BOTANICAL FEATURES of the MOKOHINAU ISLANDS by A.E

Total Page:16

File Type:pdf, Size:1020Kb

BOTANICAL FEATURES of the MOKOHINAU ISLANDS by A.E TANE 24, 1978 BOTANICAL FEATURES OF THE MOKOHINAU ISLANDS by A.E. Esler Botany Division, DSIR, Private Bag, Auckland SUMMARY The vegetation of the islands is very depleted. Burning and grazing have left pohutukawa {Metrosideros excelsa) and ngaio (Myoporum laetum) as the only large woody plants on Burgess Island and the neighbouring islets. Burning has promoted 2 monocots — flax (Phormium tenax) on the western islets where there is no grazing, and Scirpus nodosus (and some grassland) on Burgess Island where livestock have not allowed flax to establish. A relic piece of bush on Fanal Island is supplying seeds for the spread of forest there. The Mokohinau Islands have about 112 species of native plants and about 80 naturalised species. INTRODUCTION Perhaps the earliest written comment on the plant life of the Mokohinau Islands was by F. Sandager, a lighthouse keeper. In a paper on birds (Sandager 1889) he mentioned as prominent plants Metrosideros, Pittosporum, Myoporum, Coprosma, Hebe, Carmichaelia, Olearia, Phormium, Disphyma, the ferns Pteridium aquilinum (bracken) and Adiantum aethiopicum, and grasses and sedges. Mary E. Gillham visited the islands in August, 1957, described the plant communities, drew a generalised vegetation map, and listed the plant species (Gillham 1960). My paper supplements the earlier accounts and gives islands of occurrence for each plant species listed. The opportunity was taken to visit the islands with C.R. Veitch (Wildlife Service), A.R. Thorpe (Hauraki Gulf Maritime Park) and G. Kuschel (DSIR) from 27 February till 2 March, 1978. Two and a half days were spent in the field visiting seven islands in the group. This included about three hours on Fanal Island for which there was no previous botanical account. HISTORY There is no evidence of permanent Maori occupation of Burgess and the western islets but it is known that visits were made annually to harvest mutton birds. The lighthouse began operating in 1883 and there has been continuous occupation from that time. Goats were released at an early date and sheep and cattle have been grazed on Burgess Island. Dairy cattle still graze regions a, c, and 187 Hg. I. Map of Mokihinau Islands. 188 d (Fig. 1). During World War II Burgess Island played a role in the defence of the country. Photos in a paper on the geology of the Mokohinau Islands (Fleming 1950) show some of the buildings used by men stationed there. All the islands have been subject to burning. Gillham recorded that Burgess Island was fired about every 3 years in an attempt to suppress the tussocky sedges. She also mentioned fires on the 2 larger of the western islets in 1932 started by fishermen. From the vegetation it seems that they have been burnt many times. There is evidence of Maori occupation on Fanal Island 5km to the south-west, and the state of the vegetation suggests that there has been burning up till a few decades ago. It is likely that there are kiore (Rattus exulans) on all islands we visited. PHYSICAL FEATURES The islands are composed of pale coloured rhyolite eroded into steep cliffs on nearly all sides. Where the topography is not influenced directly by marine erosion the land has fairly gentle slopes. The lighthouse at 107m above sea level on a plug of andesite stands well above the surrounding country. This intrusion is cliffed on the seaward margin and slopes inland fairly regularly to a minor valley near the centre of Burgess Island. There is a boulder beach at the landing, a sandy beach at Maori Bay and some small rocky beaches in sheltered places on the same island and on Trig Island. VEGETATION The vegetation on all of the islands has been grossly modified. On Burgess Island grassland and communities of Scirpus nodosus predominate. Pohutukawa has persisted in a few places. The western islets are flax-dominant with pohutukawa increasing in many parts. Lizard Island is mainly shrubby. On Fanal Island enough forest escaped burning to provide the beginnings of a mixed forest. The remainder of the island has flax and shrubland. Burgess Island can be divided into 5 regions on the basis of its vegetation (see Fig. 1). a. is predominantly Scirpus nodosus, bracken and Muehlenbeckia complexa with some patches of buffalo grass (Stenotaphrum secundatum). This region contains most of the pohutukawa on the island. The 1960 air photos show forest on the headland south of Pohutukawa Gully and two trees (or clumps of trees) on the slope facing the channel nearby. This slope now has about a 50% cover of pohutukawa trees about 4m tall. Pohutukawa is establishing also in two patches between this channel and the landing. Most of the outcrops between the landing and the Blowhole have young pohutukawa trees. It seems that bracken will replace the Scirpus nodosus and this may eventually give way to pohutukawa. There is already vigorous growth of young pohutukawa in the bracken on the 189 ridge. This region has not been grazed for many years. b. is dominated by Scirpus nodosus. Some Leptocarpus similis grows along the creek on the western margin. This area is grazed. c. is almost covered in buffalo grass (Stenotaphrum secundatum) filling all the valley and crossing a line drawn between the lighthouse and the landing. South of this line there is rank mixed pasture with cocksfoot (Dactylis glomerata), paspalum (Paspalum dilatatum), prairie grass (Bromus unioloides), ratstail (Sporobolus africanus), Muehlenbeckia complexa and Scirpus nodosus. The upper slope below the lighthouse in the direction of the keepers' houses has a cover of bracken. On a scarp above the boulder beach there is a very minor patch of bush containing Coprosma macrocarpa, ngaio (Myoporum laetum), kawakawa (Macropiper excelsum), Parsonsia heterophylla, Sicyos angulata and a few ferns. This is the only community of this nature on Burgess or the adjoining islets. Buffalo grass is the dominant feature of this part of the island. It grows to a metre tall and was aptly described by Gillham as "mattresslike". Cattle graze only the more turfy parts of the sward which arc fairly limited in area. As buffalo grass spreads it eliminates nearly all other herbaceous plants in its path on wet soils and dry, in exposed places and in shelter. At the landing only a narrow strip of Muehlenbeckia complexa separates the buffalo grass from the wave-washed boulder beach. d. has a grazed mixed sward with some patches of buffalo grass. Scirpus nodosus and Cyperus ustulatus become more important on the irregular topography. The main pasture species are paspalum, cocksfoot, prairie grass, rye grass (Lolium perenne), Yorkshire fog (Holcus lanatus) and sweet vernal (Anthoxanthum odoratum). On the drought-prone rocky outcrops there are greater quantities of Notodanthonia spp., the annual grasses (Vulpia, Briza, Aira), the annual legumes (Lotus subbiflorus and /.. angustissimus), some other annuals such as allseed (Polycarpon tetraphyllum) and Portulaca oleracea together with a few natives Rhagodia triandra and ice plant (Disphyma australe). On the steep slopes inside the Cauldron ice plant and taupata (Coprosma repens) cling to the cliffs in fairly large quantities. e. has Scirpus nodosus with abundant Poa anceps (fine-leaved form), Adiantum aethiopicum, some cocksfoot and Doodia media. Cassinia retorta is prominent in a few places and there are limited patches with Notodanthonia racemosa and annual grasses. The slopes above the cliffs are rocky with Cyperus ustulatus, Scirpus nodosus, some Cassinia retorta, ice plant and a few bushes of ngaio. Goats were eliminated from this part of the island some years ago and cattle do not venture across the narrow rocky ridge which connects this region to the remainder of the island. The western islets are capped with flax and some pohutukawa. On Trig Island there are only a few pohutukawa trees. Islet 1 has more flax than pohutukawa but the small cap in Islet 2 is composed mainly of pohutukawa. The northern extension of Island 3 has more than a 50% cover of pohutukawa and is well on 190 the way to a complete cover. There is much less pohutukawa on the remainder of the island. On all of these islets stunted Scirpus nodosus with some Cassinia retorta forms small patches where the soil is too shallow for flax to flourish. On these patches and on the rocky outcrops, pohutukawa can establish freely. Where the flax is dense and up to 3 m tall pohutukawa has no chance of invading unless the flax loses vigour. There are insufficient sources of seed for Coprosma macrocarpa and ngaio to be effective in suppressing flax. It seems that most of the seeds of Coprosma macrocarpa are eaten by kiore as soon as they ripen. Where the slope changes at the top of the cliffs a few other species can be found. There is some ngaio. On Islet 3 there are two stands of ngaio, the only places on the Mokohinau Islands where the species could be mapped as a community. The cliffs provide some footholds for ice plant, taupata and Chionochloa bromoides. [The Chionochloa is referred to by Gillham as Carex sp. in error.] Lizard Island has a windswept community of taupata, ngaio and Hymenanthera novae-zelandiae to 1.5 m tall surrounding a patch of Cyperus ustulatus. In some places the islet has a turfy fringe of Salicornia australis and ice plant grading into shrubland. Fanal Island may have been grassy at one time with some bush persisting in the large gully. Shrubland and young forest have developed in some parts, and communities of flax in others. There is flax in the central valley and on the sides of the large valley near the coast. The northern valley which we did not see appears from the 1960 air photos to have flax too.
Recommended publications
  • Revision of Epuraea of New Zealand (Coleoptera: Nitidulidae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 31.xii.2017 Volume 57(2), pp. 617–644 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:1FE73D5D-3D2F-4033-B501-61318528A693 https://doi.org/10.1515/aemnp-2017-0093 Revision of Epuraea of New Zealand (Coleoptera: Nitidulidae) Josef JELÍNEK1), Richard A. B. LESCHEN2) & Jiří HÁJEK1) 1) Department of Entomology, National Museum, Cirkusová 1740, CZ-193 00 Horní Počernice, Czech Republic; e-mails: [email protected]; [email protected] 2) Maanaki Whenua, New Zealand Arthropod Collection, Private Bag 92170, Auckland, New Zealand; e-mail: [email protected] Abstract. Species of the genus Epuraea Erichson, 1845 from New Zealand are revised and redescribed. The New Zealand fauna comprises six species. One new species, Epuraea glabrata sp. nov. is described. Epuraea mayendorfi i (Reitter, 1873) is provided as a valid replacement name for Nitidula lateralis (White, 1846), not Nitidula lateralis C. R. Sahlberg, 1820. One new synonymy is proposed, Epuraea mayendorfi i (Reitter, 1873) = Epuraea zealandica Sharp, 1878, syn. nov. Key words. Coleoptera, Nitidulidae, Epuraea, taxonomy, new species, new sy- nonymies, key, New Zealand Introduction The genus Epuraea Erichson, 1843 is found worldwide (JELÍNEK et al. 2010), and as typical for many widespread beetles, has not been revised globally, though regional comprehensive studies have been completed for parts of Africa (JELÍNEK 1977, 1992), Asia (KIREJTSHUK 1988, HISAMATSU 2016), and Europe (AUDISIO 1993) and partially revised elsewhere for areas of high diversity – e.g. North America (PARSONS 1967, 1969). Species of Epuraea currently known from New Zealand were described previously by WHITE (1846), REITTER (1877), SHARP (1878) and BROUN (1880), but some valid names were neglected by many subsequent authors, such that some problems in their nomenclature and systematics remained unresolved.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • NZ BOT SOC Sept2014
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 117 September 2014 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Webmaster: Murray Dawson URL: www.nzbotanicalsociety.org.nz Subscriptions The 2014 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2014 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the December 2014 issue is 25 November 2014. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa 169 Tory St Wellington 6021 Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted.
    [Show full text]
  • TAXON:Rhopalostylis Baueri SCORE:-2.0 RATING:Low Risk
    TAXON: Rhopalostylis baueri SCORE: -2.0 RATING: Low Risk Taxon: Rhopalostylis baueri Family: Arecaceae Common Name(s): Norfolk Island palm Synonym(s): Areca baueri Hook. f. ex Lem. Eora(basionym) baueri (H. Wendl. & Drude) O. F. RhopalostylisCook cheesemanii Becc. ex Cheeseman Assessor: No Assessor Status: Assessor Approved End Date: WRA Score: -2.0 Designation: L Rating: Low Risk Keywords: Subtropical Palm, Unarmed, Shade-tolerant, Thicket-forming, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier
    [Show full text]
  • Rhopalostylis Sapida
    Rhopalostylis sapida COMMON NAME Nikau palm SYNONYMS None FAMILY Arecaceae AUTHORITY Rhopalostylis sapida H.Wendl. et Drude FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Monocotyledons NVS CODE RHOSAP CHROMOSOME NUMBER Whareroa Farm, Paekakariki. Apr 2011. 2n = 32 Photographer: Jeremy Rolfe CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION Palm to 15m tall with a ringed trunk and 3m long erect leaves inhabiting lowland forest south to Okarito and Banks Peninsula and the Chatham Islands. Leaves with multiple narrow leaflets to 1m long closely-spaced along central stem. Flowers pinkish, in multiple spikes at the top of trunk. Fruit red. DISTRIBUTION Endemic. North Island, South Island from Marlborough Sounds and Nelson south to Okarito in the west and Banks Peninsula in the east. Also on Chatham and Pitt Islands. However Chatham Islands plants have adistinct juveniel form, larger fruits, and thicker indumentum on the fronds. HABITAT Trunk of nikau. Photographer: Wayne Bennett Primarily a species of coastal to lowland forest in the warmer parts of New Zealand. FEATURES Trunk up to 15 m, stout, covered in grey-green leaf scars, otherwise green. Crownshaft 0.6(-1) m long, dark green, smooth, bulging. Fronds up to 3 m long; leaflets to 1 m, closely set (sometimes over lapping), ascending. Spathes c.300 x 150 mm., between pink and yellow, caducous. Inflorescence shortly stalked, with many branches, 200-400 mm long. Flowers sessile, unisexual, tightly packed, lilac to pink. Males in pairs, caducous, stamens 6.
    [Show full text]
  • The Palms of Monserrate, Sintra, Portugal
    Luckhurst Montserrate_Layout 1 2/9/11 12:53 PM Page 5 PALMS Luckhurst: Palms of Monserrate Vol. 55(1) 2011 The Palms of GERALD LUCKHURST Landscape Architect Monserrate, Avenida 25 de Abril, 56, Galamares, 2710-246 Sintra Sintra, Portugal Portugal [email protected] 1. Dome of Monserrate seen behind Trachycarpus fortunei and Phoenix canariensis. The garden of Monserrate in Portugal contains a wealth of fine trees planted mostly in the second half of the nineteenth century including giant Araucarias, Kauri pines, Banyans and Metrosideros. The collection of palms is particularly rich and has great historical significance since the palms at Monserrate were among the first specimens of their kind planted in the open air in Europe. Today there are some seventy or more species of palm growing at Monserrate, twenty-four of them representing historic plantings (Fig. 1). PALMS 55(1): 5–14 5 Luckhurst Montserrate_Layout 1 2/9/11 12:53 PM Page 6 PALMS Luckhurst: Palms of Monserrate Vol. 55(1) 2011 Sintra, near Lisbon, Portugal, enjoys one of arches, Roman and Renaissance sculpture, the mildest climates in Europe, comparable Chinese urns and Iznik tiles. The house, built only to the southern-most coasts of Spain and on de Visme’s gothic castle walls, was Italy and some islands of the Mediterranean. decorated in “Moorish style” with an amalgam However, its position at the western-most of Indian and Venetian and Florentine point of continental Europe gives it a wholly Renaissance details – the palace of a Nabob in Atlantic outlook with abundant winter rains the words of one visitor.
    [Show full text]
  • <I>Rhopalostylis Sapida</I>
    MYCOTAXON Volume 111, pp. 155–160 January–March 2010 Two new dictyosporous hyphomycetes on Rhopalostylis sapida (Arecaceae) in New Zealand Eric H.C. McKenzie [email protected] Landcare Research, Private Bag 92170, Auckland, New Zealand Abstract—Dictyosporium hughesii sp. nov. and D. rhopalostylidis sp. nov., found on dead leaves of the palm, Rhopalostylis sapida in New Zealand are illustrated and described and compared with related taxa. Key words—anamorphic fungi, taxonomy Introduction The palm genusRhopalostylis contains two taxa: R. baueri (endemic to Norfolk Island and to Raoul Island, Kermadec Islands) and the world’s southern-most palm, R. sapida (endemic to mainland New Zealand). Palms are a favourable substrate for microfungi, and many species have been described from them (Taylor & Hyde 2003, McKenzie 2009). While examining dead leaf tissues of R. sapida, two new species of Dictyosporium were found. One of the new species (based on herbarium specimen PDD 20966) was previously recorded on R. sapida under the name D. elegans Corda (McKenzie et al. 2004). Several species of Dictyosporium have been recorded on palms in various parts of the world. Of the 22 species of Dictyosporium accepted by Goh et al. (1999), eight (D. alatum Emden, D. campaniforme Matsush., D. cocophylum Bat., D. digitatum J.L. Chen et al., D. elegans, D. heptasporum (Garov.) Damon, D. subramanianii B. Sutton, D. tetraseriale Goh et al.) were listed on palms. Materials and methods Portions of leaf sheath from dead, fallen fronds of nikau palm (Rhopalostylis sapida) were collected from the forest floor. The plant material was incubated under humid conditions and periodically examined for sporulating microfungi.
    [Show full text]
  • "How Can We Weave in a Strange Land?" Niuean Weavers in Auckland Author(S): Hilke Thode-Arora Source: Pacific Arts, New Series, Vol
    Pacific Arts Association "How Can We Weave in a Strange Land?" Niuean Weavers in Auckland Author(s): Hilke Thode-Arora Source: Pacific Arts, New Series, Vol. 3/5, HYBRID TEXTILES: PRAGMATIC CREATIVITY AND AUTHENTIC INNOVATIONS IN PACIFIC CLOTH (2007), pp. 46-59 Published by: Pacific Arts Association Stable URL: http://www.jstor.org/stable/23412049 Accessed: 06-03-2018 00:16 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Pacific Arts Association is collaborating with JSTOR to digitize, preserve and extend access to Pacific Arts This content downloaded from 130.182.24.113 on Tue, 06 Mar 2018 00:16:01 UTC All use subject to http://about.jstor.org/terms 46 NS .ois. 3-5,2007 "How"How CanCan We We Weave Weave in ina Strangea Strange Land?" Niuean Weavers in Auckland Hilke Thode'Arora, Eth.nologisch.es Museum, Berlin Do you know that song 'Rivers of Babylon' by Boney M..? That while line the other inhabitants are Palagi or Pacific Islanders of dif 'How can we sing the Lord's song in a strange landV This is exactly ferent origin. how we felt in New Zealand: how can we weave in a strange land? Relatively little is known about pre-European Niuean society.
    [Show full text]
  • Invasive Plants: Changing the Landscape of America
    Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 1998 Invasive Plants: Changing the Landscape of America Federal Interagency Committee for the Management of Noxious and Exotic Weeds Randy G. Westbrooks Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Environmental Indicators and Impact Assessment Commons Recommended Citation Federal Interagency Committee for the Management of Noxious and Exotic Weeds and Westbrooks, Randy G., "Invasive Plants: Changing the Landscape of America" (1998). All U.S. Government Documents (Utah Regional Depository). Paper 490. https://digitalcommons.usu.edu/govdocs/490 This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DISCLAIMER This document COlltains . tone-on-tone or color graphs, charts and/or pictuTes Wllicll l1ave been reproduced in black and white. disk 1 cvrtone. FC'defn I In tcra ~'i('n('v Comlnitt(>C' for the { .' Mlln;H',cment of (lnd Exotic t 1 I), PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE Cataloging-in-Publication Data Westbrooks, Randy G., 1953- Invasive plants: changing the landscape of America: fact book! [senior author, Randy Westbrooks]. -- Washington, D.C.: Federal Interagency Committee for the Management of Noxious and Exotic Weeds, 1998. [vi], 107 p.: col. Ill.; 28 cm.
    [Show full text]
  • Studies on Industrially Important Guttiferae and Palmae Family
    Journal of Pharmacognosy and Phytochemistry 2016; 5(6): 194-198 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Studies on industrially important Guttiferae and JPP 2016; 5(6): 194-198 Palmae family Received: 18-05-2016 Accepted: 19-06-2016 Kembavimath M Kotraswamy Kembavimath M Kotraswamy, Irfan N Shaikh, Rajasaheb F Ankalgi, Department of Chemistry, G.S. Shamsunnisa R Ankalgi, Imran N Shaikh and Umar Farooq Bagwan Science College, Belgaum, India Abstract Irfan N Shaikh Department of Chemistry, The Garcinia mangostana seed oil contains 56.2% oleic acid and 6.4% linoleic acid. The palmitic SECAB Institute of Engineering (14.8%) and stearic acid (9.0%) are major components amongst the saturated acids with smaller amounts & Technology, Vijayapura, India of capric (0.9%), lauric (2.2%), myristic (6.6%) and arachidic (3.9%). Moreover, Phoenix sylvestris, cerita mistis, chrysalidocarpus lutescens, Washingtonia filifera and phoenix rupicola belong to palmae Rajasaheb F Ankalgi family and could be compared with the oils rich in lauric acid such as cinnamon and palm kernel oils (80- Essar Laboratories and Research 90% and 45-58% respectively). Centre, Hubli, India Keywords: Guttiferae, Palmae, fatty acid, industrially important Shamsunnisa R Ankalgi Essar Laboratories and Research 1. Introduction Centre, Hubli, India One of the important facts of plants is their diverse pool of fatty acids. The oil seeds contains Imran N Shaikh particular fatty acids with industrially important because of their characteristic properties. The Department of Chemistry, main constituent of all the oils is the fatty acids which may include saturated, monounsaturated Mahatma Gandhi PU Science and polyunsaturated fatty acid that contribute in human physiology in different ways [1].
    [Show full text]
  • Biological Technical Report for the California Grand Village Project
    Biological Technical Report for the California Grand Village Project Prepared for: CVGA Partners, LLC 1209 Santiago Drive Newport Beach, California 92660 Contact: Drew Purvis Prepared by: Carlson Strategic Land Solutions 327134A Paseo Espada, Suite 323 San Juan Capistrano, CA 92675 Phone: (949) 542-7042 Contact: Brianna Bernard September 2018 Biological Technical Report for the California Grand Village Project TABLE OF CONTENTS Acronyms, Abbreviations, and Glossary of Terms ....................................................................... iv 1.0 Introduction ............................................................................................................. 1 1.1 Purpose and Approach..........................................................................................1 1.2 Project Terms ........................................................................................................1 1.3 Project Location ....................................................................................................1 1.4 Existing Land Use ..................................................................................................2 2.0 Project Description ................................................................................................... 3 3.0 Regulatory Context ................................................................................................... 4 3.1 Federal Laws and Regulations...............................................................................4 3.2 California State Laws and
    [Show full text]
  • 'Alexander Palm' Or
    Palms for San Diego Archontophoenix alexandrae 40’ ‘Alexander Palm’ or ‘King Alexander Palm’ - Beautiful feather palm, more unusual than ‘cunninghamiana’, however the leaf is slightly shorter, 8’-10’. Archontophoenix cunninghamiana (Seaforthia Elegans) 40’ ‘Piccabeen’ or ‘King Palm’ - Feather leaf palm, moderate growing. Leaves to about 10’-12’ long, drop off clean. Bright red seeds on trunk. Sun or part shade. Areca catechu 20’ ‘Betel’ or ‘Betel Nut Palm’ - Feather leaf palm with very slender trunk. Slow growing and cold sensitive, protect in colder areas. Most often used indoors, although it is not always available here. Arecastrum romanzoffpianum (Cocos plumosae & Syagrus romanzoffiana) 50’-60’ ‘Queen Palm’ – Large feather leaf palm, very popular in this area. Fast growing when young, slowing with age. Very large leaves to 10’-15’ long. Very easy to grow. Bismarkia nobilis (Modrrnia nobilis) 40’-50’ around here, reported 100’ in habitat ‘Bismark Palm’ – Rare, very large fan shaped leaves, as much as 8’ in diameter. Leaf color is unusual and varies, but mostly has an intriguing blue-gray color. It is very striking if you have the room. Slower growing but worth the wait. Brahea armata (Erythea armata, E roezlii) 40 ‘Blue Hesper Palm’, ‘Mexican Blue Palm’ – Fan shaped leaf form very full head as tree matures. The palm forms a very stout trunk that may reach up to 2’ in diameter. Slow growing with beautiful blue-green leaves. Blooms are very long and arch down. Brahea brandegeei (Erythea brandegeei) 80’ ‘San Jose Hesper Palm’ – Fan leaf, faster growing than ‘armata’ but a little more unusual (harder to find).
    [Show full text]