Keystone Species: the Concept and Its Relevance for Conservation Management in New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE UNDERCROFT We Must Expire in Hope{ of Resurrection to Life Again
THE UNDERCROFT We must Expire in hope{ of Resurrection to Life Again 1 Editorial Illu{tration{ Daniel Sell Matthew Adams - 43 Jeremy Duncan - 51, 63 Anxious P. - 16 2 Skinned Moon Daughter Cedric Plante - Cover, 3, 6, 8, 9 Benjamin Baugh Sean Poppe - 28 10 101 Uses of a Hanged Man Barry Blatt Layout Editing & De{ign Daniel Sell 15 The Doctor Patrick Stuart 23 Everyone is an Adventurer E{teemed Con{ultant{ Daniel Sell James Maliszewski 25 The Sickness Luke Gearing 29 Dead Inside Edward Lockhart 41 Cockdicktastrophe Chris Lawson 47 Nine Summits and the Matter of Birth Ezra Claverie M de in elson Ma ia S t y a it mp ic of Authent Editorial Authors live! Hitler writes a children’s book, scratches his name off and hides it among the others. Now children grow up blue and blond, unable to control their minds, the hidden taint in friendly balloons and curious caterpillars wormed itself inside and reprogrammed them into literary sleeper agents ready to steal our freedom. The swine! We never saw it coming. If only authors were dead. But if authors were dead you wouldn’t be able to find them, to sit at their side and learn all they had to say on art and beautiful things, on who is wrong and who is right, on what is allowed and what is ugly and what should be done about this and that. We would have only words and pictures on a page, if we can’t fill in the periphery with context then how will we understand anything? If they don’t tell us what to enjoy, how to correctly enjoy it, then how will we know? Who is right and who is mad? Whose ideas are poisonous and wrong? Call to arms! Stop that! Help me! We must slather ourselves in their selfish juices. -
The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con considered. -
Krill As a Keystone Species (A Case Study) Lesson 3 : Krill As a Keystone Species (A Case Study)
ECOSYSTEMS – AN ANTARCTIC CASE STUDY LESSON 3 KRILL AS A KEYSTONE SPECIES (A CASE STUDY) LESSON 3 : KRILL AS A KEYSTONE SPECIES (A CASE STUDY) LESSON OBJECTIVES Understand how organisms affect, and are affected by, their environment Interpret observations and data, including identifying patterns and using observations, measurements and data to draw conclusions Identify further questions arising from the result IN PARTNERSHIP WITH SPONSORED BY LESSON 3 : KRILL AS A KEYSTONE SPECIES (A CASE STUDY) WHY ARE KRILL IMPORTANT? Many people consider krill to be one of the most important species in Antarctica. Why do you think that is? IN PARTNERSHIP WITH SPONSORED BY LESSON 3 : KRILL AS A KEYSTONE SPECIES (A CASE STUDY) YOUR TURN! Krill are considered to be one of the most important species in the Antarctic! Why is this? On your cards you will find 6 facts about krill. Read the facts and discuss as a group (of 3 or 4). Order the facts from the most important reason to the least important to help explain why krill are important in Antarctic ecosystems. Be prepared to discuss your reasons (remember, there are no right or wrong answers in this activity, only ideas with explanations). IN PARTNERSHIP WITH SPONSORED BY LESSON 3 : KRILL AS A KEYSTONE SPECIES (A CASE STUDY) WHY ARE KRILL IMPORTANT? Phytoplankton are the main producers in the Antarctic. However, not many species can eat phytoplankton because they are so small. Krill have an excellent design for eating phytoplankton. During the summer they eat phytoplankton and during the winter they eat the algae under the sea ice. -
Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 Pp. Donovan, B. J. 2007
Donovan, B. J. 2007: Apoidea (Insecta: Hymenoptera). Fauna of New Zealand 57, 295 pp. EDITORIAL BOARD REPRESENTATIVES OF L ANDCARE R ESEARCH Dr D. Choquenot Landcare Research Private Bag 92170, Auckland, New Zealand Dr R. J. B. Hoare Landcare Research Private Bag 92170, Auckland, New Zealand REPRESENTATIVE OF UNIVERSITIES Dr R.M. Emberson c/- Bio-Protection and Ecology Division P.O. Box 84, Lincoln University, New Zealand REPRESENTATIVE OF M USEUMS Mr R.L. Palma Natural Environment Department Museum of New Zealand Te Papa Tongarewa P.O. Box 467, Wellington, New Zealand REPRESENTATIVE OF OVERSEAS I NSTITUTIONS Dr M. J. Fletcher Director of the Collections NSW Agricultural Scientific Collections Unit Forest Road, Orange NSW 2800, Australia * * * SERIES EDITOR Dr T. K. Crosby Landcare Research Private Bag 92170, Auckland, New Zealand Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 57 Apoidea (Insecta: Hymenoptera) B. J. Donovan Donovan Scientific Insect Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand [email protected] Manaaki W h e n u a P R E S S Lincoln, Canterbury, New Zealand 2007 4 Donovan (2007): Apoidea (Insecta: Hymenoptera) Copyright © Landcare Research New Zealand Ltd 2007 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic, or mechanical, including photocopying, recording, taping information retrieval systems, or otherwise) without the written permission of the publisher. Cataloguing in publication Donovan, B. J. (Barry James), 1941– Apoidea (Insecta: Hymenoptera) / B. J. Donovan – Lincoln, N.Z. : Manaaki Whenua Press, Landcare Research, 2007. (Fauna of New Zealand, ISSN 0111–5383 ; no. -
New Zealand Comprehensive III 16Th November – 2Nd December 2017 Trip Report
New Zealand Comprehensive III 16th November – 2nd December 2017 Trip Report Gibson’s Wandering Albatross off Kaikoura by Erik Forsyth Trip Report compiled by Tour Leader Erik Forsyth Rockjumper Birding Tours | New Zealand www.rockjumperbirding.com Trip Report – RBL New Zealand - Comprehensive III 2017 2 Daily Diary New Zealand is a must for the serious seabird enthusiast. Not only will you see a variety of albatrosses, petrels and shearwaters, but there are good chances of getting out on the high seas and finding something unusual. Seabirds dominate this tour, and views of most birds are right alongside the boat. There are also several land birds which are unique to these islands: the kiwis – terrestrial nocturnal inhabitants; the huge swamp-hen like takahe – prehistoric in its looks and movements; and then the wattlebirds (the saddlebacks and kokako) – poor flyers with short wings, which bound along the branches and on the ground. We had so many highlights on this tour, including close encounters with Little Spotted Kiwi, walk-away views of a pair of North Island Kokako, both North and South Island Saddlebacks and a pair of the impressive South Island Takahe. With many boat trips, the pelagic list was long, with Wandering, Northern and Southern Royal, Salvin’s, Black-browed, Campbell and White-capped Albatrosses, Westland, Cook’s and White- chinned Petrels, Buller’s, Flesh-footed and New Zealand (Red-breasted) Plover by Erik Forsyth Hutton’s Shearwaters, and Common Diving Petrel being a few of the highlights. Other major highlights included twelve New Zealand King Shag, a pair of Blue Duck with one chick, nine of the critically endangered Black Stilt, the rare Stitchbird, New Zealand Kaka, the entertaining Kea, range- restricted New Zealand Rockwren, the tiny Rifleman and lastly the striking Yellowhead, to name a few. -
Summary of Native Bat, Reptile, Amphibian and Terrestrial Invertebrate Translocations in New Zealand
Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand SCIENCE FOR CONSERVATION 303 Summary of native bat, reptile, amphibian and terrestrial invertebrate translocations in New Zealand G.H. Sherley, I.A.N. Stringer and G.R. Parrish SCIENCE FOR CONSERVATION 303 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Male Mercury Islands tusked weta, Motuweta isolata. Originally found on Atiu or Middle Island in the Mercury Islands, these were translocated onto six other nearby islands after being bred in captivity. Photo: Ian Stringer. Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright April 2010, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (PDF) ISBN 978–0–478–14771–1 (hardcopy) ISBN 978–0–478–14772–8 (PDF) This report was prepared for publication by the Publishing Team; editing by Amanda Todd and layout by Hannah Soult. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Methods 7 3. -
Plant Charts for Native to the West Booklet
26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• •• -
Ecosystem-Level Effects of Keystone Species Reintroduction: a Literature Review Sarah L
REVIEW ARTICLE Ecosystem-level effects of keystone species reintroduction: a literature review Sarah L. Hale1,2 , John L. Koprowski1 The keystone species concept was introduced in 1969 in reference to top-down regulation of communities by predators, but has expanded to include myriad species at different trophic levels. Keystone species play disproportionately large, important roles in their ecosystems, but human-wildlife conflicts often drive population declines. Population declines have resulted in the necessity of keystone species reintroduction; however, studies of such reintroductions are rare. We conducted a literature review and found only 30 peer-reviewed journal articles that assessed reintroduced populations of keystone species, and only 11 of these assessed ecosystem-level effects following reintroduction. Nine of 11 publications assessing ecosystem-level effects found evidence of resumption of keystone roles; however, these publications focus on a narrow range of species. We highlight the deficit of peer-reviewed literature on keystone species reintroductions, and draw attention to the need for assessment of ecosystem-level effects so that the presence, extent, and rate of ecosystem restoration driven by keystone species can be better understood. Key words: ecosystem restoration, ecosystem-level effects, keystone species, population declines, reintroduction species in their ecosystems. Wolves prevent ungulate overpop- Implications for Practice ulation, and in doing so prevent overbrowsing of vegetation • More research into ecosystem-level effects of keystone (McLaren & Peterson 1994), and provide scavengers with car- species reintroduction is required to fully understand if, rion in winters (Wilmers et al. 2003). Sea otters consume sea and to what extent, keystone species act as a restoration urchins (Strongylocentrotus spp.), thereby maintain the integrity tool. -
Transported Fauna and It Effects: New Zealand a Review of the Literature
University of Hawai‘i at Hilo · Hawai‘i Community College HOHONU 2012 Vol. 10 Transported Fauna and its subjective morality and ethics (Brown & Sax, 2005, p. 483). Regardless of whether the causes or the outcomes Effects: New Zealand of species invasions are good or bad, it is clear that the A Review of the Literature impact of transported fauna in New Zealand is vast. Christina Blakey, [email protected] New Zealand’s biota evolved without terrestrial English 215, Spring 2010, UHH mammals and remained isolated after it broke away from the mega-continent Gondwanaland about 65-80 Abstract million years ago (Craig et al., 2000, 62). This allowed Though they are regarded as pests all over the globe, for the native fauna of New Zealand to evolve without invasive species have the biggest impact in the island predators, and as a result, many bird species became environment. Effects of alien invaders are both swift and flightless and ground-nesting (Pryde & Cocklin, 1998). devastating, continuing on to native species decimation When humans arrived (first a predecessor of the Maori or extinction as well as landscape desertification and around 800 A.D. and then the Maori in 1350 A.D.), they erosion. In New Zealand these examples have been found a land inhabited by large ratites (large, flightless documented repeatedly; and on an island that has birds) and no terrestrial mammals. With them they evolved in isolation and without mammalian predators – brought the Polynesian rat and dog, and within the next including humans – native species have failed to develop, 800 years they decimated both the native bird population or have lost the ability to escape or defend themselves in and the native forests (Glasby & Harada, 2000, p. -
Whio/Blue Duck Recovery Plan 2009-2019
Whio/blue duck (Hymenolaimus malacorhynchos) recovery plan 2009–2019 THREATENED SPECIES RECOVERY PLAN 62 Whio/blue duck (Hymenolaimus malacorhynchos) recovery plan 2009–2019 Andrew Glaser, Paul van Klink, Graeme Elliott and Kerri-Anne Edge THREATENED SPECIES RECOVERY PLAN 62 Published by Publishing Team Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: A brood of just-hatched ducklings on the Te Waiiti Stream, Te Urewera National Park. Photo: Brenda R. Baillie. Limited copies of Threatened Species Recovery Plans are printed. Electronic copies are available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2010, New Zealand Department of Conservation ISSN 1170–3806 (hardcopy) ISSN 1170–3806 (web) ISBN 978–0–478–14840–4 (hardcopy) ISBN 978– 0–478–14841–1 (web PDF) This report was prepared for publication by the Publishing Team; editing and layout by Amanda Todd. Publication was approved by the General Manager, Research and Development Group, Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. Foreword The General Manager Operations (Northern) of the Department of Conservation (DOC) formally approved this threatened species recovery plan in June 2010. A review of the plan is due in 2017, or sooner if new information or technology leads to a significant change in management direction. This plan will remain operative until a new plan has been prepared and approved, or will become redundant if recovery is achieved and management effort enters a ‘maintenance phase’. -
Re-Establishing North Island Kākā (Nestor Meridionalis Septentrionalis
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Re-establishing North Island kākā (Nestor meridionalis septentrionalis) in New Zealand A thesis presented in fulfilment of the requirements for the degree of Master of Science In Conservation Biology Massey University Auckland, New Zealand Tineke Joustra 2018 ii For Orlando, Aurora and Nayeli “I don’t want my children to follow in my footsteps, I want them to take the path next to me and go further than I could have ever dreamt possible” Anonymous iii iv Abstract Recently there has been a global increase in concern over the unprecedented loss of biodiversity and how the sixth mass extinction event is mainly due to human activities. Countries such as New Zealand have unique ecosystems which led to the evolution of many endemic species. One such New Zealand species is the kākā (Nestor meridionalis). Historically, kākā abundance has been affected by human activities (kākā were an important food source for Māori and Europeans). Today, introduced mammalian predators are one of the main threats to wild kākā populations. Although widespread and common throughout New Zealand until the 1800’s, kākā populations on the mainland now heavily rely on active conservation management. The main methods of kākā management include pest control and re-establishments. This thesis evaluated current and past commitments to New Zealand species restoration, as well as an analysis of global Psittacine re-establishment efforts. -
Skeletal Variation in Extant Species Enables Systematic Identification of New Zealand's Large, Subfossil Diplodactylids
Scarsbrook et al. BMC Ecol Evo (2021) 21:67 BMC Ecology and Evolution https://doi.org/10.1186/s12862-021-01808-7 RESEARCH Open Access Skeletal variation in extant species enables systematic identifcation of New Zealand’s large, subfossil diplodactylids Lachie Scarsbrook1*, Emma Sherratt2, Rodney A. Hitchmough3 and Nicolas J. Rawlence1 Abstract New Zealand’s diplodactylid geckos exhibit high species-level diversity, largely independent of discernible osteologi- cal changes. Consequently, systematic afnities of isolated skeletal elements (fossils) are primarily determined by comparisons of size, particularly in the identifcation of Hoplodactylus duvaucelii, New Zealand’s largest extant gecko species. Here, three-dimensional geometric morphometrics of maxillae (a common fossilized element) was used to determine whether consistent shape and size diferences exist between genera, and if cryptic extinctions have occurred in subfossil ‘Hoplodactylus cf. duvaucelii’. Sampling included 13 diplodactylid species from fve genera, and 11 Holocene subfossil ‘H. cf. duvaucelii’ individuals. We found phylogenetic history was the most important predictor of maxilla morphology among extant diplodactylid genera. Size comparisons could only diferentiate Hoplodactylus from other genera, with the remaining genera exhibiting variable degrees of overlap. Six subfossils were positively identifed as H. duvaucelii, confrming their proposed Holocene distribution throughout New Zealand. Conversely, fve subfossils showed no clear afnities with any modern diplodactylid genera, implying either increased morphological diversity in mainland ‘H. cf. duvaucelii’ or the presence of at least one extinct, large, broad-toed diplodactylid species. Keywords: Diplodactylidae, Ecomorphology, Geometric morphometrics, Hoplodactylus duvaucelii, Taxonomy Background (e.g. coloration and scalation), with interspecifc skeletal New Zealand’s lizard fauna is characteristic of isolated variation rarely analysed.