Studies on Industrially Important Guttiferae and Palmae Family

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Industrially Important Guttiferae and Palmae Family Journal of Pharmacognosy and Phytochemistry 2016; 5(6): 194-198 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Studies on industrially important Guttiferae and JPP 2016; 5(6): 194-198 Palmae family Received: 18-05-2016 Accepted: 19-06-2016 Kembavimath M Kotraswamy Kembavimath M Kotraswamy, Irfan N Shaikh, Rajasaheb F Ankalgi, Department of Chemistry, G.S. Shamsunnisa R Ankalgi, Imran N Shaikh and Umar Farooq Bagwan Science College, Belgaum, India Abstract Irfan N Shaikh Department of Chemistry, The Garcinia mangostana seed oil contains 56.2% oleic acid and 6.4% linoleic acid. The palmitic SECAB Institute of Engineering (14.8%) and stearic acid (9.0%) are major components amongst the saturated acids with smaller amounts & Technology, Vijayapura, India of capric (0.9%), lauric (2.2%), myristic (6.6%) and arachidic (3.9%). Moreover, Phoenix sylvestris, cerita mistis, chrysalidocarpus lutescens, Washingtonia filifera and phoenix rupicola belong to palmae Rajasaheb F Ankalgi family and could be compared with the oils rich in lauric acid such as cinnamon and palm kernel oils (80- Essar Laboratories and Research 90% and 45-58% respectively). Centre, Hubli, India Keywords: Guttiferae, Palmae, fatty acid, industrially important Shamsunnisa R Ankalgi Essar Laboratories and Research 1. Introduction Centre, Hubli, India One of the important facts of plants is their diverse pool of fatty acids. The oil seeds contains Imran N Shaikh particular fatty acids with industrially important because of their characteristic properties. The Department of Chemistry, main constituent of all the oils is the fatty acids which may include saturated, monounsaturated Mahatma Gandhi PU Science and polyunsaturated fatty acid that contribute in human physiology in different ways [1]. The College, Yadgir, India seed oils containing unusual fatty acids are industrially important as they are used in the protective coatings, plastics, cosmetics, lubricants, varieties of synthetic intermediates, Umar Farooq Bagwan Department of Chemistry, stabilizers in plastic formulations. The interesting unusual fatty acids present in high SECAB Institute of Engineering concentration of certain seed oils are being exploited for the industrial utilization. These fatty & Technology, Vijayapura, India acids of unusual structures are highly important for the production of oleochemicals [2, 3]. Guttiferae are a family of about 36 genera and 1,600 species with a pantropical distribution that occurs widely in temperate regions and have been used since ancient times as folk remedies. It is herbaceous perennial plant that grows in open dry stony ground and cultivated fields [4]. Extracts of the leaves, stem bark and root bark of the plant, alone or combined with other plants are widely known for the application against a number of human ailments, such as upper respiratory tract infection, dysentery diarrhea and toothache [5]. It has traditionally been used in the treatment of burns and gastrointestinal diseases [6]. Results from recent studies [7] [8] [9] [10, 11] reporting the antinociceptive , anti-inflammatory , antioxidant , antimicrobial , and cytotoxic [12] activities demonstrate the great potential of this species for use as a medicinal plant. The palm family (Palmae or Arecaceae) is a conspicuous and important feature of tropical and subtropical habitats throughout the world. In general, palms are recognized instantly by the botanist and the layman alike, despite the fact that a great diversity of morphology exists [13] among the 191 recognized genera. The current classification of the palms , comprises six subfamilies, 14 tribes and 38 subtribes, many of which are defined in the informal classification of Moore (1973). Almost all palmate qeaved palms belong to the Coryphoideae, a subfamily of 40 genera divided among three tribes and six subtribes. The subfamily includes one pinnate-leaved genus, Phoenix, in which the leaf lamina is split to give induplicately- folded segments, as in almost all other coryphoid palms. After exhaustive survey of literature on guttiferae and palmae family it was found that there is no report entirely on this family regarding the component fatty acids. Hence, the study of this family was undertaken with a view that it might contain some unusual fatty acids. However, no unusual fatty acids are encountered in the present work. But this will be first report on this family as well as species. Hence, the study of this family was undertaken. This will be first report on this family as well as species examined in this investigation. Correspondence Rajasaheb F Ankalgi 2. Results and Discussions Essar Laboratories and Research Centre, Hubli, India Garcinia mangostana seed oil contains 56.2% oleic acid and 6.4% linoleic acid. The palmitic (14.8%) and stearic acid (9.0%) are major components amongst the saturated acids with ~ 194 ~ Journal of Pharmacognosy and Phytochemistry smaller amounts of capric (0.9%), lauric (2.2%), myristic oleic (26.3%) and linoleic (11.8%) acids. (6.6%) and arachidic (3.9%). The present investigation was The seed oil of Caryota urens is rich in palmitic acid (31.1%). undertaken to study the detail pattern of component fatty The other components amongst the saturated acids are lauric acids of Garcinia xanthochymus seed oil as there is only one (3.8%), myristic (4.8%) and arachidic (0.7%). The linoleic report on the fatty acid composition of this seed oil. Sabata et acid (40.1%) and oleic (16.0%) are only unsaturated acids. al., have reported 41.0% palmitic acid as the only component Livistona rotundifolia contains 10% of lauric acid and fatty acid amongst the saturated acids [14]. The oleic acid (15.2%) of palmitic acids amongst the saturated acids with (55.45%) is only the principal component amongst the small amounts of capric (0.9%), myristic (5.7%), stearic unsaturated acids with small amount of linoleic 3.5%. But in (7.1%) and behenic (2.0%). The unsaturated acids are only the species under investigation contains 33.4% of saturated oleic (33.0%), and linoleic (26.1%). Chrysalidocarpus (Areca) acids and 62.6% of unsaturated acids. The oil form this lutescene seed oil contains (41.2%) of lauric acid, (26.4%) of species contains capric (0.9%), lauric (2.2%), myristic (6.6%), myristic acid. The next major saturated acid is palmitic acid palmitic (14.8%), stearic (9.0%) and arachidic (3.9%) acids (11.8%). This oil also contains small amount of capric and amongst the saturated acids. The unsaturated acids are only stearic acids amongst the saturated acids. The unsaturated oleic (56.2%) and linoleic (6.4%). The oleic acid is present in acids are oleic (10.5%) and linoleic (7.5%). Washingtonia major proportion. The pattern of unsaturated acids is nearly filifera, contains (83.6%) of saturated acids and 16.4% of the same as reported earlier. But there is a lot of change in the unsaturated acids. The major acids are lauric (25.8%), and proportion of saturated fatty acids. However, the detail in data palmitic (38.2%) with smaller amounts of myristic (10.9%) is given in Table-1. and stearic (6.6%) acids. However, arachidic (1.0%), and Mammea longifolia, Planch and triana seeds are rich source of behonic (1.1%) acids are also present acids are only oleic vegetable oil. The kernels on extraction with petroleum ether (5.6%) and linoleic (10.8%). yielded 75% of fatty oil. This seed oil resembles the undi or Phoenix rupicola contains (51.8%) of unsaturated acids and Domba oil obtained from the seed kernels of Calophyllum (48.2%) of saturated acids. The unsaturated are oleic (41.2%) inophyllum, another tree of guttiferae family. The seed oil of and linoleic (10.6%). This seed oil contains lauric (20.8%), Mammea longifolia, contains palmitic (16.7%) and stearic myristic (12.4%), palmitic (10.9%), stearic (3.3%), arachidic (13.3%) acids as the major component of saturated acids with (0.5%) and behenic (0.3%) acids. Licuala grandis seed oil small amounts of lauric (0.4%), mayristic (1.5%) and linoleic contains (62.6%) of unsaturated acids. The unsaturated acids (33.6%) are the major unsaturated fatty acids present in the oil are only oleic (33.4%) and linoleic (29.0%). The palmitic in small amounts. The fatty oil in different seed kernels of this (27.4%) acids is only a major component amongst the family varies from 4 to 85.9%. The Iodine value ranges from saturated acids with smaller amounts of lauric (2.5%), 36.2 to 94.0. The saponification equivalent varies from 273 to myristic (2.3%) stearic (1.9%), arachidic (1.4%) and behenic 283.2. The fatty acid composition of Mammea longifolia seed (2.1%) acids. oil resembles that of undi oil would be seen from a The member of plant family are noted for their higher comparison of the fatty acids composition of Mammea percentage of lauric (16-52%) and myristic (7-51%) acids, longifolia, undi and some other seed oils of the trees of family and low percentage of linoleic acid which rarely exceeds 10 Guttiferae (Table-1). percentage [16]. However, Norice [17] has reported different Phoenix sylvestris, cerita mistis, chrysalidocarpus lutescens, pattern of fatty acid composition in three species of Washingtonia filifera and phoenix rupicola belong to palmae Rhopalostylis (palmae), which contain lauric (0.2 to 11%), family and could be compared with the oils rich in lauric acid myristic (0.5 to 17%) and larger amounts of linoleic acid such as cinnamon and palm kernel oils [15] (80-90% and 45- (18.59%). In present investigation similar pattern of fatty acid 58% respectively). The seed oil of phoenix sylvestris contains composition as reported by morice in seed fat of (45.1%) of saturated acids with lauric acid as the principal Rhopalostylis is observed in Licuala grandis, such type of component (23.8%). It also contains smaller amounts of composition has also been found in Caryota urens and myristic (11.9%), and palmitic (9.4%) acids.
Recommended publications
  • Salesforce Park Garden Guide
    Start Here! D Central Lawn Children’s Play Area Garden Guide6 Palm Garden 1 Australian Garden Start Here! D Central Lawn Salesforce Park showcases7 California over Garden 50 species of Children’s Play Area 2 Mediterraneantrees and Basin over 230 species of understory plants. 6 Palm Garden -ã ¼ÜÊ ÊăØÜ ØÊèÜãE úØƀØÊèÃJapanese Maples ¼ÃØ Ê¢ 1 Australian Garden 3 Prehistoric¢ØÕ輫ÕØÊ£ØÂÜÃã«ó«ã«Üŧ¼«¹ĆãÃÜÜ Garden 7 California Garden ¼ÜÜÜŧÊÃØãÜŧÃØ¢ã«Ã£¼ÜÜÜũF Amphitheater Garden Guide 2 Mediterranean Basin 4 Wetland Garden Main Lawn E Japanese Maples Salesforce Park showcases over 50 species of 3 Prehistoric Garden trees and over 230 species of understory plants. A Oak Meadow 8 Desert Garden F Amphitheater It also offers a robust year-round calendar of 4 Wetland Garden Main Lawn free public programs and activities, like fitness B Bamboo Grove 9 Fog Garden Desert Garden classes, concerts, and crafting classes! A Oak Meadow 8 5 Redwood Forest 10 Chilean Garden B Bamboo Grove 9 Fog Garden C Main Plaza 11 South African 10 Chilean Garden Garden 5 Redwood Forest C Main Plaza 11 South African Garden 1 Children’s Australian Play Area Garden ABOUT THE GARDENS The botanist aboard the Endeavor, Sir Joseph Banks, is credited with introducing many plants from Australia to the western world, and many This 5.4 acre park has a layered soil system that plants today bear his name. balances seismic shifting, collects and filters storm- water, and irrigates the gardens. Additionally, the soil Native to eastern Australia, Grass Trees may grow build-up and dense planting help offset the urban only 3 feet in 100 years, and mature plants can be heat island effect by lowering the air temperature.
    [Show full text]
  • Approaching the Prehistory of Norfolk Island
    © Copyright Australian Museum, 2001 Records of the Australian Museum, Supplement 27 (2001): 1–9. ISBN 0 7347 2305 9 Approaching the Prehistory of Norfolk Island ATHOLL ANDERSON1 AND PETER WHITE2 1 Department of Archaeology & Natural History, Research School of Pacific and Asian Studies, Australian National University, Canberra ACT 0200, Australia [email protected] 2 Archaeology, University of Sydney, Sydney NSW 2006, Australia [email protected] ABSTRACT. Norfolk Island, on the northeast edge of the Tasman Sea, is of volcanic origin and moderate height. A humid, forested subtropical landmass, it had a diverse range of natural resources, including some food plants such as Cyathea, forest birds such as pigeon and parrot species and substantial colonies of seabirds, notably boobies and procellariids. Its shoreline had few shellfish, but the coastal waters were rich in fish, of which Lethrinids were especially abundant. The island had no inhabitants when discovered by Europeans in A.D. 1774. It was settled by them in A.D. 1788. From the eighteenth century discovery of feral bananas and then of stone adzes, knowledge of the prehistory of Norfolk Island has developed over a very long period. Collections of stone tools seemed predominantly East Polynesian in orientation, but Melanesian sources could not be ruled out. Research on fossil bone deposits established the antiquity of the human commensal Rattus exulans as about 800 B.P. but no prehistoric settlement site was known until one was discovered in 1995 at Emily Bay during the Norfolk Island Prehistory Project. ANDERSON, ATHOLL, AND PETER WHITE, 2001a. Approaching the prehistory of Norfolk Island.
    [Show full text]
  • Revision of Epuraea of New Zealand (Coleoptera: Nitidulidae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 31.xii.2017 Volume 57(2), pp. 617–644 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:1FE73D5D-3D2F-4033-B501-61318528A693 https://doi.org/10.1515/aemnp-2017-0093 Revision of Epuraea of New Zealand (Coleoptera: Nitidulidae) Josef JELÍNEK1), Richard A. B. LESCHEN2) & Jiří HÁJEK1) 1) Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Horní Počernice, Czech Republic; e-mails: [email protected]; [email protected] 2) Maanaki Whenua, New Zealand Arthropod Collection, Private Bag 92170, Auckland, New Zealand; e-mail: [email protected] Abstract. Species of the genus Epuraea Erichson, 1845 from New Zealand are revised and redescribed. The New Zealand fauna comprises six species. One new species, Epuraea glabrata sp. nov. is described. Epuraea mayendorfi i (Reitter, 1873) is provided as a valid replacement name for Nitidula lateralis (White, 1846), not Nitidula lateralis C. R. Sahlberg, 1820. One new synonymy is proposed, Epuraea mayendorfi i (Reitter, 1873) = Epuraea zealandica Sharp, 1878, syn. nov. Key words. Coleoptera, Nitidulidae, Epuraea, taxonomy, new species, new sy- nonymies, key, New Zealand Introduction The genus Epuraea Erichson, 1843 is found worldwide (JELÍNEK et al. 2010), and as typical for many widespread beetles, has not been revised globally, though regional comprehensive studies have been completed for parts of Africa (JELÍNEK 1977, 1992), Asia (KIREJTSHUK 1988, HISAMATSU 2016), and Europe (AUDISIO 1993) and partially revised elsewhere for areas of high diversity – e.g. North America (PARSONS 1967, 1969). Species of Epuraea currently known from New Zealand were described previously by WHITE (1846), REITTER (1877), SHARP (1878) and BROUN (1880), but some valid names were neglected by many subsequent authors, such that some problems in their nomenclature and systematics remained unresolved.
    [Show full text]
  • TAXON:Rhopalostylis Baueri SCORE:-2.0 RATING:Low Risk
    TAXON: Rhopalostylis baueri SCORE: -2.0 RATING: Low Risk Taxon: Rhopalostylis baueri Family: Arecaceae Common Name(s): Norfolk Island palm Synonym(s): Areca baueri Hook. f. ex Lem. Eora(basionym) baueri (H. Wendl. & Drude) O. F. RhopalostylisCook cheesemanii Becc. ex Cheeseman Assessor: No Assessor Status: Assessor Approved End Date: WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Subtropical Palm, Unarmed, Shade-tolerant, Thicket-forming, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier
    [Show full text]
  • Polynesian Plant Introductions in the Southwest Pacific: Initial Pollen Evidence from Norfolk Island
    © Copyright Australian Museum, 2001 Records of the Australian Museum, Supplement 27 (2001): 123–134. ISBN 0 7347 2305 9 Polynesian Plant Introductions in the Southwest Pacific: Initial Pollen Evidence from Norfolk Island MIKE K. MACPHAIL, GEOFFREY S. HOPE AND ATHOLL ANDERSON Department of Archaeology & Natural History, Research School of Pacific and Asian Studies, Australian National University, Canberra ACT 0200, Australia [email protected] [email protected] [email protected] ABSTRACT. Thick organic swamp sediments, buried under land fill on Kingston Common, preserves evidence of the Norfolk Island flora and vegetation back to the middle Holocene and probably much earlier times in the Late Quaternary. These sediments provide (1) a bench mark against which the impact of humans on the flora and vegetation of a long-isolated island can be assessed and (2) a means of determining whether particular plant genera and species are introduced or native to the island. Although sediments contemporary with Polynesian occupation about 800 years ago were destroyed by European draining and cultivation of the swamp during the early nineteenth century, the pollen data indicate that New Zealand flax (Phormium tenax) was introduced to Norfolk Island by Polynesians. Other putative exotics such as Ti (Cordyline), a bull-rush (Typha orientalis) and, less certain, herbs such as the sow thistle (Sonchus oleraceus), were part of the native flora long before the earliest recorded Polynesian settlement. Wildfires have been part of the landscape ecology of Norfolk Island since at least the middle Holocene. MACPHAIL, MIKE K., GEOFFREY S. HOPE AND ATHOLL ANDERSON, 2001.
    [Show full text]
  • Rhopalostylis Sapida
    Rhopalostylis sapida COMMON NAME Nikau palm SYNONYMS None FAMILY Arecaceae AUTHORITY Rhopalostylis sapida H.Wendl. et Drude FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Monocotyledons NVS CODE RHOSAP CHROMOSOME NUMBER Whareroa Farm, Paekakariki. Apr 2011. 2n = 32 Photographer: Jeremy Rolfe CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Palm to 15m tall with a ringed trunk and 3m long erect leaves inhabiting lowland forest south to Okarito and Banks Peninsula and the Chatham Islands. Leaves with multiple narrow leaflets to 1m long closely-spaced along central stem. Flowers pinkish, in multiple spikes at the top of trunk. Fruit red. DISTRIBUTION Endemic. North Island, South Island from Marlborough Sounds and Nelson south to Okarito in the west and Banks Peninsula in the east. Also on Chatham and Pitt Islands. However Chatham Islands plants have adistinct juveniel form, larger fruits, and thicker indumentum on the fronds. HABITAT Trunk of nikau. Photographer: Wayne Bennett Primarily a species of coastal to lowland forest in the warmer parts of New Zealand. FEATURES Trunk up to 15 m, stout, covered in grey-green leaf scars, otherwise green. Crownshaft 0.6(-1) m long, dark green, smooth, bulging. Fronds up to 3 m long; leaflets to 1 m, closely set (sometimes over lapping), ascending. Spathes c.300 x 150 mm., between pink and yellow, caducous. Inflorescence shortly stalked, with many branches, 200-400 mm long. Flowers sessile, unisexual, tightly packed, lilac to pink. Males in pairs, caducous, stamens 6.
    [Show full text]
  • The Palms of Monserrate, Sintra, Portugal
    Luckhurst Montserrate_Layout 1 2/9/11 12:53 PM Page 5 PALMS Luckhurst: Palms of Monserrate Vol. 55(1) 2011 The Palms of GERALD LUCKHURST Landscape Architect Monserrate, Avenida 25 de Abril, 56, Galamares, 2710-246 Sintra Sintra, Portugal Portugal [email protected] 1. Dome of Monserrate seen behind Trachycarpus fortunei and Phoenix canariensis. The garden of Monserrate in Portugal contains a wealth of fine trees planted mostly in the second half of the nineteenth century including giant Araucarias, Kauri pines, Banyans and Metrosideros. The collection of palms is particularly rich and has great historical significance since the palms at Monserrate were among the first specimens of their kind planted in the open air in Europe. Today there are some seventy or more species of palm growing at Monserrate, twenty-four of them representing historic plantings (Fig. 1). PALMS 55(1): 5–14 5 Luckhurst Montserrate_Layout 1 2/9/11 12:53 PM Page 6 PALMS Luckhurst: Palms of Monserrate Vol. 55(1) 2011 Sintra, near Lisbon, Portugal, enjoys one of arches, Roman and Renaissance sculpture, the mildest climates in Europe, comparable Chinese urns and Iznik tiles. The house, built only to the southern-most coasts of Spain and on de Visme’s gothic castle walls, was Italy and some islands of the Mediterranean. decorated in “Moorish style” with an amalgam However, its position at the western-most of Indian and Venetian and Florentine point of continental Europe gives it a wholly Renaissance details – the palace of a Nabob in Atlantic outlook with abundant winter rains the words of one visitor.
    [Show full text]
  • BOTANICAL FEATURES of the MOKOHINAU ISLANDS by A.E
    TANE 24, 1978 BOTANICAL FEATURES OF THE MOKOHINAU ISLANDS by A.E. Esler Botany Division, DSIR, Private Bag, Auckland SUMMARY The vegetation of the islands is very depleted. Burning and grazing have left pohutukawa {Metrosideros excelsa) and ngaio (Myoporum laetum) as the only large woody plants on Burgess Island and the neighbouring islets. Burning has promoted 2 monocots — flax (Phormium tenax) on the western islets where there is no grazing, and Scirpus nodosus (and some grassland) on Burgess Island where livestock have not allowed flax to establish. A relic piece of bush on Fanal Island is supplying seeds for the spread of forest there. The Mokohinau Islands have about 112 species of native plants and about 80 naturalised species. INTRODUCTION Perhaps the earliest written comment on the plant life of the Mokohinau Islands was by F. Sandager, a lighthouse keeper. In a paper on birds (Sandager 1889) he mentioned as prominent plants Metrosideros, Pittosporum, Myoporum, Coprosma, Hebe, Carmichaelia, Olearia, Phormium, Disphyma, the ferns Pteridium aquilinum (bracken) and Adiantum aethiopicum, and grasses and sedges. Mary E. Gillham visited the islands in August, 1957, described the plant communities, drew a generalised vegetation map, and listed the plant species (Gillham 1960). My paper supplements the earlier accounts and gives islands of occurrence for each plant species listed. The opportunity was taken to visit the islands with C.R. Veitch (Wildlife Service), A.R. Thorpe (Hauraki Gulf Maritime Park) and G. Kuschel (DSIR) from 27 February till 2 March, 1978. Two and a half days were spent in the field visiting seven islands in the group.
    [Show full text]
  • <I>Rhopalostylis Sapida</I>
    MYCOTAXON Volume 111, pp. 155–160 January–March 2010 Two new dictyosporous hyphomycetes on Rhopalostylis sapida (Arecaceae) in New Zealand Eric H.C. McKenzie [email protected] Landcare Research, Private Bag 92170, Auckland, New Zealand Abstract—Dictyosporium hughesii sp. nov. and D. rhopalostylidis sp. nov., found on dead leaves of the palm, Rhopalostylis sapida in New Zealand are illustrated and described and compared with related taxa. Key words—anamorphic fungi, taxonomy Introduction The palm genusRhopalostylis contains two taxa: R. baueri (endemic to Norfolk Island and to Raoul Island, Kermadec Islands) and the world’s southern-most palm, R. sapida (endemic to mainland New Zealand). Palms are a favourable substrate for microfungi, and many species have been described from them (Taylor & Hyde 2003, McKenzie 2009). While examining dead leaf tissues of R. sapida, two new species of Dictyosporium were found. One of the new species (based on herbarium specimen PDD 20966) was previously recorded on R. sapida under the name D. elegans Corda (McKenzie et al. 2004). Several species of Dictyosporium have been recorded on palms in various parts of the world. Of the 22 species of Dictyosporium accepted by Goh et al. (1999), eight (D. alatum Emden, D. campaniforme Matsush., D. cocophylum Bat., D. digitatum J.L. Chen et al., D. elegans, D. heptasporum (Garov.) Damon, D. subramanianii B. Sutton, D. tetraseriale Goh et al.) were listed on palms. Materials and methods Portions of leaf sheath from dead, fallen fronds of nikau palm (Rhopalostylis sapida) were collected from the forest floor. The plant material was incubated under humid conditions and periodically examined for sporulating microfungi.
    [Show full text]
  • The Island Rule and Its Application to Multiple Plant Traits
    The island rule and its application to multiple plant traits Annemieke Lona Hedi Hendriks A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity Victoria University of Wellington, New Zealand 2019 ii “The larger the island of knowledge, the longer the shoreline of wonder” Ralph W. Sockman. iii iv General Abstract Aim The Island Rule refers to a continuum of body size changes where large mainland species evolve to become smaller and small species evolve to become larger on islands. Previous work focuses almost solely on animals, with virtually no previous tests of its predictions on plants. I tested for (1) reduced floral size diversity on islands, a logical corollary of the island rule and (2) evidence of the Island Rule in plant stature, leaf size and petiole length. Location Small islands surrounding New Zealand; Antipodes, Auckland, Bounty, Campbell, Chatham, Kermadec, Lord Howe, Macquarie, Norfolk, Snares, Stewart and the Three Kings. Methods I compared the morphology of 65 island endemics and their closest ‘mainland’ relative. Species pairs were identified. Differences between archipelagos located at various latitudes were also assessed. Results Floral sizes were reduced on islands relative to the ‘mainland’, consistent with predictions of the Island Rule. Plant stature, leaf size and petiole length conformed to the Island Rule, with smaller plants increasing in size, and larger plants decreasing in size. Main conclusions Results indicate that the conceptual umbrella of the Island Rule can be expanded to plants, accelerating understanding of how plant traits evolve on isolated islands.
    [Show full text]
  • "How Can We Weave in a Strange Land?" Niuean Weavers in Auckland Author(S): Hilke Thode-Arora Source: Pacific Arts, New Series, Vol
    Pacific Arts Association "How Can We Weave in a Strange Land?" Niuean Weavers in Auckland Author(s): Hilke Thode-Arora Source: Pacific Arts, New Series, Vol. 3/5, HYBRID TEXTILES: PRAGMATIC CREATIVITY AND AUTHENTIC INNOVATIONS IN PACIFIC CLOTH (2007), pp. 46-59 Published by: Pacific Arts Association Stable URL: http://www.jstor.org/stable/23412049 Accessed: 06-03-2018 00:16 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Pacific Arts Association is collaborating with JSTOR to digitize, preserve and extend access to Pacific Arts This content downloaded from 130.182.24.113 on Tue, 06 Mar 2018 00:16:01 UTC All use subject to http://about.jstor.org/terms 46 NS .ois. 3-5,2007 "How"How CanCan We We Weave Weave in ina Strangea Strange Land?" Niuean Weavers in Auckland Hilke Thode'Arora, Eth.nologisch.es Museum, Berlin Do you know that song 'Rivers of Babylon' by Boney M..? That while line the other inhabitants are Palagi or Pacific Islanders of dif 'How can we sing the Lord's song in a strange landV This is exactly ferent origin. how we felt in New Zealand: how can we weave in a strange land? Relatively little is known about pre-European Niuean society.
    [Show full text]
  • 'Alexander Palm' Or
    Palms for San Diego Archontophoenix alexandrae 40’ ‘Alexander Palm’ or ‘King Alexander Palm’ - Beautiful feather palm, more unusual than ‘cunninghamiana’, however the leaf is slightly shorter, 8’-10’. Archontophoenix cunninghamiana (Seaforthia Elegans) 40’ ‘Piccabeen’ or ‘King Palm’ - Feather leaf palm, moderate growing. Leaves to about 10’-12’ long, drop off clean. Bright red seeds on trunk. Sun or part shade. Areca catechu 20’ ‘Betel’ or ‘Betel Nut Palm’ - Feather leaf palm with very slender trunk. Slow growing and cold sensitive, protect in colder areas. Most often used indoors, although it is not always available here. Arecastrum romanzoffpianum (Cocos plumosae & Syagrus romanzoffiana) 50’-60’ ‘Queen Palm’ – Large feather leaf palm, very popular in this area. Fast growing when young, slowing with age. Very large leaves to 10’-15’ long. Very easy to grow. Bismarkia nobilis (Modrrnia nobilis) 40’-50’ around here, reported 100’ in habitat ‘Bismark Palm’ – Rare, very large fan shaped leaves, as much as 8’ in diameter. Leaf color is unusual and varies, but mostly has an intriguing blue-gray color. It is very striking if you have the room. Slower growing but worth the wait. Brahea armata (Erythea armata, E roezlii) 40 ‘Blue Hesper Palm’, ‘Mexican Blue Palm’ – Fan shaped leaf form very full head as tree matures. The palm forms a very stout trunk that may reach up to 2’ in diameter. Slow growing with beautiful blue-green leaves. Blooms are very long and arch down. Brahea brandegeei (Erythea brandegeei) 80’ ‘San Jose Hesper Palm’ – Fan leaf, faster growing than ‘armata’ but a little more unusual (harder to find).
    [Show full text]