Urban Tree Variation Kāpiti Coast District Plan - Ecological Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Urban Tree Variation Kāpiti Coast District Plan - Ecological Assessment URBAN TREE VARIATION KĀPITI COAST DISTRICT PLAN - ECOLOGICAL ASSESSMENT R3525m DRAFT URBAN TREE VARIATION KĀPITI COAST DISTRICT PLAN - ECOLOGICAL ASSESSMENT Contract Report No. 3525m July 2015 Project Team: Astrid van Meeuwen-Dijkgraaf - Report author, field work Steve Rate - Report author, peer review Bruce MacKay - Field work Kelvin Lloyd -Peer review Prepared for: Kāpiti Coast District Council Private Bag 60601 Paraparaumu 5254 WELLINGTON OFFICE: 22 RAIHA STREET, ELSDON, P.O. BOX 50-539, PORIRUA Ph 04-237-7341; Fax 04-237-7496 HEAD OFFICE: 99 SALA STREET, P.O. BOX 7137, TE NGAE, ROTORUA Ph 07-343-9017; Fax 07-343-9018, email [email protected], www.wildlands.co.nz EXECUTIVE SUMMARY Prior to human occupation, lowland Kāpiti Coast District comprised areas of dunes, dune, riparian and lowland forest, and wetlands. Less than 6% of these indigenous vegetation types remains within the relevant ecological districts and only about 22% of the Tararua foothill forest still exists within the Wellington Region. Much of the lowland areas are categorised as Acutely Threatened and Chronically Threatened Land Environments. The urban areas of Kāpiti Coast District all occur in these lowland areas where indigenous vegetation is significantly reduced from its original extent. Thus indigenous vegetation within the urban areas is threatened at national, regional and district levels. Trees in an urban landscape are important for a variety of reasons; ecological as well as aesthetic, economic, and cultural. The most ecologically valuable trees are found within ecological sites, which are remnants of original forests. These areas reflect the underlying historical vegetation pattern, are reservoirs of genetic variability within a species and provide habitat for flora and fauna. Ecological sites are considered to be significant under S.6 of the RMA and meet Policy 23 of the Regional Policy Statement for the Wellington Region, as well as Policy 3.11 of the Proposed District Plan. In addition to ecological sites there are smaller groups of trees and isolated trees which were also part of the original forest. These trees or groups of trees usually comprise or include large old trees. These large old trees are disproportionally important because they: Reflect the underlying historic pattern; Contribute to the species’ genetic diversity; Some are nationally at risk species; Often form the core in linkages and stepping stone habitat between ecologically important areas which encourages the flow of species; Many occur adjacent, or close, to ecological sites and therefore buffer these sites - as per PDP Policy 3.12(c); Provide habitats for a whole suite of species, from soil micro-organisms and fungi, to invertebrates, lizards, birds, hole nesting species and epiphytic plant species; and Provide large quantities of food for fauna. Due to changes to the Resource Management Act, ‘blanket’ tree protection rules for urban areas, such as those in the Operative District Plan and the 2012 Proposed District Plan, will lapse on 4 September 2015. This report reviews the merits of trees proposed for inclusion in Schedules 3.1 (ecological sites) and 3.2 (key indigenous trees) as the basis for considering whether any trees or groups of trees should be listed in District Plan schedules in the form required by Section 76 of the RMA. The Kāpiti Coast District has a good dataset on the location of important indigenous vegetation and trees. This includes information for all ecological sites listed in the Proposed District Plan Schedule 3.1. These data describe the main canopy components for each ecological site, but not in sufficient detail to identify which species occur on a particular urban allotment. Of 153 ecological sites 13 include trees on urban allotments. In 2015 a further survey was undertaken to identify the tree species within each urban allotment for these 13 ecological sites. © 2013 Contract Report No. 3067d In addition a 2010 survey of urban areas identified and described indigenous and exotic trees that could be of importance within the urban area. The assessment included species, height and circumference, and an assessment of biological importance (the biodiversity score), as well as other parameters. Trees were ranked highly if they were: Locally indigenous; Canopy or emergent species; Had a high national threat classification; Had slow or moderate growth rate; Were large trees; Occurred in proximity to other trees or ecological sites; Were expected to occur at that location. These were found to be appropriate criteria for selecting potential candidate species for potential protection within urban areas of the Kāpiti Coast District with the addition of the following provisos; that the species: Had low levels of natural establishment in urban environment; and Were not commonly planted in gardens. There are two threatened species that are trees. Large-leaved milk tree (Streblus banksii, At Risk-Relict) has been included as a candidate species because it is a nationally threatened tree species. A recent (2014) taxonomic revision of kānuka (Kunzea species) has resulted in the description of ten different species throughout New Zealand. One of these species occurs within Kāpiti Coast District and is considered to be nationally threatened (At Risk- Declining). However, this level of detail is not included in the 2010 Urban Tree Database (since it pre-dates the taxonomic revision) thus it is recommend that a separate study be undertaken to identify which kānuka trees in the 2010 Urban Tree Database are the nationally threatened coastal kānuka species (Kunzea amathicola), and then undertake a further variation of Schedule 3.2 to include identified kānuka. Eight options for urban tree protection have been identified and formed the basis for the options considered in the 11 August 2015 recommending report to the Kāpiti Coast Council (Document SP-15-1666). It is recommended Option 3 for ecological sites is adopted and that Schedule 3.1 of the Proposed District Plan be amended to include, for each allotment that contains part of an ecological site, a list of tree species over 4m in height. Unless Option 3 is implemented trees on urban allotments within ecological sites in the PDP will not be assured of regulatory protection. It is also recommend that Option 7 (trees in the 2010 Urban Tree Database with a biodiversity score of at least 8) is the most practical and effective option to identify urban trees that warrant protection, or for a less conservative outcome, Option 6 (trees in the 2010 Urban Tree Database with a biodiversity score of 10 or a circumference of at least 180 cm). These options are supported for the following reasons: © 2013 Contract Report No. 3067d Option 7 protects important trees that have biodiversity scores of 8 or greater but do not occur in ecological sites. This approach is supported because it captures a reasonable number of individuals of the slow growing and a greater number of specimens of rare indigenous tree species than other options considered. Many of these trees occur in groups or in proximity to ecological sites, which will assist with maintaining ecological processes and biodiversity in urban areas and helps to fulfil Proposed District Plan policy 3.12(c) with regards to buffering vegetation. Option 6 proposes to protect the highest value trees (score of 10, trunk circumference >180 cm), that do not occur in ecological sites. However, this option will, for some species include only a few individuals (less than 10 trees for 10 of the candidate species, and none for four others). A non-regulatory approach (Options 1 and 2) is not likely to effectively protect important indigenous trees, and planting of indigenous trees cannot easily replace the values of large old indigenous trees that are lost. Planted trees do not need to be protected (Option 4), because they have lower ecological value. Protecting all of the trees in the current Schedule 3.2 (Option 5) is overly onerous because it includes many fast-growing and ‘weedy’ indigenous species that do not warrant protection. Option 8 would undertake a separate evaluation of trees under Option 6 and protect qualifying evaluated trees in the notable tree schedule, but suffers from the same drawbacks as Option 6. It is therefore recommended that Option 3 (ecological sites) and Option 7 (urban trees) are adopted. It is recommended that the more pragmatic tree trimming and modification rules are adopted that includes reference to the Arboriculture Association NZ best practice guideline for trimming of important trees listed in potential Proposed District Plan Schedules 3.1 and 3.2. This is a suitable and pragmatic approach to managing significant and important trees in the urban landscape, and will assist with maintenance of biodiversity in the urban environment. On 11 August 2015 the Council voted to accept preparation of a Variation to the Proposed District Plan relating to trees on urban allotments that occur within ecological areas (Option 3), and includes most of the higher biodiversity - all candidate trees with biodiversity scores of 9 and 10. This is an intermediate position between proposed Option 6 and 7. Council also voted to accept the recommendations regarding modification and trimming of trees in urban areas. © 2013 Contract Report No. 3067d DRAFT CONTENTS EXECUTIVE SUMMARY 1 1. INTRODUCTION 1 2. ECOLOGICAL CONTEXT 2 2.1 Ecological districts 2 2.2 Ecological domains 4 2.3 Classification of New Zealand’s Terrestrial Ecosystems 4 2.4 Threatened environment classification 5 3. VALUES OF INDIGENOUS TREES IN AN URBAN ENVIRONMENT 6 3.1 Biodiversity 6 3.2 Aesthetic and economic 10 3.3 Health and environmental benefits 10 3.4 Heritage and historic values 10 4. SIGNIFICANCE OF URBAN TREES IN KĀPITI 11 4.1 Significance of ecological sites 12 4.2 Significance of large indigenous trees 12 4.3 Significance of other indigenous trees and non-indigenous trees 13 5.
Recommended publications
  • Elaeocarpus Dentatus Var. Dentatus
    Elaeocarpus dentatus var. dentatus COMMON NAME Hinau SYNONYMS Dicera dentata J.R.Forst. et G.Forst., Elaeocarpus hinau A.Cunn., Elaeocarpus cunninghamii Raoul FAMILY Elaeocarpaceae AUTHORITY Elaeocarpus dentatus (J.R.Forst. et G.Forst.) Vahl var. dentatus FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE Reikorangi Valley. Mar 1986. Photographer: ELADEN Jeremy Rolfe CHROMOSOME NUMBER 2n = 30 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION An image of hinau flowers. Photographer: DoC Canopy tree bearing harsh thin leaves that have obvious pits on the underside and with small teeth along margins. Twigs with small hairs. Adult leaves 10-12cm long by 2-3cm wide, with a sharp tip, Juvenile leaves narrower. Flowers white, lacy, in conspicuous sprays. Fruit purple, oval, 12-15mm long. DISTRIBUTION Endemic. North, and South Island as far South Westland in the west and Christchurch in the east. HABITAT Common tree of mainly coastal and lowland forest though occasionally extending into montane forest. FEATURES Tree up to 20 m tall (usually less), with broad spreading crown. Trunk 1 m diam., bark grey. Branches erect then spreading, branchlets silky hairy when young. Petioles stout, 20-25 mm long. Leaves leathery, (50-)100-120 x 20-30 mm, narrow- to obovate-oblong, broad-obovate, oblanceolate, apex obtuse or abruptly acuminate, dark green and glabrescent above, off-white, silky-hairy below; margins somewhat sinuate, recurved, serrate to subentire. Inflorescence a raceme 100-180 mm long, 8-12(-20)-flowered.
    [Show full text]
  • The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
    The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con­ considered.
    [Show full text]
  • Keystone Species: the Concept and Its Relevance for Conservation Management in New Zealand
    Keystone species: the concept and its relevance for conservation management in New Zealand SCIENCE FOR CONSERVATION 203 Ian J. Payton, Michael Fenner, William G. Lee Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright July 2002, New Zealand Department of Conservation ISSN 11732946 ISBN 047822284X This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Lynette Clelland and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Keystone concepts 6 3. Types of keystone species 8 3.1 Organisms controlling potential dominants 8 3.2 Resource providers 10 3.3 Mutualists 11 3.4 Ecosystem engineers 12 4. The New Zealand context 14 4.1 Organisms controlling potential dominants 14 4.2 Resource providers 16 4.3 Mutualists 18 4.4 Ecosystem engineers 19 5. Identifying keystone species 20 6. Implications for conservation management 21 7. Acknowledgements 22 8. References 23 4 Payton et al.Keystone species: the concept and its relevance in New Zealand Keystone species: the concept and its relevance for conservation management in New Zealand Ian J.
    [Show full text]
  • Species-Specific Basic Stem-Wood Densities for Twelve Indigenous Forest and Shrubland Species of Known Age, New Zealand
    Marden et al. New Zealand Journal of Forestry Science (2021) 51:1 https://doi.org/10.33494/nzjfs512021x121x E-ISSN: 1179-5395 published on-line: 15/02/2021 Research Article Open Access New Zealand Journal of Forestry Science Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand Michael Marden1,*, Suzanne Lambie2 and Larry Burrows3 1 31 Haronga Road, Gisborne 4010, New Zealand 2 Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand 3 Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand *Corresponding author: [email protected] (Received for publication 19 July 2019; accepted in revised form 26 January 2021) Abstract Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and nationalbasic stem-wood greenhouse densities gas accounting. derived from We a limitedaugment number existing of publishedtrees, often basic of unspecified stem-wood age density and from data a limited with new number age- old, across 21 widely-distributed sites between latitudes 35° tospecific estimate values carbon for 12stocks. indigenous forest and shrubland species, including rarely obtained values for trees <6-years and 46° S, and explore relationships commonly used Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH).
    [Show full text]
  • Plant Charts for Native to the West Booklet
    26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• ••
    [Show full text]
  • Trees for the Land
    Trees for the Land GROWING TREES IN NORTHLAND FOR PROTECTION, PRODUCTION AND PLEASURE FOREWORD Trees are an integral, highly visible and valuable part of the Northland landscape. While many of us may not give much thought to the many and varied roles of trees in our lives, our reliance on them can not be overstated. Both native and exotic tree species make important contributions to our region – environmentally, socially, culturally and economically. Pohutukawa – a coastal icon – line our coasts and are much loved and appreciated by locals and tourists alike. Similarly, many of the visitors who come here do not consider their trip complete without a journey to view the giant and majestic kauri of Waipoua, which are of huge importance to Mäori. Many Northlanders make their livings working in the forest industry or other industries closely aligned to it and trees also play a crucial role environmentally. When all these factors are considered, it makes sense that wise land management should include the planting of a variety of tree species, particularly since Northland is an erosion- prone area. Trees help stabilise Northland’s hillsides and stream banks. They help control winter flood flows and provide shelter and shade for the land, rivers and stock. They also provide valuable shelter, protection and food for Northland’s flora and fauna. This publication draws together tree planting information and advice from a wide range of sources into one handy guide. It has been written specifically for Northlanders and recommends trees that will survive well in our sometimes demanding climate. The Northland Regional Council is committed to the sustainable management and development of natural resources like our trees.
    [Show full text]
  • Germination Behaviour of Seeds of the New Zealand Woody Species Alectryon Excelsus, Corynocarpus Laevigatus, and Kunzea Ericoides
    New Zealand Journal of Botany ISSN: 0028-825X (Print) 1175-8643 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzb20 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. Burrows To cite this article: C. J. Burrows (1996) Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides , New Zealand Journal of Botany, 34:4, 489-498, DOI: 10.1080/0028825X.1996.10410129 To link to this article: http://dx.doi.org/10.1080/0028825X.1996.10410129 Published online: 31 Jan 2012. Submit your article to this journal Article views: 161 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzb20 Download by: [125.239.173.16] Date: 29 August 2017, At: 22:53 New Zealand Journal of Botany, 1996, Vol. 34:489--498 489 0028-825X/96/3404-4)489 $2.50/0 9The Royal Society of New Zealand 1996 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. BURROWS INTRODUCTION Department of Plant and Microbial Sciences This is a further contribution to a series of papers University of Canterbury describing the germination behaviour of seeds of Private Bag 4800 woody plant species in New Zealand lowland for- Christchurch, New Zealand ests in conditions similar to those that the seeds could experience in nature (cf. Burrows 1995a, 1995b). The aim of the study was to examine the germina- Abstract Germination rates, percentage germina- tion rates, numbers of seeds which germinate, and tion success, and phenomena related to germination features of the germination delay systems for freshly delay were determined for seeds of Alectryon collected seeds from wild parents.
    [Show full text]
  • Behaviour and Activity Budgeting of Reproductive Kiwi in a Fenced Population
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Behaviour and Activity Budgeting of Reproductive Kiwi in a Fenced Population A thesis presented in partial fulfilment of the requirements of the degree of Master of Science In Zoology At Massey University, Manawatu Jillana Robertson 2018 Abstract North Island brown kiwi (Apteryx mantelli) are flightless, nocturnal, usually solitary, and secretive birds, so knowledge of their behaviour is limited. In this study, I endeavoured to obtain a more detailed understanding of adult kiwi behaviour within two pest fenced areas focusing around the breeding season at the 3363 ha Maungatautari Scenic Reserve in Waikato, New Zealand. Within Maungatautari’s pest free enclosures, I attempted to determine male and female activity patterns over 24-hours from activity transmitter data; document diurnal and nocturnal behaviours of kiwi using video cameras; determine size and distribution of home ranges; and establish patterns of selection of daytime shelter types. Male kiwi were fitted with Wild Tech “chick timer” transmitters which recorded activity for the previous seven days. Incubating males spent significantly less time active than non incubating males with some activity occurring during the daytime. Non-incubating male activity duration decreased but activity as a proportion of night length increased with decreasing night length. Less active incubating males, suggesting more time caring for eggs, had more successful clutches. Female activity was recorded using an Osprey receiver/datalogger and 30x60x90 pulse activity transmitters.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • La Citeset Le Bois
    La CITES et le Bois Ce guide couvre les principales espèces de bois réglementées par la Convention sur le commerce international des espèces de faune and de flore La CITES et le Bois sauvage menacées d’extinction (CITES). Il fournit des informations sur des questions clés relatives à la mise Guide d’espèces d’arbres inscrites aux Annexes CITES en application de la Convention pour ce groupe important de plantes. Rédigé pour des non-experts, il inclut des sections individuelles couvrant les espèces trouvées en quantités importantes dans le Madeleine Groves Madeleine Groves commerce, avec les details de leurs répartitions, utilisations, parties et produits dans le commerce, et leurs noms scientifiques et communs. et Des sections supplémentaires couvrant Catherine Rutherford l’identification et le mesurage du bois, des orientations en matière de documentation CITES, et des ressources clés. shop.kew.org/kewbooksonline ISBN 978-1-84246-637-7 Madeleine Groves Catherine Rutherford 9 781842 466377 La CITES et le Bois Guide d’espèces d’arbres inscrites aux Annexes CITES Madeleine Groves Catherine Rutherford © Office fédéral de la sécurité alimentaire et des affaires vétérinaires (OSAV), Confédération suisse. Illustrations et photographies © Royal Botanic Gardens, Kew sauf si autrement mentionné dans les légendes. Les auteurs ont fait valoir leur droit à être identifiés comme étant les auteurs de ces travaux conformément à la loi du Royaume-Uni de 1988 en matière de « Copyright, Design & Patents ». Tous droits réservés. Aucune partie de la présente publication ne peut être reproduite, stockée dans un système de récupération, ou transmise, quelle que soit la forme, ou par un quelconque moyen électronique, mécanique, photocopie, enregistrement ou autre, sans le consentement écrit de l’éditeur, sauf en conformité avec les dispositions de la loi du Royaume-Uni de 1988 en matière de « Copyright, Design & Patents ».
    [Show full text]
  • Breeding Systems and Reproduction of Indigenous Shrubs in Fragmented
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Breeding systems and reproduction of indigenous shrubs in fragmented ecosystems A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy III Plant Ecology at Massey University by Merilyn F Merrett .. � ... : -- �. � Massey University Palrnerston North, New Zealand 2006 Abstract Sixteen native shrub species with various breeding systems and pollination syndromes were investigated in geographically separated populations to determine breeding systems, reproductive success, population structure, and habitat characteristics. Of the sixteen species, seven are hermaphroditic, seven dioecious, and two gynodioecious. Two of the dioecious species are cryptically dioecious, producing what appear to be perfect, hermaphroditic flowers,but that functionas either male or female. One of the study species, Raukauaanomalus, was thought to be dioecious, but proved to be hermaphroditic. Teucridium parvifolium, was thought to be hermaphroditic, but some populations are gynodioecious. There was variation in self-compatibility among the fo ur AIseuosmia species; two are self-compatible and two are self-incompatible. Self­ incompatibility was consistent amongst individuals only in A. quercifolia at both study sites, whereas individuals in A. macrophylia ranged from highly self-incompatible to self-compatible amongst fo ur study sites. The remainder of the hermaphroditic study species are self-compatible. Five of the species appear to have dual pollination syndromes, e.g., bird-moth, wind-insect, wind-animal. High levels of pollen limitation were identified in three species at fo ur of the 34 study sites.
    [Show full text]
  • A Quantitative Assessment of Shoot Flammability for 60 Tree and Shrub Species Supports Rankings Based on Expert Opinion
    CSIRO PUBLISHING International Journal of Wildland Fire 2016, 25, 466–477 http://dx.doi.org/10.1071/WF15047 A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion Sarah V. WyseA,B,G, George L. W. PerryA,C, Dean M. O’ConnellD, Phillip S. HollandD, Monique J. WrightD, Catherine L. HostedD,E, Samuel L. WhitelockD, Ian J. GearyD,F, Ke´vinJ.L.MaurinD and Timothy J. CurranD ASchool of Environment, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. BRoyal Botanic Gardens Kew, Wakehurst Place, RH17 6TN, UK. CSchool of Biological Sciences, University of Auckland, Private Bag 92019 Auckland 1142, New Zealand. DEcology Department, Lincoln University, PO Box 85084, Lincoln 7647, Canterbury, New Zealand. EWai-Ora Forest Landscapes Ltd, 48 Watsons Road, Harewood 8051, Christchurch, New Zealand. FDepartment of Geology, University of Otago, PO Box 56 Dunedin 9054, New Zealand. GCorresponding author. Email: [email protected] Abstract. Fire is an important ecological disturbance in vegetated ecosystems across the globe, and also has considerable impacts on human infrastructure. Vegetation flammability is a key bottom-up control on fire regimes and on the nature of individual fires. Although New Zealand (NZ) historically had low fire frequencies, anthropogenic fires have considerably impacted indigenous vegetation as humans used fire extensively to clear forests. Few studies of vegetation flammability have been undertaken in NZ and only one has compared the flammability of indigenous plants; this was a qualitative assessment derived from expert opinion. We addressed this knowledge gap by measuring the flammability of terminal shoots from a range of trees and shrubs found in NZ.
    [Show full text]