Box 27687 Raleigh, NC 27611 Ii CAROLI NA GEOLOGI CAL SOC IETY AND ATLANTIC COASTAL PLAIN GEOLOGICAL ASSOCIATION October 19-21, 1979 STRUCTURAL AND STRATIGRAPHIC FRAMEWORK FOR THE COASTAL PLAIN OF NORTH CAROLINA Edited by Gerald R. Baum Department of Geology College of Charleston Charleston, South Carolina 29401 W. Burleigh Harris and Victor A. Zullo Department of Earth Sciences University of North Carolina, Wilmington Wilmington, North Carolina 28403 Carolina Geological Society 1979 Officers President: Arthur W. Snoke Department of Geology University of South Carolina Columbia, South Carolina Vice-President: Robert E. Lemmon Department of Geography and Earth Sciences University of North Carolina at Charlotte Charlotte, North Carolina Secretary-Treasurer: S. Duncan Heron, Jr. Department of Geology Duke University Durham, North Carolina Membership Chairman: Paul Nystrom South Carolina Geological Survey Columbia, South Carolina Atlantic Coastal Plain Geological Association 1979 Officers Secretary-Treasurer: Tom Pickett Delaware Geological Survey University of Delaware Newark, Delaware Field Trip Leaders: Gerald R. Baum Department of Geology College of Charleston Charleston, South Carolina W.
    [Show full text]
  • Guidebook to the Geology of Travis County.Pdf (4.815Mb)
    Page | 1 Guidebook to the Geology of Travis County: Preface Geology of the Austin Area, Travis County, Texas Keith Young When Robert T. Hill first came to Austin, Texas, as the first professor of geology, he described Austin and its surrounding area as an ideal site for a school of geology because it offered such varied outcrops representing rocks of many ages and varieties. Although Hill resigned his position about 85 years ago, the opportunities of the local geology have not changed. Hill (Hill, 1889) implies the intent of writing a series of papers to describe the geology of the local area for all who might be interested. The authors of this volume hope that they have fulfilled in large measure Hill's original intent. No product can ever be all things to all users, but we have presented here common geological phenomenon for many, including the description of an ancient volcano, the description of faulting that occurred in the Austin area in the past, a geologic history of the Austin area, a description of the local rocks, including their classification, field trips for interested observers of the geologic scene, collecting localities for the lovers of fossils, and resource places and agencies. We cannot emphasize enough that many unique geological phenomena are on private property. Please do not trespass, obtain permission. And if permission is not granted, observe from a distance. There are sufficient areas of geologic interest in the Austin area to please all without antagonizing landowners and making it even more difficult for the next person. Page | 2 Guidebook to the Geology of Travis County: Author's Note A useful guide to the geology of the Austin area has long been a goal.
    [Show full text]
  • Brachyura, Epialtidae
    Boletín de la Sociedad Geológica Mexicana / 73 (3) / A261220/ 2021 / 1 A new spider crab (Brachyura, Epialtidae) from the Castle Hayne Limestone Formation (Eocene), North Carolina, USA Un nuevo cangrejo araña (Brachyura, Epialtidae) de la Formación Caliza Castle Hayne (Eoceno), Carolina del Norte, EUA 1,* 2 1 Alessandro Garassino , Giovanni Pasini , Don Clements ABSTRACT 1 North Carolina Museum of Natural Sciences, ABSTRACT RESUMEN 11 West Jones Street, Raleigh, North Carolina 27601, USA. A new spider crab, Eoinachoides bretoni Se describe un nuevo cangrejo araña, 2 Via Alessandro Volta 16, 22070 Appiano n. sp. (Epialtidae MacLeay, 1838) Eoinachoides bretoni n. sp. (Epialtidae Gentile (Como), Italy. from the Comfort Member of the MacLeay, 1838) del Miembro Comfort de * Corresponding author: (A. Garassino) Castle Hayne Formation (Eocene) la Formación Castle Hayne (Eoceno) en el [email protected] of Onslow County, North Carolina Condado de Onslow, Carolina del Norte (USA), is herein described, represent- (EUA), representa el segundo cangrejo ing the second spider crab recovered araña encontrado en este miembro. Aunque from this member. Although the la nueva especie no extiende el alcance estra- new species does not enlarge the tigráfico del género, restringido actualmente stratigraphical range for the genus al Eoceno-Mioceno, es el primer reporte para which is currently restricted from Norteamérica, extendiendo la distribución the Eocene to Miocene, it is the first paleobiogeográfica de Eoinachoides, limitada report in North America, extending actualmente al registro fósil de Sudamérica. the palaeogeographic distribution of Se proporciona una lista actualizada de las Eoinachoides, limited currently in the especies de crustáceos de la Formación Castle fossil record of South America.
    [Show full text]
  • Epizoic Bryozoans on Cephalopods Through the Phanerozoic: a Review
    Studi Trent. Sci. Nat., 94 (2014): 283-291 ISSN 2035-7699283 © Museo delle Scienze, Trento 2014 Bryozoan Studies 2013 - Antonietta Rosso, Patrick N. Wyse Jackson & Joanne Porter (eds) Epizoic bryozoans on cephalopods through the Phanerozoic: a review Patrick N. WYSE JACKSON1* & Marcus M. KEY, Jr. 2 1 Department of Geology, Trinity College, Dublin 2, Ireland 2 Department of Earth Sciences, Dickinson College, Carlisle, PA 17013, USA * Corresponding author e-mail: [email protected] SUMMARY - Epizoic bryozoans on cephalopods through the Phanerozoic: a review - Cephalopods have a long geological record and have been utilised by many encrusting organisms as suitable substrates on which to settle and grow. Living cephalopods, dead floating shells, and those lying on the seabed have been encrusted by bryozoans since the Ordovician; these records are reviewed here. Encrusta- tion by bryozoans declined through the Palaeozoic and into the Mesozoic, and few examples of encrustation of modern nautiloids and coleoids have been reported. The patterns of encrustation provides valuable information, firstly, on the palaeobiology of the hosts and the epizoan: some are obligate, but many appear accidental, and secondly, on the sedimentological conditions at the time of fouling of dead shells. Bryozoan-cephalopod interactions may additionally provide valuable data on present and past drifting patterns of shells, and on the palaeo- and biogeographic influences on bryozoan settlement on cephalopods. RIASSUNTO - Briozoi epizoici su cefalopodi attraverso il Fanerozoico: una rassegna - I cefalopodi hanno una lunga documentazione geologica e sono stati utilizzati da molti organimi incrostanti come substrati disponibili su cui impiantarsi e crescere. I cefalopodi viventi, le conchiglie flottanti degli esemplari morti e quelle giacenti sui fondali marini sono state incrostate da briozoi fin dall’Ordoviciano; tutta questa documentazione è qui sintetizzata.
    [Show full text]