Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle Using Adams /C Ar

Total Page:16

File Type:pdf, Size:1020Kb

Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle Using Adams /C Ar ADAPTION AND EVALUATION OF TRANSVERSAL LEAF SPRING SUSPENSION DESIGN FOR A LIGHTWEIGHT VEHICLE USING ADAMS /C AR FLORIAN CHRIST Master Thesis in Vehicle Engineering Vehicle Dynamics Aeronautical and Vehicle Engineering Royal Institute of Technology TRITA-AVE 2015:09 ISSN 1651-7660 Adaption and Evaluation of Transversal Leaf Spring Suspension Design for a Lightweight Vehicle using Adams/Car FLORIAN CHRIST © Florian Christ, 2015. Vehicle Dynamics Department of Aeronautical and Vehicle Engineering Kungliga Tekniska Högskolan SE-100 44 Stockholm Sweden ii Abstract This investigation deals with the suspension of a lightweight medium-class vehicle for four passengers with a curb weight of 1000 kg. The suspension layout consists of a transversal leaf spring and is supported by an active air spring which is included in the damper. The lower control arms are replaced by the leaf spring ends. Active ride height control is introduced to compensate for different vehicle load states. Active steering is applied using electric linear actuators with steer-by wire design. Besides intense use of light material the inquiry should investigate whether elimination of suspension parts or a lighter component is concordant with the stability demands of the vehicle. The investigation is based on simulations obtained with MSC Software ADAMS/Car and Matlab. The suspension is modeled in Adams/Car and has to proof it's compliance in normal driving conditions and under extreme forces. Evaluation criteria are suspension kinematics and compliance such as camber, caster and toe change during wheel travel in different load states. Also the leaf spring deflection, anti-dive and anti-squat measures and brake force distribution are investigated. Based on a simplified version of the leaf spring suspension design a full vehicle model is created. The comparison between the suspension models evaluates the same basic suspension parameters to ensure the compliance. Additionally roll rate and understeer gradient are investigated. It can be shown that the vehicle equipped with transversal leaf spring instead of lower control arms fulfils the set kinematics and compliance requirements. Road holding performance is assured for normal driving conditions on public roads. Keywords: Transversal leaf spring, composite leaf spring, wheel guiding leaf spring, lightweight suspension design, MegaCityVehicle, Simulation, MSC Adams, kinematics and compliance iii iv Acknowledgements This thesis was performed at the Department of Aeronautical and Vehicle Engineering at KTH, the Royal Institute of Technology in Stockholm, Sweden. I’m in dept of the whole Division of Vehicle Dynamics, its staff and their facilities for making my stay as comfortable as possible. In particular I’d like to thank my supervisor and mentor Lars Drugge, Associate Professor at Vehicle Dynamics, who always had an open ear for my questions, problems and ideas. I appreciated the very helpful comments, his personal motivation and the procreative environment he provided me for doing the thesis. I acknowledge the technical input from Sigvard Zetterström, research engineer at KTH Vehicle Dynamics, without his basic ideas of the suspension design this report would not have been possible. I extend my thanks to Daniel Wanner, PhD student at the Division of Vehicle Dynamics, whose support with guidance and configuring software has been of great value. The thesis is inspired of the SåNätt Project driven by Volvo Car Corporation and many partners in Swedish automotive industry. I feel very grateful for the interest of the project group and am very proud and honored to be able to contribute to the project. I’m much obliged to my colleagues at KTH, my teammates from KTHracing, and friends I made in Sweden for their support and motivation and the great company they gave me during my labor. Finally I’d like to thank Jessica and my family who all made this possible with their generous love, mental support and funding. v vi CONTENTS Abstract ................................................................................................................... iii Acknowledgements ................................................................................................. v Contents ................................................................................................................. vii 1. Introduction ................................................................................................... 1 1.1 Outline ............................................................................................................................ 2 1.2 Traditional Suspension Layout .................................................................................... 2 1.3 Proposed Vehicle Layout ............................................................................................. 4 1.4 Lightweight Construction ............................................................................................ 5 1.5 Comparison of Suspension Components .................................................................. 8 1.6 Suspension Requirements ............................................................................................ 9 1.6.1 Normal Use ......................................................................................................... 10 1.6.2 Extensive Use ..................................................................................................... 11 2. Methodology ................................................................................................ 13 2.1 Proposed Suspension Layout ................................................................................... 13 2.1.1 Proposed Suspension Weight ........................................................................... 15 2.1.2 Spring Characteristics ........................................................................................ 19 2.1.3 Dampers .............................................................................................................. 23 2.1.4 Anti-Roll-Bar Stiffness ...................................................................................... 24 2.1.5 Camber ................................................................................................................ 26 2.1.6 Caster ................................................................................................................... 26 2.1.7 Toe ....................................................................................................................... 26 2.1.8 Roll Center .......................................................................................................... 27 2.1.9 Anti-Dive and Anti-Squat ................................................................................. 28 2.1.10 Steering ................................................................................................................ 30 2.1.11 Wheels .................................................................................................................. 32 2.1.12 Brakes ................................................................................................................... 33 2.2 Models .......................................................................................................................... 35 2.2.1 FEM Leaf Spring Model ................................................................................... 35 2.2.2 Adams Suspension Model ................................................................................. 38 2.2.3 Description of Vehicle Model .......................................................................... 38 2.2.4 Leaf Spring in Adams ........................................................................................ 39 2.2.5 Gas Spring in Adams ......................................................................................... 40 2.2.6 Front Suspension ............................................................................................... 41 2.2.7 Rear Suspension ................................................................................................. 41 2.2.8 Steering ................................................................................................................ 42 vii 2.2.9 Tires...................................................................................................................... 42 3. Kinematics & Compliance ........................................................................... 43 3.1 Eigenfrequencies ........................................................................................................ 44 3.2 Hub Forces .................................................................................................................. 44 3.3 Anti Roll Bar Forces .................................................................................................. 46 3.4 Shock Absorber Ratio ................................................................................................ 47 3.5 Camber Angle ............................................................................................................. 48 3.6 Caster Angle ................................................................................................................ 49 3.7 Toe ................................................................................................................................ 50 3.8 Roll Center Height ....................................................................................................
Recommended publications
  • Installation and Operation Manual 8-Ccd Wireless Alignment System
    IMPORTANT SAFETY INSTRUCTIONS SAVE THESE INSTRUCTIONS Please read THE ENTIRE CONTENTS OF THIS MANUAL prior to INSTALLATION AND OPERATION. BY PROCEEDING WITH ALIGNER INSTALLATION AND OPERATION YOU AGREE THAT YOU FULLY UNDERSTAND AND COMPREHEND THE FULL CONTENTS OF THIS MANUAL. FORWARD THIS MANUAL TO ALL OPERATORS. Revision D 07-01-11 P/N 5900120 INSTALLATION AND OPERATION MANUAL 8-CCD WIRELESS ALIGNMENT SYSTEM MODEL: CRT380R RECEIVING BE SAFE The shipment should be thoroughly inspected as soon as it Your new alignment system was designed and built with is received. The signed Bill of Lading is acknowledgement safety in mind. However, your overall safety can be by the shipping carrier as receipt of this product as listed increased with proper training and thoughtful operation in your invoice as being in a good condition of shipment. If on the part of the operator. DO NOT operate or repair this any of these goods listed on this Bill of Lading are missing equipment without reading this manual and the important or damaged, do not accept goods until the shipping carrier safety instructions shown inside. Keep this operation man- makes a notation on the freight bill of the missing or dam- ual near the alignment system at all times. Make sure that aged goods. Do this for your own protection. ALL USERS read and understand this manual. 1645 Lemonwood Dr. Santa Paula, CA. 93060, USA Toll Free 1-800-253-2363 Tel: 1-805-933-9970 Fax: 1-805-933-9160 www.bendpak.com READ THIS ENTIRE MANUAL BEFORE OPERATION BEGINS. RECORD HERE THE FOLLOWING INFORMATION WHICH IS LOCATED ON THE SERIAL NUMBER DATA TAG PRODUCT WARRANTY Your new alignment system is warranted for one year on equipment structure; one year on all operat- ing components and tooling/accessories, to the original purchaser, to be free of defects in material and workmanship.
    [Show full text]
  • Sp057 Leaf Spring Installation
    SP057 LEAF SPRING INSTALLATION Also covering Part #RH015 1967-1969 CAMARO AND FIREBIRD NOTE: This part number is designed to use the original mounting hardware from a factory multi-leaf rear end setup. If you have a factory mono-leaf rear end or wish to upgrade the hardware for your multi-leaf setup, you can purchase the BMR leaf spring installation kit (Part #RH015). This kit includes new front mounting hardware, polyurethane leaf spring pads, larger U-bolts, and a heavy duty rear shackle kit with polyurethane frame bushings. INSTALLATION: 1. Lift vehicle and support with jack stands under the frame rails. 2. Remove the lower shock bolts. 3. Loosen the (4) nuts on the shock mounting plates then remove the plates. 4. Place a hydraulic jack under the axle. Lift the axle off the springs. 5. Loosen the nut on the rear lower shackle plates but do not remove the bolt. 6. Loosen the (3) bolts on the front leaf spring pocket and also remove the rear leaf spring bolt then remove the leaf spring from the vehicle. 7. If the vehicle was originally equipped with mono-leaf springs, knock out the factory bolts from the leaf spring axle mount (4 per side). Using a ½” drill bit, drill out the 4 holes in the leaf spring axle mounts. Also drill out the holes in the shock mounts to allow the use of ½” U-bolts. (IMAGE 1) 8. If you also purchased the leaf spring installation kit (RH015), replace the nut clips in the frame at this time. 9. If you purchased the leaf spring installation kit, knock out the upper bushings in the frame and install the supplied polyurethane bushings and inner steel sleeves.
    [Show full text]
  • The Study for Anti-Rollover Performance Based on Fishhook
    3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015) The Study For Anti-Rollover Performance Based On Fishhook and J Turn Simulation Fei Xiong1,a, Fengchong Lan1,b, Jiqing Chen1,c*,Yunjiao Zhou1,d 1 South China University of Technology, Guangzhou, China [email protected], [email protected], [email protected],[email protected] Keywords: Fishhook test, J-turn test, Tire vertical force, Anti-roll bar、HCG Abstract. SUV (Sport UtilityVehicle, SUV) HCG (Height of Center Gravity) is higher, relatively low rollover stability, higher rollover accident rate has become an important issue for cars safety. In this paper, Firstly, four-DOF kinematics theoretical vehicle model was established,then combined with a SUV development and design work and built a complete multi-body dynamics model in ADAMS / Car. Based on steady state constant radius handling case and transient sine-swept handling case, the dynamic model was calibrated and corelated to handling test results. At last, to launch a study for the anti rollover performance based on fishook and J Turn simulation, respectively analyzed how front and rear anti-roll bar 、the CGH contribute to the anti-rollover performance of a vehicle, this study is benefcial to the development process of suspension and the design for anti-roll performance of whole vhicle,so it has very important significance. Introduction The National Highway Traffic safety administration (National Highway Traffic SafetyAdministration, NHTSA) statistics show that in 2011, caused by the vehicle rollover accidents accounted for only 2.1% of the total Traffic accident, but the deaths of 7382 people, accounting for 34.7% of the total Traffic accident death toll.
    [Show full text]
  • Caster Camber Tire-Wear Angles
    BASIC WHEEL ALIGNMENT odern steering and ples. Therefore, let’s review these basic the effort needed to turn the wheel. suspension systems alignment angles with an eye toward Power steering allows the use of more are great examples of typical complaints and troubleshooting. positive caster than would be accept- solid geometry at able with manual steering. work. Wheel align- Caster Too little caster can make steering ment integrates all the factors of steer- Caster is the tilt of the steering axis of unstable and cause wheel shimmy. Ex- Ming and suspension geometry to pro- each front wheel as viewed from the tremely negative caster and the related vide safe handling, good ride quality side of the vehicle. Caster is measured shimmy can contribute to cupped wear and maximum tire life. in degrees of an angle. If the steering of the front tires. If caster is unequal Front wheel alignment is described axis tilts backward—that is, the upper from side to side, the vehicle will pull in terms of angles formed by steering ball joint or strut mounting point is be- toward the side with less positive (or and suspension components. Tradi- hind the lower ball joint—the caster more negative) caster. Remember this tionally, five alignment angles are angle is positive. If the steering axis tilts when troubleshooting a complaint of checked at the front wheels—caster, forward, the caster angle is negative. vehicle pull or wander. camber, toe, steering axis inclination Caster is not measured for rear wheels. (SAI) and toe-out on turns. When we Caster affects straightline stability Camber move from two-wheel to four-wheel and steering wheel return.
    [Show full text]
  • Mini-Tub Leaf-Spring Rear Suspension for 1964-70 Mustangs
    CLICK for More Info Online Mini-Tub Leaf-Spring Rear Suspension for 1964-70 Mustangs • Additional 2-3/4” tire clearance • Stronger offset frame rail inserts • Adjustable suspension geometry • Choose spring rate and ride height Mini-Tub Leaf-Spring Rear Suspension The mini-tub leaf-spring suspension from Total Control Products Applications allows substantially greater clearance for extremely large tire and wheel Mustang 64-70 combinations. Relocated shocks and springs combined with the additional mini-tub clearance allow 2-3/4” more tire clearance on each side of the vehicle. Systems include all mounts, offset frame rail inserts, leaf springs, spring plates and shock absorbers. A panhard bar version of the suspension is also offered for sharper and more predictable handling. Optional components include a narrow- width, adjustable-rate anti-roll bar and fabricated Ford 9” housing (FAB9™). Currently available for all styles of 1964-70 Mustangs. NOTE: ‘65-66 GT rear valance is not compatible with suspension. 1 Rear Spring Mounts Offset Frame Rail Insert Front Spring Mounts Relocated mount with 2-3/4” additional tire Welds inboard of OEM supporting crossmember clearance per side frame rail Panhard Bar System Upper Shock Mounts Lateral locating device Relocates stem-mount for rear end housing style shock inboard of OEM position Anti-Roll Bar FAB9 Rear End Houisng Splined arms with Fabricated Ford 9” adjustable end-link housing, structurally positions to alter rate superior to OEM 2 Mini-Tub Leaf-Spring Suspension Shown with optional Anti-Roll
    [Show full text]
  • Wheel Alignment Simplified
    The WHAT and WHY of Toe Caster - Camber Kingpin Inclination - Thrust Angle Steering Angle – Wheel setback WHEEL ALIGNMENT SIMPLIFIED Wheel alignment is often considered complicated and hard to understand In the days of the rigid chassis construction with solid axles, when tyres were poor and road speeds were low, wheel alignment was simply a matter of ensuring that the wheels rolled along the road in parallel paths. This was easily accomplished by means of using a toe gauge or simple tape measure. The steering wheel could then also simply be repositioned on the splines of the steering shaft. Camber and Caster was easily adjustable by means of shims. Today wheel alignment is of course more sophisticated as there are several angles to consider when doing wheel alignment on the modern vehicle with Independent suspension systems, good performing tyres and high road speeds. Below are the most common angles and their terminology and for the correction of wheel alignment and the diagnoses thereof, the understanding of the principals of these angles will become necessary. Doing the actual corrections of wheel alignment is a fairly simple task and in many instances it is easily accomplished by some mechanical adjustments. However Wheel Alignment diagnosis is not so straightforward and one will need to understand the interaction between the wheel alignment angles as well as the influence the various angles have on each other. In addition there are also external factors one will need to consider. Wheel Alignment Specifications are normally given in angular values of degrees and minutes A circle consists of 360 segments called DEGREES, symbolized by the indicator ° Each DEGREE again has 60 segments called MINUTES symbolized by the indicator ‘.
    [Show full text]
  • STEERTEK for International Truck Multilink FAS
    STEERTEK for International Truck Multilink FAS SUBJECT: Service Instructions LIT NO: 17730-258 DATE: December 2008 REVISION: B TABLE OF CONTENTS Section 1 Introduction . 2 Section 9 Component Replacement Fasteners . 30 Section 2 Product Description. 3 Axle Brackets . 30 Steering Knuckle Section 3 Important Safety Notice . 4 Steering Knuckle Disassembly . 30 Kingpin Preparation & Measurement . 31 Section 4 Parts List. 8 Kingpin Bushing Removal . 33 Section 5 Towing Procedures . 9 Steering Knuckle Bore Measurement . 34 Kingpin Bushing Installation. 35 Section 6 Special Tools . 12 Kingpin Bushing Reaming . 35 Kingpin Seal Installation . 37 Section 7 Preventive Maintenance Steering Knuckle Assembly . 38 Visual Inspection . 13 Tie Rod End and Cross Tube . 40 Lubrication Intervals. 13 Kingpin Lubrication . 14 Section 10 Troubleshooting Guide . 42 Tie Rod End Lubrication . 14 Tie Rod End Inspection. 15 Section 11 Torque Specifications . 44 Tire Inspection. 17 Section 12 Front Alignment Specifications . 45 Kingpin Bushing Inspection . 20 Steering Knuckle Inspection . 21 Reference Materials. 46 Section 8 Alignment & Adjustments Technical Procedure Publication Quiz . 47 Alignment Definitions . 22 General Inspection Prior to Alignment. 24 Front Wheel Alignment . 25 Steering Stop. 27 Toe Setting . 28 STEERTEK for International Truck Multilink FAS SECTION 1 Introduction This publication is intended to acquaint and assist maintenance personnel in the preven- tive maintenance, service, repair, and rebuild of the following Hendrickson equipment as installed on applicable International Truck Multilink Front Air Suspension (FAS) vehicles. Carefully read and understand all safety related information within this publication, on all decals and in all such materials provided by the vehicle manufacturer before conducting any maintenance, service or repair. ■ STEERTEK — A lightweight, formed and robotically welded steer axle assembly.
    [Show full text]
  • Q1. How Does the Toe Angle of the Tires Affect the Acceleration of a Vehicle?
    Q1. How does the toe angle of the tires affect the acceleration of a vehicle? Ans:- The toe angle identifies the exact direction the tires are pointed compared to the centerline of the vehicle when viewed from directly above. Toe can also be used to alter a vehicle's handling traits. Increased toe-in will typically result in reduced oversteer, help steady the car and enhance high-speed stability. Increased toe-out will typically result in reduced understeer, helping free up the car, especially during initial turn-in while entering a corner. Q2.What is caster angle? What are the reasons behind giving a positive caster angle to the vehicle? Ans:- Castor angle is the angular displacement of the steering axis from the vertical axis of a steered wheel in a car, motorcycle, bicycle, other vehicle or a vessel, measured in the longitudinal direction. The purpose of this is to provide a degree of self-centering for the steering — the wheel casters around in order to trail behind the axis of steering. This makes a vehicle easier to control and improves its directional stability (reducing its tendency to wander). Positive caster increases negative camber when the wheels are turned due to the geometry of the suspension components. This is good for cornering as it maximizes the area of tire that is in contact with the ground on the outside front wheel, which is under the most load during the turn Q3. What is the reason behind brake-fade? Ans:- Brake fade is caused by a buildup of heat in the braking surfaces and the subsequent changes and reactions in the brake system components and can be experienced with both drum brakes and disc brakes.
    [Show full text]
  • A Comparative Study of the Suspension for an Off-Road Vehicle
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 A Comparative study of the Suspension for an Off-Road Vehicle Sivadanus.S Department of Manufacturing Engineering, College of Engineering – Guindy, Chennai ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Humans use different vehicles to travel in is set nothing can be adjusted or moved. This type of different terrains for comfort and ease of travel. An off-terrain suspension will not be considered in the scope of this project vehicle is generally used for rugged terrain and needs a largely due to its lack of adjustability. completely different dynamics in suspension comparison to an on-road vehicle. The aim of this project is to identify and Independent suspension systems provide more effective determine the parameters of vehicle dynamics with a proper functionality in traction and stability for off-roading study of suspension and to initiate a comparative study for an applications. Independent suspension systems provide flex off-road vehicle using different models. (the ability for one wheel to move vertically while still Key Words: Suspension, Vehicle Dynamics, Off-road allowing the other wheels to stay in contact with the Vehicle, Control arms, Camber surface). 1.INTRODUCTION There are many different versions and variations of independent suspensions, which include swing axle Suspension suspensions, transverse leaf spring suspensions, trailing and The role of a suspension system within a vehicle is to ensure semi-trailing suspensions, Macpherson strut suspensions, that contact between the tires and driving surface is and double wishbone suspensions. Control arms are used for continuously maintained.
    [Show full text]
  • Specifiers & Installers Guide to TORSION BAR APPLICATIONS
    Specifiers & Installers Guide To TORSION BAR APPLICATIONS WELCOME Thank you for specifying Sauber Torsion Bars. By choosing us as your stability partner, you derive the following benefits: * Improved Stability * Stability is safety, and safety is our first concern. A Sauber Torsion Bar can eliminate unwanted counterweight, offering your users an extra safety margin. Because Sauber bars don't rigidize the chassis frame, they always provide a smooth, quiet ride. * Long Life * Premium bronze and galvanized components. Bushings guaranteed and replaced as/if needed for 10 years. 10 Year parts coverage when inspected at no greater than four month intervals. * Excellent Documentation * Our comprehensive applications charts, installation instructions and detailed drawings provide the vital information you and your installers need in an organized format. * Superior Support * Toll-free phone and fax service from anywhere in North America provides easy access to the resources of our organization through your personal company representative. * Lower Life Cycle Costs * Since it takes less time to mount our bar, its installed cost can actually be less than other alternatives. Sauber Torsion Bars are designed and built to last as long as your chassis. * Extensive Inventory * Our inventory power puts our bar on the floor just when you want it. Your production schedule can't wait on your suppliers, and with us as your partner, it won't. * More Choices * Underframe or overframe, nobody provides more installation options than we do. More choices mean a better
    [Show full text]
  • Modelling Commercial Vehicle Handling and Rolling Stability
    357 CORE Metadata, citation and similar papers at core.ac.uk Provided by Bradford Scholars Modelling commercial vehicle handling and rolling stability K HussainÃ, W Stein, and A J Day School of Engineering, Design, and Technology, University of Bradford, Bradford, UK The manuscript was received on 3 September 2004 and was accepted after revision for publication on 28 April 2005. DOI: 10.1243/146441905X48707 Abstract: This paper presents a multi-degrees-of-freedom non-linear multibody dynamic model of a three-axle heavy commercial vehicle tractor unit, comprising a subchassis, front and rear leaf spring suspensions, steering system, and ten wheels/tyres, with a semi-trailer comprising two axles and eight wheels/tyres. The investigation is mainly concerned with the rollover stability of the articulated vehicle. The models incorporate all sources of compliance, stiffness, and damping, all with non-linear characteristics, and are constructed and simulated using automatic dynamic analysis of mechanical systems formulation. A constant radius turn test and a single lane change test (according to the ISO Standard) are simulated. The constant radius turn test shows the understeer behaviour of the vehicle, and the single lane change manoeuvre was conducted to show the transient behaviour of the vehicle. Non-stable roll and yaw behaviour of the vehicle is predicted at test speeds .90 km/h. Rollover stability of the vehicle is also investigated using a constant radius turn test with increasing speed. The articulated laden vehicle model predicted increased understeer behaviour, due to higher load acting on the wheels of the middle and rear axles of the tractor and the influence of the semi-trailer, as shown by the reduced yaw rate and the steering angle variation during the con- stant radius turn.
    [Show full text]
  • Roadmaster, Experts in Dinghy Towing, Introduces the Comfort Ride Slipper Leaf Spring and Shock Absorber Systems to Road-Weary Trailer and Fifth-Wheel Owners
    article and photos by Bob Livingston SUSPENSION NIRVANA Roadmaster, experts in dinghy towing, introduces the Comfort Ride Slipper Leaf Spring and Shock Absorber systems to road-weary trailer and fifth-wheel owners railers and fifth-wheels take a lot of punishment a company immersed in the tow-bar business, catering on the road. Suspensions, designed to counter this to owners towing vehicles behind their motorhomes, has Tabuse, have not changed much over the years, and expanded its offerings in the towable arena with the intro- in most cases are the same ones found on chassis that date duction of the Comfort Ride Slipper Leaf Spring Suspension back a very long time. (The old line “This isn’t your grand- and Shock Absorber systems. father’s vehicle” does not apply.) While stock suspensions The concept is simple, and the result is a game changer hold the chassis off the ground, controlling the ride is not in the way trailers and fifth-wheels handle all road conditions. a strong attribute. One might ask, “Why worry about ride quality inside Leaf springs tied to shackles and a center-mounted a trailer when towing since no one is back there to feel equalizer are supposed to counter the bumps in the road the shakes, rattles and rolls? That’s a valid question, but but, with few exceptions, are not very effective. Roadmaster, subjecting a trailer to a constant 4.0-magnitude earthquake 74 TRAILER LIFE July 2018 Roadmaster’s Comfort Ride Slipper Leaf Spring and Shock Absorber systems bolt on to the frame with only minor drilling needed to mount the center box.
    [Show full text]