First Skeletal Microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East)

Total Page:16

File Type:pdf, Size:1020Kb

First Skeletal Microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East) First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East) OLAF ELICKI ELICKI, O., 2011:12:23. First skeletal microfauna from the Cambrian Series 3 of the Jordan Rift Valley (Middle East). Memoirs of the Association of Australasian Palaeontologists 42, 153-173. ISSN 0810-8889. For the first time, a Cambrian microfauna is reported from the Jordan Rift Valley. The fauna comes from low-latitude carbonates of the Numayri Member (Burj Formation, Jordan) and to a lesser degree the equivalent Nimra Member (Timna Formation, Israel). Co-occuring with trilobite, brachiopod and hyolith macrofossils, the microfauna is represented mostly by disarticulated poriferid (mostly hexactinellids) and echinoderm remains (eocrinoids and edrioasteroids). Among the hexactinellids, Rigbyella sp., many isolated triactins and tetractins, as well as a few pentactins and rare hexactins occur. Additional poriferid spicules come from heteractinids (Eiffelia araniformis [Missarzhevsky, 1981]) and polyactinellids (?Praephobetractinia). Chancelloriids (Archiasterella cf. hirundo Bengtson, 1990, Allonnia sp., Chancelloria sp., ?Ginospina sp.) are a rather rare faunal element. Micromolluscs are represented mainly by an indeterminable helcionellid. The probable octocoral spicule Microcoryne cephalata (Bengtson, 1990), torellellid and hyolithellid hyolithelminths, and a bradoriid arthropod occur as very few or single specimens. The same is the case with a probable siphogonuchitid. The occurrence of a cornulitid related microfossil may extend the stratigraphic range of this fossil group significantly. The rather low-diversity microfauna is overwhelmingly dominated by sessile epibenthic biota. The preferred feeding habit seems to have been suspension feeding and minor deposit feeding. The microfauna from the Jordan Rift Valley is typical for low-latitude carbonate environments of Cambrian Series 3 age that corresponds to the traditional late early to middle Cambrian. Some taxa indicate a closer relation to the equatorial Gondwanan Iran and Australia. Some connection to the European shelf of Perigondwana may also have existed. O. Elicki ([email protected]), Freiberg University, Geological Institute, Bernhard-von- Cotta Street 2, 09599 Freiberg, Germany. Received 9 August 2011. Keywords: Small shelly fossils, poriferids, echinoderms, Cambrian, Jordan, Israel, Dead Sea. CAMBRIAN successions are spectacularly Much of the previous palaeontological work exposed in the Jordan Rift Valley. Outcrops along concentrated on the stratigraphic position and the eastern (Jordanian) shoreline of the Dead Sea correlation of the Dead Sea Cambrian succession. and a little south in the northern Wadi Araba yield As such, there was often focus on macrofossils. fossiliferous deposits of shallow and marginal Micropalaeontological sampling has been lagging marine origin (Burj Formation). In the south- behind in this region. This paper documents the western Wadi Araba (Israel) equivalent Cambrian first skeletal microfauna of Cambrian age from sediments also occur locally (Timna Formation). this region. Cambrian trilobites have been known from the In the course of several joint research projects region for about a century (Dienemann 1915; between the Freiberg working group and King 1923; Richter & Richter 1941). More recent colleagues from Yarmouk University (Irbid) work on trilobites and substantial investigation and the Natural Resources Authority (Amman) on other fossil groups including brachiopods, has resulted in bulk collections of carbonate, hyoliths and trace fossils have been completed siliciclastic and mixed lithological successions (Parnes 1971; Cooper 1976; Bandel 1986; along measured stratigraphic sections from Seilacher 1990a, b; Rushton & Powell 1998). Jordanian Cambrian surface outcrops. These have A summary of the history of palaeontological, undergone palaeontological and sedimentological petrographical, palaeogeographical and facies analyses (Elicki & Shinaq 2000; Elicki et al. investigations in this region is provided by Elicki 2002; Elicki 2007a; Shinaq & Elicki 2007; Geyer (2007a) and Shinaq & Elicki (2007). & Elicki submitted; Hofmann et al. submitted). 154 AAP Memoir 42 (2011) Powell 1989; Teimeh et al. 1990; Bandel & Shinaq 2003). The oldest Cambrian sedimentary rocks (part of Umm Gaddah Formation and Salib Formation, about 200 m thick; Fig. 2) are continental, fluvial to alluvial siliciclastics (Powell 1989; Amireh et al. 1994; Makhlouf 2003; Amireh et al. 2008). The overlying Burj Formation represents a marine maximum stage transgression (Amireh et al. 1994; Rushton & Powell 1998; Schneider et al. 2007). The start of transgression is indicated by some trace-fossil content in the lower Burj Formation (Tayan Member: Elicki 2007a), pointing to an early Cambrian age of these siliciclastics. The conformably succeeding Numayri Member (limestones, dolostones, minor siliciclastics) includes a variety of marginal- marine environments including open and restricted marine areas, shoals, lagoons, sabkhas (Shinaq & Bandel 1992; Rushton & Powell 1998; Elicki et al. 2002; Shinaq & Elicki 2007). The Numayri Member yields various macrofossils including trilobites, brachiopods and hyolithids, but also trace fossils (Richter & Richter 1941; Parnes 1971; Cooper 1976; Seilacher 1990a; Rushton & Powell 1998). The upper portion of the Burj Formation is represented by the siliciclastic Figure 1. Geographical map of the Jordan Rift Valley. Hanneh Member containing a rich marine Working areas are indicated (for detailed location of ichnofauna (Seilacher 1990a, b; Mángano et al. the sampled sections see Elicki 2007a). 2007; Hofmann et al. 2008; Elicki et al. 2010, Hofmann et al. submitted) and some trilobites The systematic and detailed field work led to the (Elicki & Geyer, submitted). The package is discovery of sections largely unaffected by the conformably overlain by the siliciclastic Umm heavy diagenetic overprint typical of the region, Ishrin Formation which contains trilobites and facilitated detailed micropalaeontological and trace fossils only at its base, but generally investigation of skeletonised body-microfossils. indicates regression and return of continental For the first time, this paper focuses on description conditions (Makhlouf & Abed 1991; Hofmann and documentation of Cambrian microfossils et al. submitted). from this palaeogeographic region. The thickness of the Burj Formation in the The palaeontological specimens figured in this Dead Sea region varies from about 190 m in the paper, are housed at the Geological Institute of north (Wadi Zerqa Ma’in) to approximately 120 Freiberg University, Germany (archive numbers m in the (southern) Safi region (Powell 1989), FG 595 and FG 619). thinning to zero in the basement area of southern Wadi Araba. GEOLOGICAL AND STRATIGRAPHIC Evidence for the stratigraphic position of BACKGROUND the Cambrian succession comes from trilobites. The field area is situated along the eastern These have been found in the marine carbonates shoulder of the Jordan Rift Valley in the Dead Sea (Numayri Member) over the last hundred area, and the northeastern Wadi Araba south of years (Dienemann 1915; King 1923; Richter & the Dead Sea (Jordan). The Timna region (Israel), Richter 1941) and were recently summarised from where some microfauna was kindly provided and reviewed by Rushton & Powell (1998). for investigation by Professor Michael Bassett New discoveries of abundant, well preserved (Cardiff), represents the only locality investigated specimens by the Freiberg working group from from southwestern Wadi Araba (Fig. 1). the carbonate Numayri Member and the Hanneh The Cambrian sediments nonconformably Member siliciciclastics, enabled a critical review overlie Precambrian basement rocks of the of the Cambrian trilobite fauna and confirmed a Arabo-Nubian Shield (Aqaba Complex) or, stratigraphic position within the traditional Early– locally, Neoproterozoic volcanoclastics and Middle Cambrian boundary interval, probably conglomerates (Araba Complex; Bender 1974; equivalent to parts of Series 3, stage 5 (Rushton AAP Memoir 42 (2011) 155 Figure 2. Generalised composite stratigraphic column of the Cambrian in the Dead Sea area (left; Salib Formation and Umm Ishrin Formation are only partially illustrated). Lithostratigraphic range of the Numayri Member in the investigated sections at the right (Numayri Member without fill pattern; Tayan Member and Hanneh Member with cross fill pattern and only partially illustrated). Lithostratigraphic position of the described microfaunas are indicated by bars. & Powell 1998; Geyer & Landing 2004; Geyer ml acid) has been used, a method which utilises & Elicki submitted). the absorption of water by crystals of calcium acetate (Nötzold 1965). Sieving procedure was MATERIALS AND METHODS executed using sieves of mesh size 0.3 mm and 0.1 The fossiliferous carbonates were investigated mm. Microscopic work has been achieved using by thin-section analysis and also preparated by a ZEISS SV-11 polarisation light-microscope. laboratory chemical work. Best results have SEM investigation was undertaken at the been attained by careful chemical solution of Geological Institute of Freiberg University with the carbonate rocks using formic acid (about the field emission scanning electron microscope 15%) and in some cases acetic acid (about 15%). JEOL JSM-7001 F. For related compositional In some cases, concentrated acetic acid with identification of the microbiota, an energy added anhydrous copper
Recommended publications
  • Early Sponge Evolution: a Review and Phylogenetic Framework
    Available online at www.sciencedirect.com ScienceDirect Palaeoworld 27 (2018) 1–29 Review Early sponge evolution: A review and phylogenetic framework a,b,∗ a Joseph P. Botting , Lucy A. Muir a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China b Department of Natural Sciences, Amgueddfa Cymru — National Museum Wales, Cathays Park, Cardiff CF10 3LP, UK Received 27 January 2017; received in revised form 12 May 2017; accepted 5 July 2017 Available online 13 July 2017 Abstract Sponges are one of the critical groups in understanding the early evolution of animals. Traditional views of these relationships are currently being challenged by molecular data, but the debate has so far made little use of recent palaeontological advances that provide an independent perspective on deep sponge evolution. This review summarises the available information, particularly where the fossil record reveals extinct character combinations that directly impinge on our understanding of high-level relationships and evolutionary origins. An evolutionary outline is proposed that includes the major early fossil groups, combining the fossil record with molecular phylogenetics. The key points are as follows. (1) Crown-group sponge classes are difficult to recognise in the fossil record, with the exception of demosponges, the origins of which are now becoming clear. (2) Hexactine spicules were present in the stem lineages of Hexactinellida, Demospongiae, Silicea and probably also Calcarea and Porifera; this spicule type is not diagnostic of hexactinellids in the fossil record. (3) Reticulosans form the stem lineage of Silicea, and probably also Porifera. (4) At least some early-branching groups possessed biminerallic spicules of silica (with axial filament) combined with an outer layer of calcite secreted within an organic sheath.
    [Show full text]
  • University of Copenhagen
    Organ system development in recent lecithotrophic brachiopod larvae Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas Wilhelm Georg Published in: Geological Society of Australia. Abstracts Series Publication date: 2010 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Altenburger, A., Martinez, P., & Wanninger, A. W. G. (2010). Organ system development in recent lecithotrophic brachiopod larvae. Geological Society of Australia. Abstracts Series, 3-3. http://www.deakin.edu.au/conferences/ibc/spaw2/uploads/files/6IBC_Program%20&%20Abstracts%20volume.p df Download date: 25. Sep. 2021 Geological Society of Australia ABSTRACTS Number 95 6th International Brachiopod Congress Melbourne, Australia 1-5 February 2010 Geological Society of Australia, Abstracts No. 95 6th International Brachiopod Congress, Melbourne, Australia, February 2010 Geological Society of Australia, Abstracts No. 95 6th International Brachiopod Congress, Melbourne, Australia, February 2010 Geological Society of Australia Abstracts Number 95 6th International Brachiopod Congress, Melbourne, Australia, 1‐5 February 2010 Editors: Guang R. Shi, Ian G. Percival, Roger R. Pierson & Elizabeth A. Weldon ISSN 0729 011X © Geological Society of Australia Incorporated 2010 Recommended citation for this volume: Shi, G.R., Percival, I.G., Pierson, R.R. & Weldon, E.A. (editors). Program & Abstracts, 6th International Brachiopod Congress, 1‐5 February 2010, Melbourne, Australia. Geological Society of Australia Abstracts No. 95. Example citation for papers in this volume: Weldon, E.A. & Shi, G.R., 2010. Brachiopods from the Broughton Formation: useful taxa for the provincial and global correlations of the Guadalupian of the southern Sydney Basin, eastern Australia. In: Program & Abstracts, 6th International Brachiopod Congress, 1‐5 February 2010, Melbourne, Australia; Geological Society of Australia Abstracts 95, 122.
    [Show full text]
  • A New Species of Conchicolites (Cornulitida, Tentaculita) from the Wenlock of Gotland, Sweden
    Estonian Journal of Earth Sciences, 2014, 63, 3, 181–185 doi: 10.3176/earth.2014.16 SHORT COMMUNICATION A new species of Conchicolites (Cornulitida, Tentaculita) from the Wenlock of Gotland, Sweden Olev Vinna, Emilia Jarochowskab and Axel Munneckeb a Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected] b GeoZentrum Nordbayern, Fachgruppe Paläoumwelt, Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany Received 2 June 2014, accepted 4 August 2014 Abstract. A new cornulitid species, Conchicolites crispisulcans sp. nov., is described from the Wenlock of Gotland, Sweden. The undulating edge of C. crispisulcans sp. nov. peristomes is unique among the species of Conchicolites. This undulating peristome edge may reflect the position of setae at the tube aperture. The presence of the undulating peristome edge supports the hypothesis that cornulitids had setae and were probably related to brachiopods. Key words: tubeworms, tentaculitoids, cornulitids, Silurian, Baltica. INTRODUCTION Four genera of cornulitids have been assigned to Cornulitidae: Cornulites Schlotheim, 1820, Conchicolites Cornulitids belong to encrusting tentaculitoid tubeworms Nicholson, 1872a, Cornulitella (Nicholson 1872b) and and are presumably ancestors of free-living tentaculitids Kolihaia Prantl, 1944 (Fisher 1962). The taxonomy (Vinn & Mutvei 2009). They have a stratigraphic range of Wenlock cornulitids of Gotland (Sweden) is poorly from the Middle Ordovician to the Late Carboniferous studied, mostly due to their minor stratigraphical (Vinn 2010). Cornulitid tubeworms are found only in importance. normal marine sediments (Vinn 2010), and in this respect The aim of the paper is to: (1) systematically they differ from their descendants, microconchids, which describe a new species of cornulitids from the Wenlock lived in waters of various salinities (e.g., Zatoń et al.
    [Show full text]
  • Skeletonized Microfossils from the Lower–Middle Cambrian Transition of the Cantabrian Mountains, Northern Spain
    Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain SÉBASTIEN CLAUSEN and J. JAVIER ÁLVARO Clausen, S. and Álvaro, J.J. 2006. Skeletonized microfossils from the Lower–Middle Cambrian transition of the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 51 (2): 223–238. Two different assemblages of skeletonized microfossils are recorded in bioclastic shoals that cross the Lower–Middle Cambrian boundary in the Esla nappe, Cantabrian Mountains. The uppermost Lower Cambrian sedimentary rocks repre− sent a ramp with ooid−bioclastic shoals that allowed development of protected archaeocyathan−microbial reefs. The shoals yield abundant debris of tube−shelled microfossils, such as hyoliths and hyolithelminths (Torellella), and trilobites. The overlying erosive unconformity marks the disappearance of archaeocyaths and the Iberian Lower–Middle Cambrian boundary. A different assemblage occurs in the overlying glauconitic limestone associated with development of widespread low−relief bioclastic shoals. Their lowermost part is rich in hyoliths, hexactinellid, and heteractinid sponge spicules (Eiffelia), chancelloriid sclerites (at least six form species of Allonnia, Archiasterella, and Chancelloria), cambroclaves (Parazhijinites), probable eoconchariids (Cantabria labyrinthica gen. et sp. nov.), sclerites of uncertain af− finity (Holoplicatella margarita gen. et sp. nov.), echinoderm ossicles and trilobites. Although both bioclastic shoal com− plexes represent similar high−energy conditions, the unconformity at the Lower–Middle Cambrian boundary marks a drastic replacement of microfossil assemblages. This change may represent a real community replacement from hyolithelminth−phosphatic tubular shells to CES (chancelloriid−echinoderm−sponge) meadows. This replacement coin− cides with the immigration event based on trilobites previously reported across the boundary, although the partial infor− mation available from originally carbonate skeletons is also affected by taphonomic bias.
    [Show full text]
  • Shell Microstructures in Early Cambrian Molluscs
    Shell microstructures in Early Cambrian molluscs ARTEM KOUCHINSKY Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. - Acta Palaeontologica Polonica 45,2, 119-150. The affinities of a considerable part of the earliest skeletal fossils are problematical, but investigation of their microstructures may be useful for understanding biomineralization mechanisms in early metazoans and helpful for their taxonomy. The skeletons of Early Cambrian mollusc-like organisms increased by marginal secretion of new growth lamel- lae or sclerites, the recognized basal elements of which were fibers of apparently aragon- ite. The juvenile part of some composite shells consisted of needle-like sclerites; the adult part was built of hollow leaf-like sclerites. A layer of mineralized prism-like units (low aragonitic prisms or flattened spherulites) surrounded by an organic matrix possibly existed in most of the shells with continuous walls. The distribution of initial points of the prism-like units on a periostracurn-like sheet and their growth rate were mostly regular. The units may be replicated on the surface of internal molds as shallow concave poly- gons, which may contain a more or less well-expressed tubercle in their center. Tubercles are often not enclosed in concave polygons and may co-occur with other types of tex- tures. Convex polygons seem to have resulted from decalcification of prism-like units. They do not co-occur with tubercles. The latter are interpreted as casts of pore channels in the wall possibly playing a role in biomineralization or pits serving as attachment sites of groups of mantle cells. Casts of fibers and/or lamellar units may overlap a polygonal tex- ture or occur without it.
    [Show full text]
  • Um Éon De História Dos Bivalvia: Ideias Sobre a Sua Origem, Filogenia E Importância Paleontológica E Educativa
    Um Éon de história dos Bivalvia: ideias sobre a sua origem, filogenia e importância paleontológica e educativa Ricardo J. Pimentel1, Pedro M. Callapez2 & Paulo Legoinha3 1 Agrupamento de Escolas de Guia, P-3105 075 Guia, Pombal, Portugal. E-mail: [email protected] 2 Universidade de Coimbra, CITEUC - Centro de Investigação da Terra e do Espaço da Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Terra, Polo II, Rua Sílvio Lima, P-3030 790 Coimbra, Portugal. E-mail: [email protected] 3 Universidade NOVA de Lisboa, GEOBIOTEC - GeoBiociências, Geotecnologias e Geoengenharias, Faculdade de Ciências e Tecnologia, Departamento de Ciências da Terra, Quinta da Torre, P-2829 516 Caparica, Portugal. E-mail: [email protected] Resumo: A Classe Bivalvia, cuja monofilia se encontra bem suportada por estudos recentes, destaca-se como o segundo taxon, em termos de biodiversidade, do Filo Mollusca. O registo da sua história evolutiva remonta ao Fortuniano (Câmbrico). Diversos dados paleontológicos fundamentados no registo fóssil sugerem que os bivalves atuais são, sobretudo, herdeiros de carateres morfológicos e requisitos ecológicos transmitidos por linhagens da transição devónico-carbonífera. Estes invertebrados habitam a maioria dos ambientes aquáticos atuais e constituem um dos principais grupos de animais invertebrados da biosfera atual, são herdeiros de uma longa história evolutiva e ecológica que é intrínseca à própria história biótica dos oceanos durante o Fanerozoico. São um exemplo de sucesso entre as comunidades bióticas e a sua abundância, diversidade e acessibilidade propiciam a sua utilização como recursos educativos em Ciências Naturais. Palavras-chave: Bivalvia, Educação científica, Filogenia, Mollusca, Registo fóssil.
    [Show full text]
  • 1595 Vinn.Vp
    New Late Ordovician cornulitids from Peru OLEV VINN & JUAN CARLOS GUTIÉRREZ-MARCO Two new species of cornulitids, Cornulites zatoni sp. nov. and Cornulites vilcae sp. nov., are described from the lower part (Sandbian) of the Calapuja Formation of south-western Peru. Late Ordovician cornulitid diversities of Peru (Gond- wana) and Estonia (Baltica) are similar. Aggregative growth form dominates among the cornulitids of the Sandbian of Peru. Multiple oriented C. zatoni sp. nov. specimens on a strophomenid brachiopod likely represent a syn vivo encrustation. Cornulitids from the Sandbian of Peru differ from those known from the Sandbian of Baltica. C. zatoni sp. nov. possibly also occurs in the Late Ordovician of Laurentia. • Key words: problematic fossils, tubeworms, Sandbian, Gondwana. VINN,O.&GUTIÉRREZ-MARCO, J.C. 2016. New Late Ordovician cornulitids from Peru. Bulletin of Geosciences 91(1), 89–95 (2 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received November 26, 2015; ac- cepted in revised form January 29, 2016; published online February 22, 2016; issued March 17, 2016. Olev Vinn (corresponding author), Department of Geology, University of Tartu, Ravila 14 A, 50411 Tartu, Estonia; [email protected] • Juan Carlos Gutiérrez-Marco, Instituto de Geociencias (CSIC, UCM) and Departamento de Paleontología, Facultad de Ciencias Geológicas, José Antonio Novais 12, E-28040 Madrid, Spain; [email protected] Cornulitids are mostly known as common hard substrate studies of Ordovician cornulitids have been focused on encrusters, and like other encrusters (Taylor & Wilson faunas of North America (Hall 1847, 1888; Richards 1974) 2003), generally retain their original position on the sub- and Europe (Schlotheim 1820, Murchison 1854).
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 67, NUMBER 6 CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE (With Plates 60 to 90) BY CHARLES D. WALCOTT (Publication 2580) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION 1920 Z$t Bovb Qgattimote (press BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY IV No. 6.—MIDDLE CAMBRIAN SPONGIAE By CHARLES D. WALCOTT (With Plates 60 to 90) CONTENTS PAGE Introduction 263 Habitat = 265 Genera and species 265 Comparison with recent sponges 267 Comparison with Metis shale sponge fauna 267 Description of species 269 Sub-Class Silicispongiae 269 Order Monactinellida Zittel (Monaxonidae Sollas) 269 Sub-Order Halichondrina Vosmaer 269 Halichondrites Dawson 269 Halichondrites elissa, new species 270 Tuponia, new genus 271 Tuponia lineata, new species 272 Tuponia bellilineata, new species 274 Tuponia flexilis, new species 275 Tuponia flexilis var. intermedia, new variety 276 Takakkawia, new genus 277 Takakkawia lineata, new species 277 Wapkia, new genus 279 Wapkia grandis, new species 279 Hazelia, new genus 281 Hazelia palmata, new species 282 Hazelia conf erta, new species 283 Hazelia delicatula, new species 284 Hazelia ? grandis, new species 285. Hazelia mammillata, new species 286' Hazelia nodulifera, new species 287 Hazelia obscura, new species 287 Corralia, new genus 288 Corralia undulata, new species 288 Sentinelia, new genus 289 Sentinelia draco, new species 290 Smithsonian Miscellaneous Collections, Vol. 67, No. 6 261 262 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 6j Family Suberitidae 291 Choia, new genus 291 Choia carteri, new species 292 Choia ridleyi, new species 294 Choia utahensis, new species 295 Choia hindei (Dawson) 295 Hamptonia, new genus 296 Hamptonia bowerbanki, new species 297 Pirania, new genus 298 Pirania muricata, new species 298 Order Hexactinellida O.
    [Show full text]
  • Facies, Phosphate, and Fossil Preservation Potential Across a Lower Cambrian Carbonate Shelf, Arrowie Basin, South Australia
    Palaeogeography, Palaeoclimatology, Palaeoecology 533 (2019) 109200 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Facies, phosphate, and fossil preservation potential across a Lower Cambrian T carbonate shelf, Arrowie Basin, South Australia ⁎ Sarah M. Jacqueta,b, , Marissa J. Bettsc,d, John Warren Huntleya, Glenn A. Brockb,d a Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA b Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia c Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia d Early Life Institute and Department of Geology, State Key Laboratory for Continental Dynamics, Northwest University, Xi'an 710069, China ARTICLE INFO ABSTRACT Keywords: The efects of sedimentological, depositional and taphonomic processes on preservation potential of Cambrian Microfacies small shelly fossils (SSF) have important implications for their utility in biostratigraphy and high-resolution Calcareous correlation. To investigate the efects of these processes on fossil occurrence, detailed microfacies analysis, Organophosphatic biostratigraphic data, and multivariate analyses are integrated from an exemplar stratigraphic section Taphonomy intersecting a suite of lower Cambrian carbonate palaeoenvironments in the northern Flinders Ranges, South Biominerals Australia. The succession deepens upsection, across a low-gradient shallow-marine shelf. Six depositional Facies Hardgrounds Sequences are identifed ranging from protected (FS1) and open (FS2) shelf/lagoonal systems, high-energy inner ramp shoal complex (FS3), mid-shelf (FS4), mid- to outer-shelf (FS5) and outer-shelf (FS6) environments. Non-metric multi-dimensional scaling ordination and two-way cluster analysis reveal an underlying bathymetric gradient as the main control on the distribution of SSFs.
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991).
    [Show full text]
  • Abstract Volume
    https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E.
    [Show full text]
  • The Classic Upper Ordovician Stratigraphy and Paleontology of the Eastern Cincinnati Arch
    International Geoscience Programme Project 653 Third Annual Meeting - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett – Kyle R. Hartshorn – Allison L. Young – Cameron E. Schwalbach – Alycia L. Stigall International Geoscience Programme (IGCP) Project 653 Third Annual Meeting - 2018 - Athens, Ohio, USA Field Trip Guidebook THE CLASSIC UPPER ORDOVICIAN STRATIGRAPHY AND PALEONTOLOGY OF THE EASTERN CINCINNATI ARCH Carlton E. Brett Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Kyle R. Hartshorn Dry Dredgers, 6473 Jayfield Drive, Hamilton, Ohio 45011, USA ([email protected]) Allison L. Young Department of Geology, University of Cincinnati, 2624 Clifton Avenue, Cincinnati, Ohio 45221, USA ([email protected]) Cameron E. Schwalbach 1099 Clough Pike, Batavia, OH 45103, USA ([email protected]) Alycia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies, Ohio University, 316 Clippinger Lab, Athens, Ohio 45701, USA ([email protected]) ACKNOWLEDGMENTS We extend our thanks to the many colleagues and students who have aided us in our field work, discussions, and publications, including Chris Aucoin, Ben Dattilo, Brad Deline, Rebecca Freeman, Steve Holland, T.J. Malgieri, Pat McLaughlin, Charles Mitchell, Tim Paton, Alex Ries, Tom Schramm, and James Thomka. No less gratitude goes to the many local collectors, amateurs in name only: Jack Kallmeyer, Tom Bantel, Don Bissett, Dan Cooper, Stephen Felton, Ron Fine, Rich Fuchs, Bill Heimbrock, Jerry Rush, and dozens of other Dry Dredgers. We are also grateful to David Meyer and Arnie Miller for insightful discussions of the Cincinnatian, and to Richard A.
    [Show full text]