Situacion De La Biodiversidad En Chile, Desafios Para La Sustentabilidad

Total Page:16

File Type:pdf, Size:1020Kb

Situacion De La Biodiversidad En Chile, Desafios Para La Sustentabilidad SITUACIÓN DE LA BIODIVERSIDAD EN CHILE DESAFÍOS PARA LA SUSTENTABILIDAD María Isabel Manzur FOUNDATION FOR DEPP ECOLOGY PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE 1 SITUACIÓN DE LA BIODIVERSIDAD EN CHILE Desafíos para la Sustentabilidad © Programa Chile Sustentable ISBN: 956-7889-25-2 Registro Propiedad Intelectual: 144.149 Primera Edición Septiembre 2005 Se imprimieron 1000 ejemplares Elaboración: María Isabel Manzur Edición: M. Paz Aedo Sara Larraín Diseño de Portada y Diagramación: Mauricio Rocha Impresión: LOM Ediciones ESTA PUBLICACIÓN HA SIDO POSIBLE GRACIAS A LA COLABORACIÓN DE LA FUNDACIÓN FORD, LA FOUNDATION FOR DEEP ECOLOGY, Y LA FUNDACIÓN HEINRICH BÖLL. 2 PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE INDICE PRESENTACIÓN ..................................................................................................................... 7 PRIMERA PARTE - BIODIVERSIDAD EN CHILE CAPÍTULO I. SITUACIÓN DE LA BIODIVERSIDAD EN CHILE .............................................. 15 1.1 ¿Qué es la Biodiversidad? ..................................................................................... 15 1.1.1 Diversidad de Especies .......................................................................................... 16 1.1.2 Diversidad de Ecosistemas ..................................................................................... 19 1.1.3 Diversidad Genética .............................................................................................. 22 1.2 Estado de Conservación de la Biodiversidad en Chile ........................................... 25 1.2.1 Estado de Conservación de las Especies ................................................................. 25 1.2.2 Estado de Conservación de Ecosistemas ................................................................ 28 1.2.3 Estado de Conservación de los Recursos Genéticos ............................................... 31 1.3 Causas de la Pérdida de la Biodiversidad en Chile ..................................................... 32 1.3.1 Causas de la Pérdida de Especies........................................................................... 32 1.3.2 Causas de la Pérdida de Ecosistemas ..................................................................... 37 1.3.3 Causas de la Pérdida de Diversidad Genética ........................................................ 38 CAPÍTULO II. LEGISLACIÓN, INSTITUCIONALIDAD Y CONVENIOS INTERNACIONALES VIGENTES ...................................................................................................... 41 2.1 Legislación Nacional sobre Biodiversidad .............................................................. 41 2.1.1 Ley General de Bases del Medio Ambiente ............................................................. 41 2.1.2 Ley de Caza ............................................................................................................ 43 2.1.3 Ley de Bosque y Decreto Ley 701 .......................................................................... 44 2.1.4 Legislación Relativa a la Flora................................................................................. 44 2.1.5 Legislación Relativa a la Fauna ............................................................................... 45 2.2 Convenios Internacionales de Conservación de la Biodiversidad ........................... 45 2.2.1 Convención de la Diversidad Biológica (CDB)........................................................ 45 2.2.2 Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestres (CITES) ..................................................... 48 2.2.3 Convención para la Protección de la Flora de la Fauna y de las Bellezas Escénicas Naturales de los Países de América (Convención de Washington) ........... 50 2.2.4 Convención sobre la Conservación de las Especies Migratorias de Animales Silvestres (Convención de Bonn) ...................................... 51 2.2.5 Convención de Areas Húmedas de Importancia Internacional Especialmente como Hábitat de Aves Acuáticas (Convención Ramsar) ................... 52 2.2.6 Convenio de la Chinchilla ...................................................................................... 53 2.2.7 Convención para la Conservación y Manejo de la Vicuña ...................................... 53 PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE 3 2.2.8 Convención Marco de las Naciones Unidas sobre Cambio Climático ................... 54 2.2.9 Convención de las Naciones Unidas de Lucha contra la Desertificación en los Países Afectados por Sequía Grave o Desertificación, en Particular Africa ... 56 2.2.10 Agenda 21 ............................................................................................................ 58 2.2.11 Convención para la Protección del Patrimonio Mundial, Cultural y Natural de la UNESCO ..................................................................................................... 60 2.3 Convenios Internacionales Sobre Biodiversidad Marina ....................................... 60 2.3.1 Convención Internacional para la Regulación de la Caza Ballenera ...................... 60 2.3.2 Tratado Antártico .................................................................................................. 60 2.3.3 Convención sobre la Conservación de Focas Antárticas ........................................ 61 2.3.4 Convención para la Conservación de los Recursos Marinos Vivos Antárticos (CCMLAR) ........ 61 2.3.5 Protocolo al Tratado Antártico sobre Protección del Medio Ambiente ................... 62 2.3.6 Convenio para la Protección del Medio Ambiente Marino y la Zona Costera del Pacífico Sudeste .............................................................................................. 63 2.3.7 Protocolo para la Conservación y Administración de las Áreas Marinas y Costeras Protegidas del Pacífico Sudeste ............................................................. 63 2.3.8 Convención de las Naciones Unidas sobre el Derecho del Mar ............................ 64 2.4 Institucionalidad para la Conservación de la Biodiversidad en Chile ................... 64 2.5 Conclusión y Recomendaciones ............................................................................ 67 CAPÍTULO III. PROTECCIÓN DE LA BIODIVERSIDAD EN CHILE ...................................... 73 3.1 El Sistema Nacional de Areas Silvestres Protegidas del Estado (SNASPE) .............. 73 3.2 Otras Categorías de Protección Oficial ................................................................ 85 3.2.1 Santuarios de la Naturaleza ................................................................................... 85 3.2.2 Lugares de Interés Histórico o Científico ............................................................... 87 3.2.3 Áreas de Protección Establecidas en Instrumentos de Planificación ....................... 87 3.2.4 Áreas de Protección Turística ........................................................................................................ 88 3.2.5 Centros y Zonas de Interés Turístico ...................................................................... 89 3.2.6 Distritos de Conservación de Suelos, Bosques y Aguas .......................................... 90 3.2.7 Lugares de Prohibición de Caza ............................................................................ 90 3.2.8 Reservas de la Biósfera .......................................................................................... 91 3.2.9 Áreas Privadas Protegidas ...................................................................................... 91 3.3 Conservación Ex Situ ............................................................................................. 95 3.4 Estrategia Nacional de Biodiversidad .................................................................... 97 3.5 Conclusiones y Recomendaciones ...................................................................... 105 4 PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE SEGUNDA PARTE - RECURSOS NATURALES EN CHILE INTRODUCCIÓN............................................................................................................... 109 CAPÍTULO I. LA SITUACION DE LOS BOSQUES DE CHILE .............................................. 111 1.1 Valor de los Bosques Templados de Chile............................................................ 112 1.2 Desarrollo del Sector Forestal ............................................................................. 115 1.3 Legislación Forestal y su Fiscalización ................................................................ 116 1.4 Destrucción del Bosque Nativo de Chile ............................................................ 118 1.5 Impactos Ambientales y Sociales de la Destrucción del Bosque Nativo .............. 120 1.6 Sustentabilidad del Sector Forestal ..................................................................... 123 1.7 Aspectos Críticos y Propuestas ........................................................................... 125 CAPÍTULO II. LA SITUACION DE LA AGRICULTURA EN CHILE ....................................... 129 2.1 Desarrollo del Sector Agrícola ............................................................................ 130 2.2 Uso de Agrotóxicos en la Industria Agrícola ....................................................... 132 2.3 Cultivos Transgénicos .......................................................................................... 133
Recommended publications
  • Mitigation of Environmental Extremes As a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars
    Invited Paper Mitigation of Environmental Extremes as a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars Nathalie A. Cabrol*a, Edmond A. Grina, Andrew N. Hockb aNASA Ames Research Center/SETI Carl Sagan Center, Space Science Division, MS 245-3. Moffett Field, CA 94035- 1000, USA; bUCLA. Dpt. of Earth & Space Sciences. 595 Charles Young Drive East, Los Angeles, CA 90095-1567. ABSTRACT The impact of individual extremes on life, such as UV radiation (UVR), temperatures, and salinity is well documented. However, their combined effect in nature is not well-understood while it is a fundamental issue controlling the evolution of habitat sustainability within individual bodies of water. Environmental variables combine in the Bolivian Altiplano to produce some of the highest, least explored and most poorly understood lakes on Earth. Their physical environment of thin atmosphere, high ultraviolet radiation, high daily temperature amplitude, ice, sulfur-rich volcanism, and hydrothermal springs, combined with the changing climate in the Andes and the rapid loss of aqueous habitat provide parallels to ancient Martian lakes at the Noachian/Hesperian transition 3.7-3.5 Ga ago. Documenting this analogy is one of the focuses of the High-Lakes Project (HLP). The geophysical data we collected on three of them located up to 5,916 m elevation suggests that a combination of extreme factors does not necessarily translate into a harsher environment for life. Large and diverse ecosystems adapt to UVR reaching 200%-216% that of sea level in bodies of water sometimes no deeper than 50 cm, massive seasonal freeze-over, and unpredictable daily evolution of UVR and temperature.
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • Vestigios Arqueológicos Incaicos En Las Cumbres De La Zona Atacameña
    Estudios Atacameños Nº 6, pp. 37-48 (1978) Vestigios arqueológicos incaicos en las cumbres de la zona atacameña Gustavo Le Paige1 Introducción acompañen fogones y rumas de leña la que a veces encontramos diseminada en diferentes sectores y a Desde hace un tiempo hemos tenido la intención diferentes alturas en nuestras ascensiones, lo cual de entregar a nuestros lectores algunas evidencias parece indicar que se trató de mantener una buena arqueológicas del Periodo Inca en la zona atacame- cantidad de madera para cualquier ocasión. ña. Cuestión que habíamos adelantado ya en algo en el número 5 de esta revista (Le Paige 1977). Sin En relación al material e información que tenemos, embargo, esa vez además de planos, croquis y fo- la cumbre del volcán Licancabur es la que más nos tografías presentamos el trabajo sobre una hipótesis ha aportado. Esta cumbre fue ascendida en 1886 por de distribución espacial y cómo ocuparon los incas una expedición francesa dando a conocer por primera estas cumbres. Sin duda se trata de funciones de vez las ruinas y leña que se encontraban en la cima. carácter sagrado y sirvieron además como medio de Cuestión que fue corroborada los años 1956 y 1972 comunicación y respeto religioso por parte de los por un equipo de militares y el autor, confirmando incas. Además, en nuestra zona este periodo recién además la pérdida de una estatuilla donada al Museo empieza a conocerse a la luz de nuevos trabajos de Historia Natural de Santiago por la expedición de sistemáticos como es el caso de la excavación del 1886, a la vez que logramos describir los conjuntos tambo de Catarpe por parte de un equipo chileno- ceremoniales (Figuras 1, 2, 3 y 4), cuestión que fue norteamericano.
    [Show full text]
  • 16 Volcanoes As Landscape Forms
    16 Volcanoes as landscape forms Ordinary, non-volcanic landforms are the results arid environments such as the Atacama Desert or of erosion by wind, water, and ice. Erosion is an the Moon's surface, erosion rates are indeed irreversible process which ultimately reduces immeasurably slow, but in others, such as the even the loftiest mountain range to a flat plain. humid tropics, they can be startlingly fast, even Volcanic landforms by contrast, are the results of by human standards. Catastrophic processes opposing constructive and destructive forces. such as avalanching accomplish in a few Constructive processes operate only while volca­ moments what it might take millennia to achieve noes arc active. This may be an extremely short otherwise. Whatever their rate, one thing is period-a matter of days or weeks-or rather certain: erosion starts work on a volcano as soon long, with activity continuing intermittently over as it starts growing, even before its lavas cool. tcns ofthousands of years. Paricutin, a common­ Erosion never ceases. A large volcano may or-garden basaltic scoria cone was born in a experience several phases of rapid construction Mexican cornfield on 20 February 1943. After a in its lifetime, during which the rate of construc­ year of activity it was 325 m high; when it finally tion exceeds the rate oferosion, but once eruptive simmered into silence in 1952 it w3s410 m high. activity wanes, erosion instantly gains the upper About 2 cubic kilometres of lava and tephra were hand. On a large volcanic massif, erosion may be erupted during its nine years of activity.
    [Show full text]
  • USGS Open-File Report 2009-1133, V. 1.2, Table 3
    Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041
    [Show full text]
  • MMA Memo 251
    MMA Memo 251 MMA Site East of San Pedro De Atacama North Chile Volcanic Hazards Assessment and Geologic Setting Moyra C. Gardeweg P. Consultant Geologist August 1996 Fig. 1 - Location of map of the MMA site. Access roads, villages, and well known volcanic centers are shown. The stippled zone shows the area comprised by the simplified geologic map of Fig. 2. Fig 2. - Simplified geological map of the site area over a 1:500.000 scale satellite image. Based on Marinovic and Lahsen (1984) and Ramfrez and Gardeweg (1982). Fig. 3. - Satellite image of the MMA site (white arrow). Shown are the Chascón dome (ch), Chajnantor dome (cj) and Purico complex (p). The Cajón ignimbrite (ci) extends radially from the Purico complex and is covered by the lavas of the volcanoes Licancabur (l), Guayaques (g), and Santa Bárbara (sb). The north end of the La Pacana caldera resurgent dome (prd), source of the Atana Ignimbrite, is also observed as are the salty lakes of Laguna Verde (lv) in Bolivia. Fig. 4. - Chascón dome and the Agua Amarga creek, immediately east of the MMA site. View northward; in rear the Chajnantor dome, Juriques and Licancabur volcanoes and a NS linear group of volcanoes in the border with Bolivia. 9 Fig 5. - Distribution of volcanic vents (active, potentially active and extint) and calderas in the study and surrounding areas. Contours to depth of the scenter of the Wadati-Benioff zone and the Peéu-Chile trench are shown Currently Putana is in a solfataric stage, with extensive fumarolic activity observed from the end of the 19th century that persists to the present day.
    [Show full text]
  • Magmatic Processes by U-Th Disequilibria Method
    Magmatic processes by U-Th disequilibria method. Comparison of two Andean systems: El Misti Volcano (S. Peru) and Taapaca Volcanic Center (N. Chile). Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Aneta Kiebala aus Rzeszów (Polen) Göttingen 2008 D 7 Referent: Prof. Dr. G. Wörner Korreferent: Prof. Dr. B. Hansen Tag der mündlichen Prüfung: 03.04.2008 2 Abstract El MistiVolcano (South Peru) and Taapaca Volcanic Complex (North Chile) both located in the Central Andean Volcanic Zone in South America have been studied in order to place constrains on the evolution of their distinct magmatic systems. Althought both volcanic ceneters are located in similar general geological settings (CVZ) they show very contrasting magmatic evolution. El Misti volcano is a single stratocone (<112ka, Thouret et al., 2001), which erupted magmas ranging between 58 and 68wt% SiO2. By contrast Taapaca is a long- lived dome cluster (1.27 Ma to Holocene, Wörner et al., 2004a; Clavero et al., 2004), which erupted magmas ranging between 60 and 71wt% SiO2. However the majority (69%) of samples fall into the narrow range of 63 to 67wt% SiO2. The radiogenic Sr-isotopic compositions are slightly higher for El Misti (0.7075-7078) than for Taapaca (0.7063-7067). Pb isotopic compositions are different, most likely reflecting the composition of assimilated continental crust (e.g. 206Pb/204Pb=17.68-17.84 for El Misti and 18.10 for Taapaca (Mamani et al., 2004)). The two studied volcanic systems are very different in their U-Th disequilibria measured by TIMS.
    [Show full text]
  • The Landmine Project: How to Cross a Fractured Territory  M
    International Journal of Culture and History, Vol. 4, No. 4, December 2018 The Landmine Project: How to Cross a Fractured Territory M. R. Prieto, S. Melo, and P. Salas issues that define the perception of contemporary landscape. Abstract—This paper challenges the role technology plays in To investigate this concern we used two strategies of artistic mediating our landscape experience. In particular, how the research; the production of a technologically mediated image underground landmines in the San Pedro de Atacama area in -using a drone, video and photography - and the creation of an Chile are able to change the way the land is perceived. Promoting a transdisciplinary work, we will address the imagined landscape through collective storytelling - using processes, questions, and contradictions in the production and mapmaking, drawing and conversation. exhibition of a visual research project. Index Terms—Art, landmines, landscape, technology, territory. I. INTRODUCTION As young mountaineering enthusiasts, circa 1998, we were planning to climb one of the most imposing mountains in the Atacama Desert: the Licancabur volcano. The Licancabur looks like a perfect cone in the middle of the high plateau; an ubiquitous image of what an Andean landscape is supposed to be (Fig. 1 “The Licancabur”). When planning this trip, we realised that the ancient crossing (the one used by native Aymara shepherds) was interrupted by the presence of landmines. This minefield, invisible to the eye, did not appear on any of the maps of the local area. You were only alerted to its presence once you reached a place by a small red warning sign that read “Peligro Campo Minado, Danger Minefield, Peligrowa Aka Pampa Minatawa” (Fig.
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • NASA Field Trip to Chile: 1. Atacama Desert 2. Volcan Licancabur
    NASA Field Trip to Chile: 1. Atacama Desert 2. Volcan Licancabur R. B. Darling Oct. 28 – Nov. 11, 2003 Yungay Station in the Atacama Desert Home for a week NASA tour group Dusty ride Molecular biology lab in the desert Old mine worker’s gravesite Clean room suits in the desert Soil Sampling Chris MacKay preparing for air sampling with baloon (Greg Kovacs photo) Graduate students work the shovels (Greg Kovacs photo) Low clouds over the Pacific Ocean and Coastal Range 4WD Roads Watching Sun Spots WWII nitrate plant ruins and strip mined hillside Fractured rocks on hillside Teaching rappelling school (Greg Kovacs photo) Soil sampling down mine shaft (Greg Kovacs photo) Results from two days of sampling down the mine shaft Sunset at Yungay Station Afternoon shadows and the moon diving North Chilean coastline Typical roadside monument to bad driving Valle de Luna (where Apollo lunar rover was tested) Street in San Pedro de Atacama Church in San Pedro de Atacama Church interior Volcan Licancabur at 19,500 ft. from San Pedro de Atacama Volcan Licancabur Licancabur Refuge at 13,500 ft. elevation Laguna Blanca at 13,500 ft. elevation Laguna Blanca near Volcan Licancabur Volcan Licancabur from Laguna Blanca Exploring stromatolith field Transmitting live EKG data back to Ames Research Center Pink (James) Flamingos in Laguna Blanca Vicunas (Greg Kovacs photo) Navigational transect across Laguna Blanca (Greg Kovacs photo) View of Laguna Verde and Laguna Blanca from 17,000 ft on Licancabur (Greg Kovacs photo) Camp 1 at 17,000 ft. on Licancabur (Greg Kovacs photo) Copper smelter near Iquique, Chile Turkey vultures Steeple of Arequipa and surrounding mountains Church in Arequipa Plaza de Armes Fountain in Arequipa Plaza de Armes Plaza de Armes in Arequipa Arequipa skyline Arequipa architecture Volcan El Misti from Arequipa Hotel parrot.
    [Show full text]
  • Geological Evolution of Paniri Volcano, Central Andes, Northern
    Journal of South American Earth Sciences 84 (2018) 184–200 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames Geological evolution of Paniri volcano, Central Andes, northern Chile T ∗ Benigno Godoya, , José Lazcanob,1, Inés Rodríguezc, Paula Martíneza,2, Miguel Angel Paradaa, Petrus Le Rouxd, Hans-Gerhard Wilkeb, Edmundo Polancoe,3 a Departamento de Geología y Centro de Excelencia en Geotermia de los Andes (CEGA), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile b Departamento de Ciencias Geológicas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte. Avenida Angamos 0610, Antofagasta, Chile c Red Nacional de Vigilancia Volcánica, Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia, Santiago, Chile d Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa e Energía Andina S.A., Cerro El Plomo 5630, Las Condes, Santiago, Chile ARTICLE INFO ABSTRACT Keywords: Paniri volcano, in northern Chile, belongs to a volcanic chain trending across the main orientation of the Central Central Andes Andean volcanic province. Field work mapping, stratigraphic sequences, and one new 40Ar/39Ar and eleven Paniri volcano previous published 40Ar/39Ar, and K/Ar ages, indicate that the evolution of Paniri involved eruption of seven AFC-Like evolution volcanic units (Malku, Los Gordos, Las Lenguas, Las Negras, Viscacha, Laguna, and Llareta) during four main Plagioclase fractionation stages occurring over more than 1 Myr: Plateau Shield (> 800 ka); Main Edifice (800–400 ka); Old Cone Physical volcanology (400–250 ka); and New Cone (250–100 ka).
    [Show full text]
  • Mamani Et Al., 2008A)
    Published online September 25, 2009; doi:10.1130/B26538.1 Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space Mirian Mamani1,†, Gerhard Wörner1, and Thierry Sempere2 1Abteilung Geochemie, Geowissenschaftlichen Zentrum der Universität Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany 2Institut de Recherche pour le Développement and Université de Toulouse Paul Sabatier (SVT-OMP), Laboratoire Mécanismes de Transfert en Géologie, 14 avenue Edouard Belin, F-31400 Toulouse, France ABSTRACT data set to the geological record of uplift and Peru, Bolivia , northern Chile, and northwestern crustal thickening, we observe a correlation Argen tina, covering an area of ~1,300,000 km2. Compositional variations of Central between the composition of magmatic rocks Its width, between the subduction trench and the Andean subduction-related igneous rocks re- and the progression of Andean orogeny. In sub-Andean front, is locally >850 km, and its fl ect the plate-tectonic evolution of this active particular, our results support the interpreta- crustal thickness reaches values >70 km, par- continental margin through time and space. tion that major crustal thickening and uplift ticularly along the main magmatic arc (James, In order to address the effect on magmatism were initiated in the mid-Oligocene (30 Ma) 1971a, 1971b; Kono et al., 1989; Beck et al., of changing subduction geometry and crustal and that crustal thickness has kept increasing 1996; Yuan et al., 2002). The Central Andean evolution of the upper continental plate dur- until present day. Our data do not support de- orocline thus appears to be an extreme case of ing the Andean orogeny, we compiled more lamination as a general cause for major late crustal thickening among the various arc oro- than 1500 major- and trace-element data Miocene uplift in the Central Andes and in- gens of the Pacifi c Ocean margins.
    [Show full text]