Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle Using Adams /C Ar
Total Page:16
File Type:pdf, Size:1020Kb
ADAPTION AND EVALUATION OF TRANSVERSAL LEAF SPRING SUSPENSION DESIGN FOR A LIGHTWEIGHT VEHICLE USING ADAMS /C AR FLORIAN CHRIST Master Thesis in Vehicle Engineering Vehicle Dynamics Aeronautical and Vehicle Engineering Royal Institute of Technology TRITA-AVE 2015:09 ISSN 1651-7660 Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle using Adams/Car FLORIAN CHRIST © Florian Christ, 2015. Vehicle Dynamics Department of Aeronautical and Vehicle Engineering Kungliga Tekniska Högskolan SE-100 44 Stockholm Sweden ii Abstract This investigation deals with the suspension of a lightweight medium-class vehicle for four passengers with a curb weight of 1000 kg. The suspension layout consists of a transversal leaf spring and is supported by an active air spring which is included in the damper. The lower control arms are replaced by the leaf spring ends. Active ride height control is introduced to compensate for different vehicle load states. Active steering is applied using electric linear actuators with steer-by wire design. Besides intense use of light material the inquiry should investigate whether elimination of suspension parts or a lighter component is concordant with the stability demands of the vehicle. The investigation is based on simulations obtained with MSC Software ADAMS/Car and Matlab. The suspension is modeled in Adams/Car and has to proof it's compliance in normal driving conditions and under extreme forces. Evaluation criteria are suspension kinematics and compliance such as camber, caster and toe change during wheel travel in different load states. Also the leaf spring deflection, anti-dive and anti-squat measures and brake force distribution are investigated. Based on a simplified version of the leaf spring suspension design a full vehicle model is created. The comparison between the suspension models evaluates the same basic suspension parameters to ensure the compliance. Additionally roll rate and understeer gradient are investigated. It can be shown that the vehicle equipped with transversal leaf spring instead of lower control arms fulfils the set kinematics and compliance requirements. Road holding performance is assured for normal driving conditions on public roads. Keywords: Transversal leaf spring, composite leaf spring, wheel guiding leaf spring, lightweight suspension design, MegaCityVehicle, Simulation, MSC Adams, kinematics and compliance iii iv Acknowledgements This thesis was performed at the Department of Aeronautical and Vehicle Engineering at KTH, the Royal Institute of Technology in Stockholm, Sweden. I’m in dept of the whole Division of Vehicle Dynamics, its staff and their facilities for making my stay as comfortable as possible. In particular I’d like to thank my supervisor and mentor Lars Drugge, Associate Professor at Vehicle Dynamics, who always had an open ear for my questions, problems and ideas. I appreciated the very helpful comments, his personal motivation and the procreative environment he provided me for doing the thesis. I acknowledge the technical input from Sigvard Zetterström, research engineer at KTH Vehicle Dynamics, without his basic ideas of the suspension design this report would not have been possible. I extend my thanks to Daniel Wanner, PhD student at the Division of Vehicle Dynamics, whose support with guidance and configuring software has been of great value. The thesis is inspired of the SåNätt Project driven by Volvo Car Corporation and many partners in Swedish automotive industry. I feel very grateful for the interest of the project group and am very proud and honored to be able to contribute to the project. I’m much obliged to my colleagues at KTH, my teammates from KTHracing, and friends I made in Sweden for their support and motivation and the great company they gave me during my labor. Finally I’d like to thank Jessica and my family who all made this possible with their generous love, mental support and funding. v vi CONTENTS Abstract ................................................................................................................... iii Acknowledgements ................................................................................................. v Contents ................................................................................................................. vii 1. Introduction ................................................................................................... 1 1.1 Outline ............................................................................................................................ 2 1.2 Traditional Suspension Layout .................................................................................... 2 1.3 Proposed Vehicle Layout ............................................................................................. 4 1.4 Lightweight Construction ............................................................................................ 5 1.5 Comparison of Suspension Components .................................................................. 8 1.6 Suspension Requirements ............................................................................................ 9 1.6.1 Normal Use ......................................................................................................... 10 1.6.2 Extensive Use ..................................................................................................... 11 2. Methodology ................................................................................................ 13 2.1 Proposed Suspension Layout ................................................................................... 13 2.1.1 Proposed Suspension Weight ........................................................................... 15 2.1.2 Spring Characteristics ........................................................................................ 19 2.1.3 Dampers .............................................................................................................. 23 2.1.4 Anti-Roll-Bar Stiffness ...................................................................................... 24 2.1.5 Camber ................................................................................................................ 26 2.1.6 Caster ................................................................................................................... 26 2.1.7 Toe ....................................................................................................................... 26 2.1.8 Roll Center .......................................................................................................... 27 2.1.9 Anti-Dive and Anti-Squat ................................................................................. 28 2.1.10 Steering ................................................................................................................ 30 2.1.11 Wheels .................................................................................................................. 32 2.1.12 Brakes ................................................................................................................... 33 2.2 Models .......................................................................................................................... 35 2.2.1 FEM Leaf Spring Model ................................................................................... 35 2.2.2 Adams Suspension Model ................................................................................. 38 2.2.3 Description of Vehicle Model .......................................................................... 38 2.2.4 Leaf Spring in Adams ........................................................................................ 39 2.2.5 Gas Spring in Adams ......................................................................................... 40 2.2.6 Front Suspension ............................................................................................... 41 2.2.7 Rear Suspension ................................................................................................. 41 2.2.8 Steering ................................................................................................................ 42 vii 2.2.9 Tires...................................................................................................................... 42 3. Kinematics & Compliance ........................................................................... 43 3.1 Eigenfrequencies ........................................................................................................ 44 3.2 Hub Forces .................................................................................................................. 44 3.3 Anti Roll Bar Forces .................................................................................................. 46 3.4 Shock Absorber Ratio ................................................................................................ 47 3.5 Camber Angle ............................................................................................................. 48 3.6 Caster Angle ................................................................................................................ 49 3.7 Toe ................................................................................................................................ 50 3.8 Roll Center Height ....................................................................................................