16 Volcanoes As Landscape Forms

Total Page:16

File Type:pdf, Size:1020Kb

16 Volcanoes As Landscape Forms 16 Volcanoes as landscape forms Ordinary, non-volcanic landforms are the results arid environments such as the Atacama Desert or of erosion by wind, water, and ice. Erosion is an the Moon's surface, erosion rates are indeed irreversible process which ultimately reduces immeasurably slow, but in others, such as the even the loftiest mountain range to a flat plain. humid tropics, they can be startlingly fast, even Volcanic landforms by contrast, are the results of by human standards. Catastrophic processes opposing constructive and destructive forces. such as avalanching accomplish in a few Constructive processes operate only while volca­ moments what it might take millennia to achieve noes arc active. This may be an extremely short otherwise. Whatever their rate, one thing is period-a matter of days or weeks-or rather certain: erosion starts work on a volcano as soon long, with activity continuing intermittently over as it starts growing, even before its lavas cool. tcns ofthousands of years. Paricutin, a common­ Erosion never ceases. A large volcano may or-garden basaltic scoria cone was born in a experience several phases of rapid construction Mexican cornfield on 20 February 1943. After a in its lifetime, during which the rate of construc­ year of activity it was 325 m high; when it finally tion exceeds the rate oferosion, but once eruptive simmered into silence in 1952 it w3s410 m high. activity wanes, erosion instantly gains the upper About 2 cubic kilometres of lava and tephra were hand. On a large volcanic massif, erosion may be erupted during its nine years of activity. By proceeding in one part, while new lava is being contrast, Stromboli in the Mediterranean has added to another. bccn erupting throughout history, but is still only All these variables yield volcanic landscapes 981 metres above sea-level. Many rapidly con­ that are as richly diverse to analyse as they are structed volcanic landforms are not 'volcanoes' pleasing to behold. Strangely, though, volcanic at all-the Valley of Ten Thousand Smokcs was landscapes have been little studied. There is a buricd undcr 15 cubic kilometres of ignimbrite in book on the subject, which remains an authorita­ less than 60 hours. tive account although it was published almost 50 When contemplating the impassive grandeur years ago; onc which is still capable of supplying ofa mountain range, one intuitively thinks ofthe volcanologists with insights into why their volca­ destructive processes of erosion as acting infini­ noes look the way they do. 'Volcanoes as tely slowly. Erosion is often conceived as the Landscape Forms' was the title which C. A. epitome of the slowness of geological processes. Cotton selected for his book; his title is used for But this is a considerable oversimplification. In this chapter to acknowledge his contribution.! Volcanoes as landscape forms 341 - 16.1 Monogenetic volcanoes 16.1.! Scoria calles sions of 910 scoria eoncs. and found that their A monogenetic volcano is the product of a single mean basal diameter was 0.9 km. In a sample of eruptive episode. This may last a few hours, or a 83 fresll scoria cones, he found some regular few years, but the essential point is that once geomctrical relationships: the heigll/ of Ihe cOile eruption has ce;.sed, the plumbing connecting proved to beO.18 times the basal width, while the the vcnt to its magmatle source freezes over, so crater diameter was 0.40 limes the basal width. the volcano never erupts again. Basaltic scoria This emphasizes a characteristic feature ofscoria cones are good examples of monogenetic volca­ cones: lheir craters lire large in relation to I he si7.e noes. They arc found in thousands all around the of the edifice as a whole. Naturally, lheir crisp world, in many lectonic environments, either as profiles soften with age, but Wood showed that components of scoria cone fields, like P.lricutin the ratio of crater width to basal width changes in Mexico, or as p•• rasitic vents on the flanks of remarkably lillie. Thus. scoria cones remain larger volcanoes-Etna has dozens, All over the easily recognizable, even after millennia of world. they have the same distinctive morpho­ weathering. logy. They arc rarely more than lwO or three hundred metres high, and arc often asymmetri­ 16. J.2 Mnors cal: either elongated along a fissure. orelse higher Scoria concs arc the results of minor basaltic on Ihe side Ihat was downwind al the time of eruptions taking place in dry conditions. When eruption. A breach on one side often marks the basaltic mllgmas interact with water, the nature sile from which bva has flowed. A distinctive of the eruption is explosively different, prod ucing feat ure is their sim pic geomet rical profile, def! ned sllrlseya/l pyroclastic deposits (Section 6.4.1). It by the angle of rest for loose scoria (Fig. 16.1). All is not necessllry for the eruption to lake place young scoria cones have side slopes elose to 3r. under water to produce explosive consequences In a statistical study of scoria cones, Chuck -a water-bearing stratum (aquifer) in sedimen­ Wood showed that 50 per cent were formed tary rocks is all that is nceded. In the simplest during eruptions thaI lasted less than 30 days; case, shallow phreatic explosions caused by 95 per cent of them during eruptions that lasted magma-ground-water interactions blast less than one year. 2 Wood looked at the dimen- upwards through to the surface, forming large Fig. 16.1 La Poruiia. north Chile,:1 300m-high scoria cone. La Poruiia appears youthful, but may be many thousand years old. since it is located in a hyper-arid pari of Ihe Alacama Desert. In Ihe shadow al the foot of the cone. 3 lrain on lhe Antofagasta-La 1)3Z railro;.d provides scale. (Compare Ihe air phOlO in Fig. 7.8.) 342 Volcanoes: a planetary perspective holes in the ground. In the Eifel ;lrea ofGermany, metamorphic basement underlying the sand­ eruptions of this kind formed 30 craters about a stone. Explosive activity thoroughly commi­ kilometre across, now occupied by lakes. which nuted the relatively weak sandstone. while the gave their name to the landform: maars. J\faur granites and gneiss were more resistant. At the cr:Hcrs 3fC simple. circular depressions sur­ bottom ofthe Malha maar is a small lake. fed by a rounded by low rims of ejected debris. Their series of small springs seeping through the walls arc steep-sided initially. but arc quickly ubian sandstone. Because they arc the only eroded away to gentle slopes. Since they 3fC by source of fresh water for thousands of squaTC definition holes in the ground rather than kilometres, thescsprings are vital to thc people of structures buill up above it. maars typically fill the arc;:\. Their me.."lgre flow illustratcs how little with water and arc thus manifested as lakes. water needs to be colllained in an aquifer for In his statistical study, Wood showed that explosive magmatic interactions to t"ke place. muars arc Iypically small [eatures, most having At Malha and other mallrs, there is often only a diameters of about one kilometre. His preferred small proportion of magmatic material in the examples arc from the Pinacate region of north­ ejecta. This can lead the unwary into grievous west Mexico, where eight young maars are errors of interpretalion, si nee basi n-shaped maar beautifully exposed in the Sonoran Desert. They craters have been mistaken for meteorite impact arc circular to oval, with diameters between 750 craters when there is little obvious volcanic and 1750 metres and range in depth between 36 malerial present, as at Jayu Khot:l in Bolivia and 245 metres. (F;g" 16"3)" In the desiccated heart ofthe Sahara Desert, an improbable place to look for magma-water 16.1.3 Tuff rillgs interactions, there is an instructive //Iaar at A convenient. but not iron-clad distinction. Malha, in the Darfur province of the Sudan. between moars and tuff rings is that maars arc About one kilometre in diameter and a hundred excavated inlo the substrate, whereas luff rings metres deep, the maar was blasted through a arc buill up above it (Fig. 16.4). And whereas layer of ubian sandstone, depositing an apron "wars arc the results of shallow explosions, often of ejl.'Ctcd debris around the crater, now well involving scanty amounts of juvenile material, exposed in the rim (Fig. 16.2). Conspicuous in tulT rings contain an abundance of highly frag­ the debris arc rounded boulders of gneiss and mented basaltic scoria: they arc essentially ac­ gr..Illite up to a metre across derived from the cumulations of surtseyan tephm. TulT rings arc . " Fig. 16.2 Camels and goats drinking al the Malha /lllIlIr. Darfur province, weslern Sudan. White Nubian sandstone is exposed in the wall of the erater. while darker overlying material is ejccta. Animals in the foreground are clustered around small springs which all rise at the same strJtigraphic le\'el, probably ." the contact between the • sandstone and the underlying ,.".:"-"= crystalline basement. • 343 Fig. 16.3 Jayu Khot:l U1(/{lr on the altiplano of Boli\ia. iniliall) I1101l£h11O Ix: an impact cr:.uer. Tufa dcpo~ilS from the high sl;l1ld of glacial Ltke Tauca are prcscnt around the cr:llcr. which lhcn.:fon: mll~l be more than 10000 years old. Erosion has subdut:d the ejecta rim. Fig. 16.4 A superbly s}lllmclrical tun'ring, ncar the En,I'AIe \'olc:lno. Ethiopia. (photo: 1·1. Ta1.idf.) formed when magma comes ncar to the surfucc tuff ring formed in prehistoric times (Fig.
Recommended publications
  • Mitigation of Environmental Extremes As a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars
    Invited Paper Mitigation of Environmental Extremes as a Possible Indicator of Extended Habitat Sustainability for Lakes on Early Mars Nathalie A. Cabrol*a, Edmond A. Grina, Andrew N. Hockb aNASA Ames Research Center/SETI Carl Sagan Center, Space Science Division, MS 245-3. Moffett Field, CA 94035- 1000, USA; bUCLA. Dpt. of Earth & Space Sciences. 595 Charles Young Drive East, Los Angeles, CA 90095-1567. ABSTRACT The impact of individual extremes on life, such as UV radiation (UVR), temperatures, and salinity is well documented. However, their combined effect in nature is not well-understood while it is a fundamental issue controlling the evolution of habitat sustainability within individual bodies of water. Environmental variables combine in the Bolivian Altiplano to produce some of the highest, least explored and most poorly understood lakes on Earth. Their physical environment of thin atmosphere, high ultraviolet radiation, high daily temperature amplitude, ice, sulfur-rich volcanism, and hydrothermal springs, combined with the changing climate in the Andes and the rapid loss of aqueous habitat provide parallels to ancient Martian lakes at the Noachian/Hesperian transition 3.7-3.5 Ga ago. Documenting this analogy is one of the focuses of the High-Lakes Project (HLP). The geophysical data we collected on three of them located up to 5,916 m elevation suggests that a combination of extreme factors does not necessarily translate into a harsher environment for life. Large and diverse ecosystems adapt to UVR reaching 200%-216% that of sea level in bodies of water sometimes no deeper than 50 cm, massive seasonal freeze-over, and unpredictable daily evolution of UVR and temperature.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Explora Atacama І Hikes
    ATACAMA explorations explora Atacama І Hikes T2 Reserva Tatio T4 Cornisas Nights of acclimatization Nights of acclimatization needed: 2 needed: 0 Type: Half day Type: Half day Duration: 1h Duration: 2h 30 min Distance: 2,3 km / 1,4 mi Distance: 6,7 kms / 4,2 mi Max. Altitude: 4.321 m.a.s.l / Max. Altitude: 2.710 m.a.s.l / HIKES 14.176 f.a.s.l 8.891 f.a.s.l Description: This exploration Description: Departing by van, we offers a different way of visiting head toward the Catarpe Valley Our hikes have been designed according the Tatio geysers, a geothermal by an old road. From there, we to different interests and levels of skill. field with over 80 boiling water hike along the ledges of La Sal They vary in length and difficulty so we sources. In this trip there are Mountains, with panoramic views always recommend travelers to talk to their excellent opportunities of studying of the oasis, the Atacama salt flat, guides before choosing an exploration. the highlands fauna, which includes and The, La Sal, and Domeyko Every evening, guides brief travelers vicuñas, flamingos and foxes, Mountains, three mountain ranges on the different explorations, so that among others. We walk through the that shape the region’s geography. they can choose one that best fit their reserve with views of The Mountains By the end of the exploration we interests. Exploration times do not consider and steaming hot water sources. descend through Marte Valley’s sand transportation. Return to the hotel by van.
    [Show full text]
  • AN OCCURRENCE of the ASSEMBLAOE, NATIVE SULFTIR- COVELLITE-"Cu5 6,Fe,S6.S"", AUCANQUILCHA, CHILE Aran H. Cr-Etr&L
    THE AMERICAN MINERALOGIST, VOL. 55, MAY_JUNE, 1970 AN OCCURRENCE OF THE ASSEMBLAOE, NATIVE SULFTIR- COVELLITE-"Cu5 6,Fe,S6.s"",AUCANQUILCHA, CHILE AraN H. Cr-etr<, Deportmentof GeologicalSciences, Queen's U niaersity, Kingston, Ontario. AssrnA.cr A mineral with composition near to CusFeSo has been found associated with nzrtive sulfur and covellite in the volcanic sulfur deposit at Aucanquilcha. Microprobe, optical and X-ray powder diffraction data match closell'a previously reported occurrence at Nu- kundamu, Fiji. Comparison with equilibrium synthesis by Kullerud and others indir:ates formation in the temperature range 434-482"C. INrnonucrroN Electron probe microanalysis(L6vy, 1967; Sillitoe and Clark, lt69) of naturally-occurring,supergene idaite has cast considerabledoub1. on the equation (Frenzel, 1959) of this not uncommon sulfi.de with the phaseof generalformula Cur r,Fe,Se.s,1 (Yund, 1963), which has h,een synthesizedby Merwin and Lombard (1937), Roseboomand Kullerud (1958),and Yund and Kullerud (1966).Idaite has been shown to have the compositionCurFeSa, or Cu3FeS4-,1orrd there is as yet no evidence of solid solution in nature between this and more copper-rich comF,osi- tions.The well-establishedX-ray powder data"(a:3.772 A; c:11.1U A; Yund, 1963) for hexagonal Cus.s,Fe"Se.r, are only with difficulty recon- ciled with thoseof natural idaite (Frenzel,1959, 1963), and L6vy (I\167) has suggestedthat Frenzel'soriginal powder data may be adequately fitted to a stannite-type,tetragonal cell. A differencein crystal struclure between thesephases is supported by the dissimilar reflectivity disper- sion profi.lesof natural idaite (L6vy, 1967; Sillitoe and Clark, 1969) and the synthetic "Cu5FeS6"of Merwin and l-ombard (1937; inLlvy, 1967).
    [Show full text]
  • Burns Et Al 2015.Pdf
    Earth and Planetary Science Letters 422 (2015) 75–86 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Recording the transition from flare-up to steady-state arc magmatism at the Purico–Chascon volcanic complex, northern Chile ∗ Dale H. Burns a, ,1, Shanaka L. de Silva a, Frank Tepley III a, Axel K. Schmitt b, Matthew W. Loewen a a College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97731, USA b Department of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA a r t i c l e i n f o a b s t r a c t Article history: The long-term evolution of continental magmatic arcs is episodic, where a few transient events of high Received 6 December 2014 magmatic flux or flare-ups punctuate the low-flux magmatism or “steady state” that makes up most Received in revised form 31 March 2015 of the arc history. How this duality manifests in terms of differences in crustal architecture, magma Accepted 1 April 2015 dynamics and chemistry, and the time scale over which transitions occur is poorly known. Herein Available online 22 April 2015 we use multiscale geochemical and isotopic characteristics coupled with geothermobarometry at the Editor: T. Mather Purico–Chascon Volcanic Complex (PCVC) in the Central Andes to identify a transition from flare-up to ∼ Keywords: steady state arc magmatism over 800 kyr during which significant changes in upper crustal magmatic Central Andes dynamics are recorded. continental arc evolution The PCVC is one of the youngest volcanic centers related to a 10–1 Ma ignimbrite flare-up in the ignimbrite flare-up Altiplano–Puna Volcanic Complex of the Central Andes.
    [Show full text]
  • Vestigios Arqueológicos Incaicos En Las Cumbres De La Zona Atacameña
    Estudios Atacameños Nº 6, pp. 37-48 (1978) Vestigios arqueológicos incaicos en las cumbres de la zona atacameña Gustavo Le Paige1 Introducción acompañen fogones y rumas de leña la que a veces encontramos diseminada en diferentes sectores y a Desde hace un tiempo hemos tenido la intención diferentes alturas en nuestras ascensiones, lo cual de entregar a nuestros lectores algunas evidencias parece indicar que se trató de mantener una buena arqueológicas del Periodo Inca en la zona atacame- cantidad de madera para cualquier ocasión. ña. Cuestión que habíamos adelantado ya en algo en el número 5 de esta revista (Le Paige 1977). Sin En relación al material e información que tenemos, embargo, esa vez además de planos, croquis y fo- la cumbre del volcán Licancabur es la que más nos tografías presentamos el trabajo sobre una hipótesis ha aportado. Esta cumbre fue ascendida en 1886 por de distribución espacial y cómo ocuparon los incas una expedición francesa dando a conocer por primera estas cumbres. Sin duda se trata de funciones de vez las ruinas y leña que se encontraban en la cima. carácter sagrado y sirvieron además como medio de Cuestión que fue corroborada los años 1956 y 1972 comunicación y respeto religioso por parte de los por un equipo de militares y el autor, confirmando incas. Además, en nuestra zona este periodo recién además la pérdida de una estatuilla donada al Museo empieza a conocerse a la luz de nuevos trabajos de Historia Natural de Santiago por la expedición de sistemáticos como es el caso de la excavación del 1886, a la vez que logramos describir los conjuntos tambo de Catarpe por parte de un equipo chileno- ceremoniales (Figuras 1, 2, 3 y 4), cuestión que fue norteamericano.
    [Show full text]
  • Outlook on Climate Change Adaptation in the Tropical Andes Mountains
    MOUNTAIN ADAPTATION OUTLOOK SERIES Outlook on climate change adaptation in the Tropical Andes mountains 1 Southern Bogota, Colombia photo: cover Front DISCLAIMER The development of this publication has been supported by the United Nations Environment Programme (UNEP) in the context of its inter-regional project “Climate change action in developing countries with fragile mountainous ecosystems from a sub-regional perspective”, which is financially co-supported by the Government Production Team of Austria (Austrian Federal Ministry of Agriculture, Forestry, Tina Schoolmeester, GRID-Arendal Environment and Water Management). Miguel Saravia, CONDESAN Magnus Andresen, GRID-Arendal Julio Postigo, CONDESAN, Universidad del Pacífico Alejandra Valverde, CONDESAN, Pontificia Universidad Católica del Perú Matthias Jurek, GRID-Arendal Björn Alfthan, GRID-Arendal Silvia Giada, UNEP This synthesis publication builds on the main findings and results available on projects and activities that have been conducted. Contributors It is based on available information, such as respective national Angela Soriano, CONDESAN communications by countries to the United Nations Framework Bert de Bievre, CONDESAN Convention on Climate Change (UNFCCC) and peer-reviewed Boris Orlowsky, University of Zurich, Switzerland literature. It is based on review of existing literature and not on new Clever Mafuta, GRID-Arendal scientific results generated through the project. Dirk Hoffmann, Instituto Boliviano de la Montana - BMI Edith Fernandez-Baca, UNDP The contents of this publication do not necessarily reflect the Eva Costas, Ministry of Environment, Ecuador views or policies of UNEP, contributory organizations or any Gabriela Maldonado, CONDESAN governmental authority or institution with which its authors or Harald Egerer, UNEP contributors are affiliated, nor do they imply any endorsement.
    [Show full text]
  • And Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano
    remote sensing Article Space- and Ground-Based Geophysical Data Tracking of Magma Migration in Shallow Feeding System of Mount Etna Volcano Marco Laiolo 1,* , Maurizio Ripepe 2, Corrado Cigolini 1, Diego Coppola 1, Massimo Della Schiava 2, Riccardo Genco 2, Lorenzo Innocenti 2, Giorgio Lacanna 2, Emanuele Marchetti 2, Francesco Massimetti 1,2 and Maria Cristina Silengo 2 1 Dipartimento di Scienze della Terra, Università di Torino, V. Valperga Caluso 4; 10125 Torino, Italy; [email protected] (C.C.); [email protected] (D.C.); [email protected] (F.M.) 2 Dipartimento di Scienze della Terra, Università di Firenze, V. G. La Pira 4; 50121 Firenze, Italy; maurizio.ripepe@unifi.it (M.R.); massimo.dellaschiava@unifi.it (M.D.S.); riccardo.genco@unifi.it (R.G.); lorenzo.innocenti@unifi.it (L.I.); giorgio.lacanna@unifi.it (G.L.); emanuele.marchetti@unifi.it (E.M.); [email protected] (M.C.S.) * Correspondence: [email protected] Received: 29 April 2019; Accepted: 16 May 2019; Published: 18 May 2019 Abstract: After a month-long increase in activity at the summit craters, on 24 December 2018, the Etna volcano experienced a short-lived lateral effusive event followed by a rapid resumption of low-level explosive and degassing activity at the summit vents. By combining space (Moderate Resolution Imaging Spectroradiometer; MODIS and SENTINEL-2 images) and ground-based geophysical data, we track, in near real-time, the thermal, seismic and infrasonic changes associated with Etna’s activity during the September–December 2018 period. Satellite thermal data reveal that the fissural eruption was preceded by a persistent increase of summit activity, as reflected by overflow episodes in New SouthEast Crater (NSE) sector.
    [Show full text]
  • Frozen Mummies from Andean Mountaintop Shrines: Bioarchaeology and Ethnohistory of Inca Human Sacrifice
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 439428, 12 pages http://dx.doi.org/10.1155/2015/439428 Review Article Frozen Mummies from Andean Mountaintop Shrines: Bioarchaeology and Ethnohistory of Inca Human Sacrifice Maria Constanza Ceruti Instituto de Investigaciones de Alta Montana,˜ Universidad Catolica´ de Salta, Campus Castanares,˜ 4400 Salta, Argentina Correspondence should be addressed to Maria Constanza Ceruti; [email protected] Received 22 December 2014; Accepted 5 April 2015 Academic Editor: Andreas G. Nerlich Copyright © 2015 Maria Constanza Ceruti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This study will focus on frozen mummies of sacrificial victims from mounts Llullaillaco (6739 m), Quehuar (6130 m), ElToro (6160 m), and the Aconcagua massif. These finds provide bioarchaeological data from mountaintop sites that has been recovered in scientifically controlled excavations in the northwest of Argentina, which was once part of the southern province of the Inca Empire. Numerous interdisciplinary studies have been conducted on the Llullaillaco mummies, including radiological evaluations by conventional X-rays and CT scans, which provided information about condition and pathology of the bones and internal organ, as well as dental studies oriented to the estimation of the ages of the three children at the time of death. Ancient DNA studies and hair analysis were also performed in cooperation with the George Mason University, the University of Bradford, and the Laboratory of Biological Anthropology at the University of Copenhagen. Ethnohistorical sources reveal interesting aspects related to the commemorative, expiatory, propitiatory, and dedicatory aspects of human sacrifice performed under Inca rule.
    [Show full text]
  • Situacion De La Biodiversidad En Chile, Desafios Para La Sustentabilidad
    SITUACIÓN DE LA BIODIVERSIDAD EN CHILE DESAFÍOS PARA LA SUSTENTABILIDAD María Isabel Manzur FOUNDATION FOR DEPP ECOLOGY PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE 1 SITUACIÓN DE LA BIODIVERSIDAD EN CHILE Desafíos para la Sustentabilidad © Programa Chile Sustentable ISBN: 956-7889-25-2 Registro Propiedad Intelectual: 144.149 Primera Edición Septiembre 2005 Se imprimieron 1000 ejemplares Elaboración: María Isabel Manzur Edición: M. Paz Aedo Sara Larraín Diseño de Portada y Diagramación: Mauricio Rocha Impresión: LOM Ediciones ESTA PUBLICACIÓN HA SIDO POSIBLE GRACIAS A LA COLABORACIÓN DE LA FUNDACIÓN FORD, LA FOUNDATION FOR DEEP ECOLOGY, Y LA FUNDACIÓN HEINRICH BÖLL. 2 PROGRAMA CHILE SUSTENTABLE / SITUACIÓN DE LA BIODIVERSIDAD EN CHILE INDICE PRESENTACIÓN ..................................................................................................................... 7 PRIMERA PARTE - BIODIVERSIDAD EN CHILE CAPÍTULO I. SITUACIÓN DE LA BIODIVERSIDAD EN CHILE .............................................. 15 1.1 ¿Qué es la Biodiversidad? ..................................................................................... 15 1.1.1 Diversidad de Especies .......................................................................................... 16 1.1.2 Diversidad de Ecosistemas ..................................................................................... 19 1.1.3 Diversidad Genética .............................................................................................. 22 1.2 Estado de Conservación
    [Show full text]
  • Convergent Margin Magmatism in the Central Andes and Its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations
    AN ABSTRACT OF THE DISSERTATION OF Morgan J. Salisbury for the degree of Doctor of Philosophy in Geology presented on June 3, 2011. Title: Convergent Margin Magmatism in the Central Andes and its Near Antipodes in Western Indonesia: Spatiotemporal and Geochemical Considerations Abstract approved: ________________________________________________________________________ Adam J.R. Kent This dissertation combines volcanological research of three convergent continental margins. Chapters 1 and 5 are general introductions and conclusions, respectively. Chapter 2 examines the spatiotemporal development of the Altiplano-Puna volcanic complex in the Lípez region of southwest Bolivia, a locus of a major Neogene ignimbrite flare- up, yet the least studied portion of the Altiplano-Puna volcanic complex of the Central Andes. New mapping and laser-fusion 40Ar/39Ar dating of sanidine and biotite from 56 locations, coupled with paleomagnetic data, refine the timing and volumes of ignimbrite emplacement in Bolivia and northern Chile to reveal that monotonous intermediate volcanism was prodigious and episodic throughout the complex. 40Ar/39Ar age determinations of 13 ignimbrites from northern Chile previously dated by the K-Ar method improve the overall temporal resolution of Altiplano-Puna volcanic complex development. Together with new and updated volume estimates, the new age determinations demonstrate a distinct onset of Altiplano-Puna volcanic complex ignimbrite volcanism with modest output rates beginning ~11 Ma, an episodic middle phase with the highest eruption rates between 8 and 3 Ma, followed by a general decline in volcanic output. The cyclic nature of individual caldera complexes and the spatiotemporal pattern of the volcanic field as a whole are consistent with both incremental construction of plutons as well as a composite Cordilleran batholith.
    [Show full text]