How Scientific Is Chemistry?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophy of Science and Philosophy of Chemistry
Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science. -
THE EPISTEMOLOGICAL AUTONOMY of CHEMISTRY By
THE EPISTEMOLOGICAL AUTONOMY OF CHEMISTRY By ROBIN PFLUGHAUPT Integrated Studies Project submitted to Dr. Russell Thompson in partial fulfillment of the requirements for the degree of Master of Arts – Integrated Studies Athabasca, Alberta November, 2009 THE EPISTEMOLOGICAL AUTONOMY OF CHEMISTRY 2 Abstract The “logicians’ program” or attempt to situate scientific methodology within a logical framework has come to a standstill following radical developments within the philosophy of science and science and technology studies. One of the most persistent concepts remaining from the traditional philosophy of science or logical empiricism however is the unification of science through the reducibility of chemical and biological phenomena to physical laws and explanations. Towards the end of the 19th century, chemistry underwent a physical revolution in order to describe dynamic processes and express chemical phenomena mathematically, and developments within quantum mechanics during the 1920s encouraged the assumption that chemistry is fully reducible to physics. Theoretical chemistry is briefly overviewed to reveal that quantum chemistry developed through the assistance of models developed within the “organic structuralist tradition” and empirical data to generate abstract approximations that are cumbersome to calculate. From these approximations, however chemists have produced powerful models, in particular molecular orbitals, that have become invaluable conceptual tools within chemistry since they “black box” quantum mechanical calculations and rationalize chemical processes. Despite shared ontology between physics and chemistry, since it is impossibly cumbersome to fully explain chemical phenomena at the particle level, there is the appearance of “emergentism” at the molecular level, and physics does not capture chemistry’s engineering ideology and “disciplinary matrices”, philosophical concepts including “supervenience” have been used to argue for the epistemological autonomy of chemistry. -
Kant's Critique of Judgment and the Scientific Investigation of Matter
Kant’s Critique of Judgment and the Scientific Investigation of Matter Daniel Rothbart, Irmgard Scherer Abstract: Kant’s theory of judgment establishes the conceptual framework for understanding the subtle relationships between the experimental scientist, the modern instrument, and nature’s atomic particles. The principle of purposive- ness which governs judgment has also a role in implicitly guiding modern experimental science. In Part 1 we explore Kant’s philosophy of science as he shows how knowledge of material nature and unobservable entities is possible. In Part 2 we examine the way in which Kant’s treatment of judgment, with its operating principle of purposiveness, enters into his critical project and under- lies the possibility of rational science. In Part 3 we show that the centrality given to judgment in Kant’s conception of science provides philosophical in- sight into the investigation of atomic substances in modern chemistry. Keywords : Kant , judgment , purposiveness , experimentation , investigation of matter . Introduction Kant’s philosophy of science centers on the problem of how it is possible to acquire genuine knowledge of unobservable entities, such as atoms and molecules. “What and how much can the understanding and reason know apart from all experience?” ( CPuR , Axvii). This raises the question of the role of experiments in the knowability ( Erkennbarkeit ) and the experientiality (Erfahrbarkeit ) of nature. Kant’s insights into the character of scientific experimentation are not given the hearing they deserve. We argue that Kant’s theory of judgment establishes the conceptual framework for understanding the subtle inter- actions between the experimental chemist, the modern chemical instrument, and molecular substance. -
ANG 5012, Section 6423 Spring 2017 FANTASTIC ANTHROPOLOGY and FRINGE SCIENCE
ANG 5012, section 6423 Spring 2017 FANTASTIC ANTHROPOLOGY AND FRINGE SCIENCE Time: Mondays, periods 7-9 (1:55 – 4:55) Place: TUR 2303 Instructor: David Daegling, Turlington B376 352-294-7603 [email protected] Office Hours: M 10:30 – 11:30 AM; W 1:00 – 3:00 PM. COURSE OBJECTIVES: This course examines the articulation and perpetuation of so-called paranormal and fringe scientific theories concerning the human condition. We will examine these unconventional claims with respect to 1) underlying belief systems, 2) empirical and logical foundations, 3) persistence in the face of refutation, 4) popular treatment by mass media and 5) institutional reaction. The course is divided into five parts. Part I explores forms of inquiry and considers the demarcation of science from pseudoscience. Part II concerns unconventional theories of human evolution. Part III investigates unorthodox ideas of human biology. Part IV examines claims of extraterrestrial and supernatural contact in the world today. Part V further scrutinizes institutional reaction to fringe science, popular coverage of science, and the culture of science in the contemporary United States. COURSE REQUIREMENTS: Attendance is mandatory. Unexcused absences (i.e., other than medical or family emergency) result in a half grade reduction of your final grade. Participation in group and class discussions is required (50% of your final grade). In addition, written work is required for each of the five parts of the course (50% of your grade). These will take the form of essays and short papers to be completed concurrently with our discussions of these topics. Late papers are subject to a full letter grade reduction. -
Evidence-Based Alternative Medicine?
(YLGHQFH%DVHG$OWHUQDWLYH0HGLFLQH" .LUVWLQ%RUJHUVRQ 3HUVSHFWLYHVLQ%LRORJ\DQG0HGLFLQH9ROXPH1XPEHU$XWXPQ SS $UWLFOH 3XEOLVKHGE\-RKQV+RSNLQV8QLYHUVLW\3UHVV '2,SEP )RUDGGLWLRQDOLQIRUPDWLRQDERXWWKLVDUWLFOH KWWSVPXVHMKXHGXDUWLFOH Access provided by Dalhousie University (13 Jul 2016 15:54 GMT) 05/Borgerson/Final/502–15 9/6/05 6:55 PM Page 502 Evidence-Based Alternative Medicine? Kirstin Borgerson ABSTRACT The validity of evidence-based medicine (EBM) is the subject of on- going controversy.The EBM movement has proposed a “hierarchy of evidence,” ac- cording to which randomized controlled trials (RCTs) and meta-analyses of RCTs provide the most reliable evidence concerning the efficacy of medical interventions. The evaluation of alternative medicine therapies highlights problems with the EBM hierarchy. Alternative medical researchers—like those in mainstream medicine—wish to evaluate their therapies using methods that are rigorous and that are consistent with their philosophies of medicine and healing.These investigators have three ways to relate their work to EBM.They can accept the EBM hierarchy and carry out RCTs when possible; they can accept the EBM standards but argue that the special characteristics of alternative medicine warrant the acceptance of “lower” forms of evidence; or they can challenge the EBM approach and work to develop new research designs and new stan- dards of evidence that reflect their approach to medical care. For several reasons, this last option is preferable. First, it will best meet the needs of alternative medicine prac- titioners. Moreover, because similar problems beset the evaluation of mainstream med- ical therapies, reevaluation of standards of evidence will benefit everyone in the med- ical community—including, most importantly, patients. -
Philosophy of Chemistry: an Emerging Field with Implications for Chemistry Education
DOCUMENT RESUME ED 434 811 SE 062 822 AUTHOR Erduran, Sibel TITLE Philosophy of Chemistry: An Emerging Field with Implications for Chemistry Education. PUB DATE 1999-09-00 NOTE 10p.; Paper presented at the History, Philosophy and Science Teaching Conference (5th, Pavia, Italy, September, 1999). PUB TYPE Opinion Papers (120) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Chemistry; Educational Change; Foreign Countries; Higher Education; *Philosophy; Science Curriculum; *Science Education; *Science Education History; *Science History; Scientific Principles; Secondary Education; Teaching Methods ABSTRACT Traditional applications of history and philosophy of science in chemistry education have concentrated on the teaching and learning of "history of chemistry". This paper considers the recent emergence of "philosophy of chemistry" as a distinct field and explores the implications of philosophy of chemistry for chemistry education in the context of teaching and learning chemical models. This paper calls for preventing the mutually exclusive development of chemistry education and philosophy of chemistry, and argues that research in chemistry education should strive to learn from the mistakes that resulted when early developments in science education were made separate from advances in philosophy of science. Contains 54 references. (Author/WRM) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** 1 PHILOSOPHY OF CHEMISTRY: AN EMERGING FIELD WITH IMPLICATIONS FOR CHEMISTRY EDUCATION PERMISSION TO REPRODUCE AND U.S. DEPARTMENT OF EDUCATION DISSEMINATE THIS MATERIAL HAS Office of Educational Research and improvement BEEN GRANTED BY RESOURCES INFORMATION SIBEL ERDURAN CENTER (ERIC) This document has been reproducedas ceived from the person or organization KING'S COLLEGE, UNIVERSITYOF LONDON originating it. -
Downloading Physics Preprints from Arxiv Would Be Quite Unaware That a Paper in General Physics Has to Be Treated Differently to Papers in Other Categories
1 The Ecology of Fringe Science and its Bearing on Policy Harry Collins, Andrew Bartlett and Luis Reyes-Galindo School of Social Sciences, Cardiff University1 emails: [email protected], [email protected], [email protected] Introduction Fringe science has been an important topic since the start of the revolution in the social studies of science that occurred in the early 1970s.2 As a softer-edged model of the sciences developed, fringe science was a ‘hard case’ on which to hammer out the idea that scientific truth was whatever came to count as scientific truth: scientific truth emerged from social closure. The job of those studying fringe science was to recapture the rationality of its proponents, showing how, in terms of the procedures of science, they could be right and the mainstream could be wrong and therefore the consensus position is formed by social agreement. One outcome of this way of thinking is that sociologists of science informed by the perspective outlined above find themselves short of argumentative resources for demarcating science from non-science. The distinction with traditional philosophy of science, which readily demarcates fringe subjects such as parapsychology by referring to their ‘irrationality’ or some such, is marked.3 For the sociologist of scientific knowledge, that kind of demarcation comprises 1 This paper is joint work by researchers supported by two grants: ESRC to Harry Collins, (RES/K006401/1) £277,184, What is scientific consensus for policy? Heartlands and hinterlands of physics (2014-2016); British Academy Post-Doctoral Fellowship to Luis Reyes-Galindo, (PF130024) £223,732, The social boundaries of scientific knowledge: a case study of 'green' Open Access (2013-2016). -
ANG 5012, Section 6423 Fall 2011 FANTASTIC ANTHROPOLOGY
ANG 5012, section 6423 Fall 2011 FANTASTIC ANTHROPOLOGY AND FRINGE SCIENCE Time: Mondays, periods 8-10 (3:00 – 6:00) Place: TUR B304 Instructor: David Daegling, Turlington B376 392-2253 x245 [email protected] Office Hours: MW 10:00 – 11:00 AM; W 2:00 – 3:00 PM. COURSE OBJECTIVES: This course examines the articulation and perpetuation of so- called paranormal and fringe scientific theories concerning the human condition. We will examine these unconventional claims with respect to 1) underlying belief systems, 2) empirical and logical foundations, 3) persistence in the face of refutation, 4) popular treatment by mass media and 5) institutional reaction. The course is divided into five parts, corresponding to major assignments (see below). Part I explores forms of inquiry and considers the demarcation of science from pseudoscience. Part II concerns “crank” theories of human evolution. Part III investigates unorthodox ideas of human biology. Part IV examines claims of extraterrestrial and supernatural contact in the world today. Part V further scrutinizes institutional reaction to fringe science, popular coverage of science, and the culture of science in the contemporary United States. COURSE REQUIREMENTS: Attendance is mandatory. Unexcused absences (i.e., other than medical or family emergency) result in a half grade reduction of your final grade. Participation in class discussions is required (25% of your final grade). In addition, written work is required for each of the five parts of the course (75% of your grade). These will take the form of essays and short papers to be completed concurrently with our discussions of these topics. Late papers are subject to a full letter grade reduction. -
Bridging the Philosophies of Biology and Chemistry
CALL FOR PAPERS First International Conference on Bridging the Philosophies of Biology and Chemistry 25-27 June 2019 University of Paris Diderot, France Extended Deadline for Abstract Submission: 28 February 2019 The aim of this conference is to bring philosophers of biology and philosophers of chemistry together and to explore common grounds and topics of interest. We particularly welcome papers on (1) the philosophy of interdisciplinary fields between biology and chemistry; (2) historical case studies on the disciplinary divergence and convergence of biology and chemistry; and (3) the similarities and differences between philosophical approaches to biology and chemistry. Philosophy is broadly construed and includes epistemological, methodological, ontological, metaphysical, ethical, political, and legal issues of science. For a detailed description of possible topics, please see below and visit the conference website http://www.sphere.univ-paris-diderot.fr/spip.php?article2228&lang=en Instructions for Abstract Submission Submit a Word file including author name(s), affiliation, paper title, and an abstract of maximum 500 words by 28 February 2019 to Jean-Pierre Llored ([email protected]) . Registration If you are interested in participating, please register by sending an e-mail to Jean-Pierre Llored ([email protected]) before 30 April 2019. Venue Room 454A, Building Condorcet, University Paris Diderot, 4, rue Elsa Morante, 75013 Paris, France Sponsors CNRS; Laboratory SPHERE, Laboratory LIED, and Department of History and Philosophy of Science, University of Paris Diderot; Fondation de la Maison de la Chimie; Free University of Brussels; University of Lille Organizers Cécilia Bognon, Quentin Hiernaux, Jean-Pierre Llored, Joachim Schummer First international Conference on Bridging the Philosophies of Biology and Chemistry 25-27 June 2019, University of Paris Diderot, France Description Background For much of the twentieth century, philosophy of science had almost exclusively been focused on physics and mathematics. -
Causal Explanation and the Periodic Table
Synthese https://doi.org/10.1007/s11229-018-01982-0 Causal explanation and the periodic table Lauren N. Ross1 Received: 3 December 2017 / Accepted: 8 October 2018 © Springer Nature B.V. 2018 Abstract The periodic table represents and organizes all known chemical elements on the basis of their properties. While the importance of this table in chemistry is uncontroversial, the role that it plays in scientific reasoning remains heavily disputed. Many philosophers deny the explanatory role of the table and insist that it is “merely” classificatory (Shapere, in F. Suppe (Ed.) The structure of scientific theories, University of Illinois Press, Illinois, 1977; Scerri in Erkenntnis 47:229–243, 1997). In particular, it has been claimed that the table does not figure in causal explanation because it “does not reveal causal structure” (Woody in Science after the practice turn in the philosophy, history, and social studies of science, Routledge Taylor & Francis Group, New York, 2014). This paper provides an analysis of what it means to say that a scientific figure reveals causal structure and it argues that the modern periodic table does just this. It also clarifies why these “merely” classificatory claims have seemed so compelling–this is because these claims often focus on the earliest periodic tables, which lack the causal structure present in modern versions. Keywords Causation · Explanation · Philosophy of chemistry · Classification · Causal reasoning 1 Introduction To the extent that there is a trademark figure for the field of chemistry it is surely the periodic table. Considered by many to capture the “essence” of this scientific domain, the periodic table represents and organizes all known chemical elements on the basis of their properties (Scerri 2007, p. -
Issue-03-14.Pdf
SKEPTICAL INQUIRER Vol. 17. No. 3 Spring 1993/$6.25 FACILITATED COMMUNICATION ? Miracle or Mirage? Al Gore: Education tor Science Richard Dawkins: The 'Awe' Factor Evry Schatzman: A Threat to Science Martin Gardner: E Prime and Isness Donald Tarter: Sale Science with SETI CSICOP Dallas Conference Published by the Committee for the Scientific investigation of Claims of the Paranormal THE SKEPTICAL INQUIRER is the official journal of the Committee for the Scientific Investigation of Claims of the Paranormal, an international organization. Editor Kendrick Frazier. Editorial Board James E. Alcock, Barry Beyerstein, Susan J. Blackmore, Martin Gardner, Ray Hyman, Philip J. Klass, Paul Kurtz, Joe Nickell, Lee Nisbet. Consulting Editors Robert A. Baker, William Sims Bainbridge, John R. Cole, Kenneth L. Feder, C. E. M. Hansel, E. C. Krupp, David F. Marks, Andrew Neher, James E. Oberg, Robert Sheaffer, Steven N. Shore. Managing Editor Doris Hawley Doyle. Contributing Editor Lys Ann Shore. Business Manager Mary Rose Hays. Assistant Business Manager Sandra Lesniak. Chief Data Officer Richard Seymour. Computer Assistant Michael Cione. Production Paul E. Loynes. Art Linda Hays. Audio Technician Vance Vigrass. Librarian Jonathan Jiras. Staff Elizabeth Begley, Ron Nicholson, Alfreda Pidgeon, Ranjit Sandhu, Sharon Sikora, Glen Winford. Cartoonist Rob Pudim. The Committee for the Scientific Investigation of Claims of the Paranormal Paul Kurtz, Chairman; professor emeritus of philosophy, State University of New York at Buffalo. Barry Karr, Executive Director and Public Relations Director. Lee Nisbet, Special Projects Director. Fellows of the Committee James E. Alcock,* psychologist, York Univ., Toronto; Robert A. Baker, psychologist, Univ. of Kentucky; Stephen Barrett, M.D., psychiatrist, author, consumer advocate, Allentown, Pa. -
The Science of Software Engineering the Science of Software Engineering
The Science of Software Engineering Marvin Zelkowitz Department of Computer Science University of Maryland College Park, Maryland [email protected] ESEM - 2009 1 ESEM – October 2009 A Need for a The Science of Software Engineering Marvin Zelkowitz Department of Computer Science University of Maryland College Park, Maryland [email protected] ESEM - 2009 2 ESEM – October 2009 1 Organization of talk Some personal comments on how I arrived at the theme of this talk What are the issues in developing a science of software engineering? What’s next? ESEM – October 2009 3 So what have I been doing for the past 40 years? Most of my professional life has been at the University of Maryland, teaching and doing research in the general area of software engineering. But those who know me, know that I have three other areas of great interest. ESEM – October 2009 4 2 One is attending science fiction conventions ESEM – October 2009 5 A second is my interest in model railroading Layout obviously unfinished. ESEM – October 2009 6 3 A third is that I consider myself a professional skeptic ESEM – October 2009 7 A third is that I consider myself a professional skeptic I belong to an organization of skeptics. Ha! Ha! ESEM – October 2009 8 4 A third is that I consider myself a professional skeptic That’s No! not true! You can’t do that! It’s all bogus! ESEM – October 2009 9 A third is that I consider myself a professional skeptic What does this really mean? And how does this relate to software engineering? This is the general theme of the rest of this talk.