4| the Plant Lists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 84 JUNE 2006 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2006 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2006 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the September 2006 issue is 25 August 2006 Please post contributions to: Joy Talbot 17 Ford Road Christchurch 8002 Send email contributions to [email protected] or [email protected]. Files are preferably in MS Word (Word XP or earlier) or saved as RTF or ASCII. -
The New Zealand Rain Forest: a Comparison with Tropical Rain Forest! J
The New Zealand Rain Forest: A Comparison with Tropical Rain Forest! J. W. DAWSON2 and B. V. SNEDDON2 ABSTRACT: The structure of and growth forms and habits exhibited by the New Zealand rain forest are described and compared with those of lowland tropical rain forest. Theories relating to the frequent regeneration failure of the forest dominants are outlined. The floristic affinities of the forest type are discussed and it is suggested that two main elements can be recognized-lowland tropical and montane tropical. It is concluded that the New Zealand rain forest is comparable to lowland tropical rain forest in structure and in range of special growth forms and habits. It chiefly differs in its lower stature, fewer species, and smaller leaves. The floristic similarity between the present forest and forest floras of the Tertiary in New Zealand suggest that the former may be a floristically reduced derivative of the latter. PART 1 OF THIS PAPER describes the structure The approximate number of species of seed and growth forms of the New Zealand rain plants in these forests is 240. From north to forest as exemplified by a forest in the far north. south there is an overall decrease in number of In Part 2, theories relating to the regeneration species. At about 38°S a number of species, of the dominant trees in the New Zealand rain mostly trees and shrubs, drop out or become forest generally are reviewed briefly, and their restricted to coastal sites, but it is not until about relevance to the situation in the study forest is 42°S, in the South Island, that many of the con considered. -
Divaricating Plants in New Zealand in Relation to Moa Browsing
GREENWOOD AND ATKINSON: DIYARICATING PLANTS AND MOA BROWSING 21 EVOLUTION OF DIVARICATING PLANTS IN NEW ZEALAND IN RELATION TO MOA BROWSING R. M. GREENWOOD' and I. A. E. ATKINSON' SUMMAR Y: New Zealand appears to be the only country where spineless, small-leaved divaricating plants make up nearly 10% of the woody flora. Climatic explanations have been advanced to &ccount for the origin of these divaricating plants. We suggest that the divergent and interl~ced branching, the woody exterior and the tough stems of these plants are adaptations evolved in response to browsing by moas. Together with a few species of much smaHer birds, moas were the only browsing vertebrates in New Zealand prior to the arrival of man. Thq divaricate habit is probably only one of several strategies evolved by plants in response to moa browsing. However, because fioas fed in a different way from mammals there is little to support the idea that introduced browsing mammals have merely replaced moas as aQ ecological factor in New Zealand. MORPHOLOGICAL FEATURES OF NEW ZEALAND difficult. The most helpful keys are those of Bulmer DIY ARICATING fLANTS (1958) and Taylor (1961), which deal specifioolly The term Hdivaricating", indicating branching at with these plants. New Zealand species found in this a wide angle, is used in New Zealand to describe the investigation to be capable of divaricating are listed many species of small-leaved woody shrubs that in Table 1. In cases where there was difficulty in have closely interlaced bra,nches. Some are the deciding whether a species should be included in juvenile stages of trees that lose the divaricate habit the table the criteria used for inclusion were (i) as they grow taUer. -
Olearia Polita PO Box 743 Invercargill SMALL–LEAVED TREE DAISY May 2007
Published by Department of Conservation Southland Conservancy Olearia polita PO Box 743 Invercargill SMALL–LEAVED TREE DAISY May 2007 Olearia polita is one of eight rare Olearia species included in the Small-leaved Tree Daisy National Recovery Plan. A separate fact sheet is available for each species. The aim of the factsheets is to encourage public awareness of these unique New Zealand species and to find compatible ways of managing the places where they exist. A first step towards this is to help people recognise the plants and take an interest in their welfare. Description formation. It is found in openings of poorly-drained, silver beech (Nothofa- Although first collected in 1882, Olear- gus menziesii) forest, and in shrubby ia polita was only recognised as a dis- frost flat communities which undergo tinct species in 1975. It was formally periodic disturbance from flooding and described and named in 1992 having slumping. previously been known as Olearia “Glenhope” after the site north of Mur- chison where it was first recognised. It is an evergreen shrub or small tree to 6 m tall, stoutly branched, with furrowed bark on the trunk and older branches. Young branches have light grey, smooth bark. Leaves are in opposite pairs, or clusters of oppo- site pairs, and are small, oval in shape, dark green, leathery, and shiny on the upper surface, with a silvery white un- der surface. Juvenile leaves are toothed. The small clusters of flowers that appear in spring are highly scented. Habitat Olearia polita oc- curs on valley floors and toe slopes of a Sketches not to scale particular geological Similar Plants How Can I help? There are a number of similar looking Learn to recognise the plant. -
Keystone Species: the Concept and Its Relevance for Conservation Management in New Zealand
Keystone species: the concept and its relevance for conservation management in New Zealand SCIENCE FOR CONSERVATION 203 Ian J. Payton, Michael Fenner, William G. Lee Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright July 2002, New Zealand Department of Conservation ISSN 11732946 ISBN 047822284X This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Lynette Clelland and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Keystone concepts 6 3. Types of keystone species 8 3.1 Organisms controlling potential dominants 8 3.2 Resource providers 10 3.3 Mutualists 11 3.4 Ecosystem engineers 12 4. The New Zealand context 14 4.1 Organisms controlling potential dominants 14 4.2 Resource providers 16 4.3 Mutualists 18 4.4 Ecosystem engineers 19 5. Identifying keystone species 20 6. Implications for conservation management 21 7. Acknowledgements 22 8. References 23 4 Payton et al.Keystone species: the concept and its relevance in New Zealand Keystone species: the concept and its relevance for conservation management in New Zealand Ian J. -
Ascarina Lucida Var. Lanceolata
Ascarina lucida var. lanceolata COMMON NAME Kermadec Islands Hutu SYNONYMS Ascarina lanceolata Hook.f. FAMILY Chloranthaceae AUTHORITY Ascarina lucida var. lanceolata (Hook.f.) Allan FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No Hutu. Photographer: Bec Stanley ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE ASCLVL CHROMOSOME NUMBER 2n = 26 CURRENT CONSERVATION STATUS Hutu. Photographer: Bec Stanley 2012 | At Risk – Naturally Uncommon | Qualifiers: IE, OL PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon | Qualifiers: IE, OL 2004 | Not Threatened BRIEF DESCRIPTION Small bushy tree of upland Kermadec Islands. Leaves narrow and tapering to a narrow tip and with coarse black- tipped teeth on margins. Flowers in clusters of spikes. Fruit small, white. DISTRIBUTION Endemic. Kermadec Islands, Raoul Island only. HABITAT One of the characteristic trees of the wet forests of Raoul Island which are mostly found above 245m. However, in the ravines this tree may extend down to almost sea level. In the wet forest it is mostly a subcanopy tree which co- associates with Coprosma acutifolia, Pseudopanax kermadecensis, Melicytus aff. ramiflorus and on occasion Boehmeria australis subsp. dealbata. Occasionally, such as on the ridge lines and crater rim it may form part of the forest canopy. FEATURES Glabrous gynodioecious tree up to 15 m tall. Trunk up to 500 mm diameter. Bark greyish-white. Branchlets slender, striate, initially pale green maturing dark green to emerald green. Interpetiolar stipules conspicuous, comprising 3 1.2-2.6 mm long pale pink to red, filaments; these connate near base, behind which are 3-6 smaller hyaline filaments. Petioles up to 15-20 mm long, lamina subcoriacous, somewhat fleshy, 50-100 × 10-30 mm, green, emerald green to dark green above, paler beneath, serrations weakly pigmented, pink to pale maroon often fading into pale pink spotting, narrowly lanceolate, lanceolate, lanceolate- oblong to narrowly elliptic, acuminate to acute. -
The Species of Alseuosmia (Alseuosmiaceae)
New Zealand Journal of Botany, 1978, Vol. 16: 271-7. 271 The species of Alseuosmia (Alseuosmiaceae) RHYS O. GARDNER Department of Botany, University of Auckland, Private Bag, Auckland, New Zealand (Received 15 September 1977) ABSTRACT A new species Alseuosmia turneri R. 0. Gardner (Alseuosmiaceae Airy Shaw) from the Volcanic Plateau, North Island, New Zealand is described and illustrated. A. linariifolia A. Cunn. is reduced to a variety of A. banksii A. Cunn. and A. quercifolia A. Cunn. is given hybrid status (=^4. banksii A. Cunn. x A. macrophylla A. Cunn.). A key to the four Alseuosmia species, synonymy, and a generalised distribution map are given. A. pusilla Col. is illustrated for the first time. INTRODUCTION judged to be frequent between only one pair of Allan Cunningham (1839) described eight species and the "excessive variability" lies mostly species of a new flowering plant genus Alseuosmia there. from material collected in the Bay of Islands region by Banks and Solander in 1769, by himself in 1826 and 1838, and by his brother Richard in 1833-4. The A NEW SPECIES OF ALSEUOSMIA species, all shrubs of the lowland forest, were sup- A. CUNN. posed to differ from one another chiefly in the shape and toothing of their leaves. An undescribed species of Alseuosmia from the Hooker (1852-5, 1864), with the benefit of Waimarino region of the Volcanic Plateau has been additional Colenso and Sinclair material, reduced known for some time (Cockayne 1928, p. 179; A. P. Cunningham's species to four, but stated that these Druce in Atkinson 1971). The following description four species were "excessively variable". -
Species-Specific Basic Stem-Wood Densities for Twelve Indigenous Forest and Shrubland Species of Known Age, New Zealand
Marden et al. New Zealand Journal of Forestry Science (2021) 51:1 https://doi.org/10.33494/nzjfs512021x121x E-ISSN: 1179-5395 published on-line: 15/02/2021 Research Article Open Access New Zealand Journal of Forestry Science Species-specific basic stem-wood densities for twelve indigenous forest and shrubland species of known age, New Zealand Michael Marden1,*, Suzanne Lambie2 and Larry Burrows3 1 31 Haronga Road, Gisborne 4010, New Zealand 2 Manaaki Whenua – Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand 3 Manaaki Whenua – Landcare Research, PO Box 69041, Lincoln 7640, New Zealand *Corresponding author: [email protected] (Received for publication 19 July 2019; accepted in revised form 26 January 2021) Abstract Background: Tree carbon estimates for New Zealand indigenous tree and shrub species are largely based on mean of sites throughout New Zealand. Yet stem-wood density values feed directly into New Zealand’s international and nationalbasic stem-wood greenhouse densities gas accounting. derived from We a limitedaugment number existing of publishedtrees, often basic of unspecified stem-wood age density and from data a limited with new number age- old, across 21 widely-distributed sites between latitudes 35° tospecific estimate values carbon for 12stocks. indigenous forest and shrubland species, including rarely obtained values for trees <6-years and 46° S, and explore relationships commonly used Methods: The volume of 478 whole stem-wood discs collected at breast height (BH) was determined by water displacement, oven dried, and weighed. Regression analyses were used to determine possible relationships between basic stem-wood density, and tree height, root collar diameter (RCD), and diameter at breast height (DBH). -
Plant Charts for Native to the West Booklet
26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• •• -
Germination Behaviour of Seeds of the New Zealand Woody Species Alectryon Excelsus, Corynocarpus Laevigatus, and Kunzea Ericoides
New Zealand Journal of Botany ISSN: 0028-825X (Print) 1175-8643 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzb20 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. Burrows To cite this article: C. J. Burrows (1996) Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides , New Zealand Journal of Botany, 34:4, 489-498, DOI: 10.1080/0028825X.1996.10410129 To link to this article: http://dx.doi.org/10.1080/0028825X.1996.10410129 Published online: 31 Jan 2012. Submit your article to this journal Article views: 161 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzb20 Download by: [125.239.173.16] Date: 29 August 2017, At: 22:53 New Zealand Journal of Botany, 1996, Vol. 34:489--498 489 0028-825X/96/3404-4)489 $2.50/0 9The Royal Society of New Zealand 1996 Germination behaviour of seeds of the New Zealand woody species Alectryon excelsus, Corynocarpus laevigatus, and Kunzea ericoides C. J. BURROWS INTRODUCTION Department of Plant and Microbial Sciences This is a further contribution to a series of papers University of Canterbury describing the germination behaviour of seeds of Private Bag 4800 woody plant species in New Zealand lowland for- Christchurch, New Zealand ests in conditions similar to those that the seeds could experience in nature (cf. Burrows 1995a, 1995b). The aim of the study was to examine the germina- Abstract Germination rates, percentage germina- tion rates, numbers of seeds which germinate, and tion success, and phenomena related to germination features of the germination delay systems for freshly delay were determined for seeds of Alectryon collected seeds from wild parents. -
Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.