Biological Technical Report for the California Grand Village Project

Total Page:16

File Type:pdf, Size:1020Kb

Biological Technical Report for the California Grand Village Project Biological Technical Report for the California Grand Village Project Prepared for: CVGA Partners, LLC 1209 Santiago Drive Newport Beach, California 92660 Contact: Drew Purvis Prepared by: Carlson Strategic Land Solutions 327134A Paseo Espada, Suite 323 San Juan Capistrano, CA 92675 Phone: (949) 542-7042 Contact: Brianna Bernard September 2018 Biological Technical Report for the California Grand Village Project TABLE OF CONTENTS Acronyms, Abbreviations, and Glossary of Terms ....................................................................... iv 1.0 Introduction ............................................................................................................. 1 1.1 Purpose and Approach..........................................................................................1 1.2 Project Terms ........................................................................................................1 1.3 Project Location ....................................................................................................1 1.4 Existing Land Use ..................................................................................................2 2.0 Project Description ................................................................................................... 3 3.0 Regulatory Context ................................................................................................... 4 3.1 Federal Laws and Regulations...............................................................................4 3.2 California State Laws and Regulations ..................................................................4 3.3 Local Plans/Regulations ........................................................................................4 3.4 Regulatory Permits................................................................................................4 4.0 Survey and Methods ................................................................................................. 5 4.1 Literature Review ..................................................................................................5 4.1.1 Sensitive Plant Communities .................................................................5 4.1.2 Critical Habitat .......................................................................................5 4.1.3 Special Status Plants and Wildlife ..........................................................6 4.1.4 Jurisdictional Waters ..............................................................................7 4.2 Biological Survey ...................................................................................................8 4.2.1 General Biological Survey ......................................................................8 4.2.2 Tree Survey ............................................................................................8 4.3 Jurisdictional Delineation ......................................................................................8 5.0 Results .................................................................................................................... 11 5.1 Vegetation Communities ................................................................................... 11 5.1.1 Ornamental ......................................................................................... 11 5.1.2 Golf Course.......................................................................................... 12 5.1.3 Developed/Disturbed.......................................................................... 12 5.2 Plants .................................................................................................................. 12 5.3 Critical Habitat ................................................................................................... 13 5.4 Wildlife ............................................................................................................... 13 5.4.1 Wildlife Species Observed or Detected .............................................. 15 5.5 Regional Connectivity/Wildlife Movement ....................................................... 15 5.5.1 Wildlife Movement within the Study Area ......................................... 17 September 2018 i Biological Technical Report for the California Grand Village Project 5.6 Jurisdictional Areas ............................................................................................ 17 5.7 Soils Mapping ..................................................................................................... 17 6.0 Project Impacts ....................................................................................................... 17 6.1 Impacts to Vegetation Communities/Habitats .................................................. 18 6.2 Potential Impacts to Special Status Plants ......................................................... 19 6.3 Potential Impacts to Critical Habitat .................................................................. 19 6.4 Potential Impacts to Special Status Wildlife ...................................................... 19 6.5 Potential Impacts to Wildlife Movement .......................................................... 21 6.6 Potential Impacts to Jurisdictional Features ...................................................... 21 7.0 BMPs/PDFs Incorporated into the Project and MMRP ............................................ 22 8.0 Proposed Mitigation ............................................................................................... 23 8.1 Wildlife Species .................................................................................................. 23 9.0 Cumulative Impacts ................................................................................................ 24 10.0 Literature Cited ....................................................................................................... 25 TABLES Table 1. Vegetation Communities Observed within the Project Site ........................................... 11 Table 2. Approximate Acreage of Potential Impacts to Vegetation ............................................. 18 Table 3 Impact Analysis Summary for Special Status Species ...................................................... 19 FIGURES Figure 1 Regional Map Figure 2 Project Vicinity Map Figure 3 CNDDB Occurrences Figure 4 Critical Habitat Map Figure 5 Vegetation Map Figure 6 Soils Map Figure 7 Vegetation Communities Impacts Map APPENDICES Appendix A California Grand Village Arborist Report Appendix B Representative Photographs of Community Classification September 2018 ii Biological Technical Report for the California Grand Village Project Appendix C Special Status Plant Species Potential Occurrence Determination Appendix D Plant Species Recorded During the Field Surveys Appendix E Special Status Wildlife Species Potential Occurrence Determination September 2018 iii Biological Technical Report for the California Grand Village Project ACRONYMS, ABBREVIATIONS, AND GLOSSARY OF TERMS BLM United States Bureau of Land Management BMPs Best Management Practices CDF California Department of Forestry and Fire Protection CDFW California Department of Fish and Wildlife CESA California Endangered Species Act CEQA California Environmental Quality Act CNDDB California Natural Diversity Database CNPS California Native Plant Society Corps United States Army Corps of Engineers CRPR California Rare Plant Rank CWA Clean Water Act FESA Federal Endangered Species Act FGC California Fish and Game Code GPS Global Positioning System I-210 Interstate 210 LBV least Bell’s vireo MBTA Migratory Bird Treaty Act MMRP Mitigation, Monitoring, and Reporting Program NEPA National Environmental Protection Act NHD National Hydrography Dataset NPDES National Pollutant Discharge Elimination System NPPA Native Plant Protection Act NRCS Natural Resources Conservation Service NWI National Wetlands Inventory OHWM Ordinary High Water Mark Project California Grand Village Senior Village Project RWQCB Regional Water Quality Control Board SAA Section 1600 Streambed Alteration Agreement SLS Carlson Strategic Land Solutions SWPPP Storm Water Pollution Prevention Plan U.S. United States USFS United States Forest Service September 2018 iv Biological Technical Report for the California Grand Village Project USFWS United States Fish and Wildlife Service USGS United States Geological Survey WQC Section 401 Water Quality Certification September 2018 v Biological Technical Report for the California Grand Village Project 1.0 Introduction On behalf of California Grand Village (CGV) team and the California Grand Village Senior Village Project (Project), Carlson Strategic Land Solutions (SLS) has prepared this Biological Technical Report, which incorporates the findings from the field survey conducted by SLS biologist on May 23, 2017 and the Arborist Report performed by Dudek on February 13, 2017 and updated in August 2018 (Appendix A). This report provides a Technical Study for the approximately 19-acre Project site and surrounding 200-foot survey buffer, collectively known as the “Study Area.” 1.1 Purpose and Approach This report provides a summary of the conditions present during the 2017 survey, an assessment of the potential presence of sensitive biological resources, an analysis of the potential impacts to those resources due to Project implementation, and proposed mitigation. This report describes the current biological resources present within the Study Area including habitat communities, jurisdictional waters, and the potential
Recommended publications
  • Hydrology and Water Quality Modeling of the Santa Monica Bay Watershed
    JULY 2009 19. Hydrology and Water Quality Modeling of the Santa Monica Bay Watershed Jingfen Sheng John P. Wilson Acknowledgements: Financial support for this work was provided by the San Gabriel and Lower Los Angeles Rivers and Mountains Conservancy, as part of the “Green Visions Plan for 21st Century Southern California” Project. The authors thank Jennifer Wolch for her comments and edits on this paper. The authors would also like to thank Eric Stein, Drew Ackerman, Ken Hoffman, Wing Tam, and Betty Dong for their timely advice and encouragement. Prepared for: San Gabriel and Lower Los Angeles Rivers and Mountains Conservancy 100 N. Old San Gabriel Canyon Road Azusa, CA 91702. Preferred Citation: Sheng, J., and Wilson, J.P., 2009. The Green Visions Plan for 21st Century Southern California: 18, Hydrology and Water Quality Modeling for the Santa Monica Bay Watershed. University of Southern California GIS Research Laboratory, Los Angeles, California. This report was printed on recycled paper. The mission of the Green Visions Plan for 21st Century Southern California is to offer a guide to habitat conservation, watershed health and recreational open space for the Los Angeles metropolitan region. The Plan will also provide decision support tools to nurture a living green matrix for southern California. Our goals are to protect and restore natural areas, restore natural hydrological function, promote equitable access to open space, and maximize support via multiple-use facilities. The Plan is a joint venture between the University of Southern California and the San Gabriel and lower Los Angeles Rivers and Mountains Conservancy, Santa Monica Mountains Conservancy, Coastal Conservancy, and Baldwin Hills Conservancy.
    [Show full text]
  • 16. Watershed Assets Assessment Report
    16. Watershed Assets Assessment Report Jingfen Sheng John P. Wilson Acknowledgements: Financial support for this work was provided by the San Gabriel and Lower Los Angeles Rivers and Mountains Conservancy and the County of Los Angeles, as part of the “Green Visions Plan for 21st Century Southern California” Project. The authors thank Jennifer Wolch for her comments and edits on this report. The authors would also like to thank Frank Simpson for his input on this report. Prepared for: San Gabriel and Lower Los Angeles Rivers and Mountains Conservancy 900 South Fremont Avenue, Alhambra, California 91802-1460 Photography: Cover, left to right: Arroyo Simi within the city of Moorpark (Jaime Sayre/Jingfen Sheng); eastern Calleguas Creek Watershed tributaries, classifi ed by Strahler stream order (Jingfen Sheng); Morris Dam (Jaime Sayre/Jingfen Sheng). All in-text photos are credited to Jaime Sayre/ Jingfen Sheng, with the exceptions of Photo 4.6 (http://www.you-are- here.com/location/la_river.html) and Photo 4.7 (digital-library.csun.edu/ cdm4/browse.php?...). Preferred Citation: Sheng, J. and Wilson, J.P. 2008. The Green Visions Plan for 21st Century Southern California. 16. Watershed Assets Assessment Report. University of Southern California GIS Research Laboratory and Center for Sustainable Cities, Los Angeles, California. This report was printed on recycled paper. The mission of the Green Visions Plan for 21st Century Southern California is to offer a guide to habitat conservation, watershed health and recreational open space for the Los Angeles metropolitan region. The Plan will also provide decision support tools to nurture a living green matrix for southern California.
    [Show full text]
  • Watershed Summaries
    Appendix A: Watershed Summaries Preface California’s watersheds supply water for drinking, recreation, industry, and farming and at the same time provide critical habitat for a wide variety of animal species. Conceptually, a watershed is any sloping surface that sheds water, such as a creek, lake, slough or estuary. In southern California, rapid population growth in watersheds has led to increased conflict between human users of natural resources, dramatic loss of native diversity, and a general decline in the health of ecosystems. California ranks second in the country in the number of listed endangered and threatened aquatic species. This Appendix is a “working” database that can be supplemented in the future. It provides a brief overview of information on the major hydrological units of the South Coast, and draws from the following primary sources: • The California Rivers Assessment (CARA) database (http://www.ice.ucdavis.edu/newcara) provides information on large-scale watershed and river basin statistics; • Information on the creeks and watersheds for the ESU of the endangered southern steelhead trout from the National Marine Fisheries Service (http://swr.ucsd.edu/hcd/SoCalDistrib.htm); • Watershed Plans from the Regional Water Quality Control Boards (RWQCB) that provide summaries of existing hydrological units for each subregion of the south coast (http://www.swrcb.ca.gov/rwqcbs/index.html); • General information on the ecology of the rivers and watersheds of the south coast described in California’s Rivers and Streams: Working
    [Show full text]
  • Southern Steelhead Populations Are in Danger of Extinction Within the Next 25-50 Years, Due to Anthropogenic and Environmental Impacts That Threaten Recovery
    SOUTHERN CALIFORNIA STEELHEAD Oncorhynchus mykiss irideus Critical Concern. Status Score = 1.9 out of 5.0. Southern steelhead populations are in danger of extinction within the next 25-50 years, due to anthropogenic and environmental impacts that threaten recovery. Since its listing as an Endangered Species in 1997, southern steelhead abundance remains precariously low. Description: Southern steelhead are similar to other steelhead and are distinguished primarily by genetic and physiological differences that reflect their evolutionary history. They also exhibit morphometric differences that distinguish them from other coastal steelhead in California such as longer, more streamlined bodies that facilitate passage more easily in Southern California’s characteristic low flow, flashy streams (Bajjaliya et al. 2014). Taxonomic Relationships: Rainbow trout (Oncorhynchus mykiss) historically populated all coastal streams of Southern California with permanent flows, as either resident or anadromous trout, or both. Due to natural events such as fire and debris flows, and more recently due to anthropogenic forces such as urbanization and dam construction, many rainbow trout populations are isolated in remote headwaters of their native basins and exhibit a resident life history. In streams with access to the ocean, anadromous forms are present, which have a complex relationship with the resident forms (see Life History section). Southern California steelhead, or southern steelhead, is our informal name for the anadromous form of the formally designated Southern California Coast Steelhead Distinct Population Segment (DPS). Southern steelhead occurring below man-made or natural barriers were distinguished from resident trout in the Endangered Species Act (ESA) listing, and are under different jurisdictions for purposes of fisheries management although the two forms typically constitute one interbreeding population.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Los Angeles County
    Steelhead/rainbow trout resources of Los Angeles County Arroyo Sequit Arroyo Sequit consists of about 3.3 stream miles. The arroyo is formed by the confluence of the East and West forks, from where it flows south to enter the Pacific Ocean east of Sequit Point. As part of a survey of 32 southern coastal watersheds, Arroyo Sequit was surveyed in 1979. The O. mykiss sampled were between about two and 6.5 inches in length. The survey report states, “Historically, small steelhead runs have been reported in this area” (DFG 1980). It also recommends, “…future upstream water demands and construction should be reviewed to insure that riparian and aquatic habitats are maintained” (DFG 1980). Arroyo Sequit was surveyed in 1989-1990 as part of a study of six streams originating in the Santa Monta Mountains. The resulting report indicates the presence of steelhead and states, “Low streamflows are presently limiting fish habitat, particularly adult habitat, and potential fish passage problems exist…” (Keegan 1990a, p. 3-4). Staff from DFG surveyed Arroyo Sequit in 1993 and captured O. mykiss, taking scale and fin samples for analysis. The individuals ranged in length between about 7.7 and 11.6 inches (DFG 1993). As reported in a distribution study, a 15-17 inch trout was observed in March 2000 in Arroyo Sequit (Dagit 2005). Staff from NMFS surveyed Arroyo Sequit in 2002 as part of a study of steelhead distribution. An adult steelhead was observed during sampling (NMFS 2002a). Additional documentation of steelhead using the creek between 2000-2007 was provided by Dagit et al.
    [Show full text]
  • NZ BOT SOC Sept2014
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 117 September 2014 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Webmaster: Murray Dawson URL: www.nzbotanicalsociety.org.nz Subscriptions The 2014 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2014 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the December 2014 issue is 25 November 2014. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa 169 Tory St Wellington 6021 Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted.
    [Show full text]
  • Issue Bibliography
    Issue Bibliography Abbott, C.C. Anderson, Eugene N., Jr. 1879 Artifact Descriptions. In, Report Upon 1964 A Bibliography of the Chumash and Their United States Geographical Surveys West of Predecessors. University of California the One Hundredth Meridian. 7(1):49-116, Archaeological Survey Annual Reports 61: 122-239 (Mortars and pestles are discussed 25-74. Berkeley. on pp. 70-92). U.S. Government Printing Office, Washington. Armstrong, Douglas V. 1985 Archaeology on San Clemente Island, Allen, Larry G. Summer 1985. Ms. on file, Natural Resources 1985 A Habitat Analysis of Nearshore Marine Office, Naval Air Station North Island, San Fisheries from Southern California. Bulletin Diego. of the Southern California Academy of Sciences 84(3):134-155. Los Angeles. Axford, L. Michael 1975 Archaeological Research on San Clemente Alliot, Hector Island, California (Research proposal 1915 Burial Methods of the Southern California submitted to Naval Undersea Center, San Islanders. Bulletin of the Southern California Diego, California). Ms. on file, Natural Academy of Sciences 14(2). Los Angeles. Resources Office, Naval Air Station North (Reprinted in Masterkey 43(4): 125-131. Island, San Diego. Southwest Museum, Los Angeles, 1969) 1976 Archaeological Research on San Clemente 1917 Prehistoric use of bitumen in Southern Island, Progress Report. Ms. on file, Natural California. Bulletin of the Southern Califor- Resources Office, Naval Air Station North nia Academy of Sciences 16(2). Los Angeles. Island, San Diego. 1969 (see 1915) 1977 Archaeological Research on San Clemente Island, Progress Report. Ms. on file, Natural Ames, Jack A. Resources Office, Naval Air Station North 1972 California Sheephead. Ms. On file, California Island, San Diego.
    [Show full text]
  • BOTANICAL FEATURES of the MOKOHINAU ISLANDS by A.E
    TANE 24, 1978 BOTANICAL FEATURES OF THE MOKOHINAU ISLANDS by A.E. Esler Botany Division, DSIR, Private Bag, Auckland SUMMARY The vegetation of the islands is very depleted. Burning and grazing have left pohutukawa {Metrosideros excelsa) and ngaio (Myoporum laetum) as the only large woody plants on Burgess Island and the neighbouring islets. Burning has promoted 2 monocots — flax (Phormium tenax) on the western islets where there is no grazing, and Scirpus nodosus (and some grassland) on Burgess Island where livestock have not allowed flax to establish. A relic piece of bush on Fanal Island is supplying seeds for the spread of forest there. The Mokohinau Islands have about 112 species of native plants and about 80 naturalised species. INTRODUCTION Perhaps the earliest written comment on the plant life of the Mokohinau Islands was by F. Sandager, a lighthouse keeper. In a paper on birds (Sandager 1889) he mentioned as prominent plants Metrosideros, Pittosporum, Myoporum, Coprosma, Hebe, Carmichaelia, Olearia, Phormium, Disphyma, the ferns Pteridium aquilinum (bracken) and Adiantum aethiopicum, and grasses and sedges. Mary E. Gillham visited the islands in August, 1957, described the plant communities, drew a generalised vegetation map, and listed the plant species (Gillham 1960). My paper supplements the earlier accounts and gives islands of occurrence for each plant species listed. The opportunity was taken to visit the islands with C.R. Veitch (Wildlife Service), A.R. Thorpe (Hauraki Gulf Maritime Park) and G. Kuschel (DSIR) from 27 February till 2 March, 1978. Two and a half days were spent in the field visiting seven islands in the group.
    [Show full text]
  • Invasive Plants: Changing the Landscape of America
    Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 1998 Invasive Plants: Changing the Landscape of America Federal Interagency Committee for the Management of Noxious and Exotic Weeds Randy G. Westbrooks Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Environmental Indicators and Impact Assessment Commons Recommended Citation Federal Interagency Committee for the Management of Noxious and Exotic Weeds and Westbrooks, Randy G., "Invasive Plants: Changing the Landscape of America" (1998). All U.S. Government Documents (Utah Regional Depository). Paper 490. https://digitalcommons.usu.edu/govdocs/490 This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DISCLAIMER This document COlltains . tone-on-tone or color graphs, charts and/or pictuTes Wllicll l1ave been reproduced in black and white. disk 1 cvrtone. FC'defn I In tcra ~'i('n('v Comlnitt(>C' for the { .' Mlln;H',cment of (lnd Exotic t 1 I), PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE Cataloging-in-Publication Data Westbrooks, Randy G., 1953- Invasive plants: changing the landscape of America: fact book! [senior author, Randy Westbrooks]. -- Washington, D.C.: Federal Interagency Committee for the Management of Noxious and Exotic Weeds, 1998. [vi], 107 p.: col. Ill.; 28 cm.
    [Show full text]
  • The Disintegration of the Scrophulariaceae and the Biological Control of Buddleja Davidii
    The disintegration of the Scrophulariaceae and the biological control of Buddleja davidii M.K. Kay,1 B. Gresham,1 R.L. Hill2 and X. Zhang3 Summary The woody shrub buddleia, Buddleja davidii Franchet, is an escalating weed problem for a number of resource managers in temperate regions. The plant’s taxonomic isolation within the Buddlejaceae was seen as beneficial for its biological control in both Europe and New Zealand. However, the re- cent revision of the Scrophulariaceae has returned Buddleja L. to the Scrophulariaceae sensu stricto. Although this proved of little consequence to the New Zealand situation, it may well compromise Eu- ropean biocontrol considerations. Host-specificity tests concluded that the biocontrol agent, Cleopus japonicus Wingelmüller (Coleoptera, Curculionidae), was safe to release in New Zealand. This leaf- feeding weevil proved capable of utilising a few non-target plants within the same clade as Buddleja but exhibited increased mortality and development times. The recent release of the weevil in New Zealand offers an opportunity to safely assess the risk of this agent to European species belonging to the Scrophulariaceae. Keywords: Cleopus, Buddleja, taxonomic revision, phylogeny. Introduction there is no significant soil seed bank. The seed germi- nates almost immediately, and the density and rapid There are approximately 90 species of Buddleja L. early growth of buddleia seedlings suppresses other indigenous to the Americas, Asia and Africa (Leeu- pioneer species (Smale, 1990). wenberg, 1979), and a number have become natural- As a naturalized species, buddleia is a shade-intolerant ized outside their native ranges (Holm et al., 1979). colonizer of urban wastelands, riparian margins and Buddleia, Buddleja davidii Franchet, in particular, is an other disturbed sites, where it may displace indigenous escalating problem for resource managers in temperate species, alter nutrient dynamics and impede access regions and has been identified as a target for classi- (Smale, 1990; Bellingham et al., 2005).
    [Show full text]
  • The Risk of Injurious and Toxic Plants Growing in Kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María De Los Ángeles Rueda, and Melina Calfuán
    Consequences of the Loss of Traditional Knowledge: The risk of injurious and toxic plants growing in kindergartens Vanesa Pérez Cuadra, Viviana Cambi, María de los Ángeles Rueda, and Melina Calfuán Education Abstract The plant kingdom is a producer of poisons from a vari- ered an option for people with poor education or low eco- ety of toxic species. Nevertheless prevention of plant poi- nomic status or simply as a religious superstition (Rates sonings in Argentina is disregarded. As children are more 2001). affected, an evaluation of the dangerous plants present in kindergartens, and about the knowledge of teachers in Man has always been attracted to plants whether for their charge about them, has been conducted. Floristic inven- beauty or economic use (source of food, fibers, dyes, etc.) tories and semi-structured interviews with teachers were but the idea that they might be harmful for health is ac- carried out at 85 institutions of Bahía Blanca City. A total tually uncommon (Turner & Szcawinski 1991, Wagstaff of 303 species were identified, from which 208 are consid- 2008). However, poisonings by plants in humans repre- ered to be harmless, 66 moderately and 29 highly harm- sent a significant percentage of toxicological consulta- ful. Of the moderately harmful, 54% produce phytodema- tions (Córdoba et al. 2003, Nelson et al. 2007). titis, and among the highly dangerous those with alkaloids and cyanogenic compounds predominate. The number of Although most plants do not have any known toxins, there dangerous plants species present in each institution var- is a variety of species with positive toxicological studies ies from none to 45.
    [Show full text]