Causal Explanation and the Periodic Table

Total Page:16

File Type:pdf, Size:1020Kb

Causal Explanation and the Periodic Table Synthese https://doi.org/10.1007/s11229-018-01982-0 Causal explanation and the periodic table Lauren N. Ross1 Received: 3 December 2017 / Accepted: 8 October 2018 © Springer Nature B.V. 2018 Abstract The periodic table represents and organizes all known chemical elements on the basis of their properties. While the importance of this table in chemistry is uncontroversial, the role that it plays in scientific reasoning remains heavily disputed. Many philosophers deny the explanatory role of the table and insist that it is “merely” classificatory (Shapere, in F. Suppe (Ed.) The structure of scientific theories, University of Illinois Press, Illinois, 1977; Scerri in Erkenntnis 47:229–243, 1997). In particular, it has been claimed that the table does not figure in causal explanation because it “does not reveal causal structure” (Woody in Science after the practice turn in the philosophy, history, and social studies of science, Routledge Taylor & Francis Group, New York, 2014). This paper provides an analysis of what it means to say that a scientific figure reveals causal structure and it argues that the modern periodic table does just this. It also clarifies why these “merely” classificatory claims have seemed so compelling–this is because these claims often focus on the earliest periodic tables, which lack the causal structure present in modern versions. Keywords Causation · Explanation · Philosophy of chemistry · Classification · Causal reasoning 1 Introduction To the extent that there is a trademark figure for the field of chemistry it is surely the periodic table. Considered by many to capture the “essence” of this scientific domain, the periodic table represents and organizes all known chemical elements on the basis of their properties (Scerri 2007, p. xiii). While the importance of this table in chemistry is I would like to thank Jim Woodward, Eric Scerri, Julia Bursten, and two anonymous reviewers for helpful feedback on this paper. B Lauren N. Ross [email protected] 1 Department of Logic and Philosophy of Science, University of California, 3151 Social Science Plaza A, 92697-5100 Irvine, USA 123 Synthese uncontroversial, the role that it plays in scientific reasoning remains heavily disputed. Many suggest that this table serves as a helpful tool for classifying chemical substances, while denying that it figures in scientific explanation (Shapere 1977, pp. 534–535). The periodic table is said to resemble classifications such as Linnaean taxonomy and the Dewey decimal system, which organize phenomena on the basis of various features without explaining them (Scerri 1997a, p. 239). More specifically, it has been claimed that the periodic table does not figure in causal explanation because it “does not reveal causal structure” (Woody 2014, p. 143).1 Typically, causal explanations involve explaining some outcome by appealing to its causes. If the periodic table lacks causal information or causal structure, this would indicate its inability to participate in such explanations. These claims about the explanatory nature of the periodic table have been related to various topics in philosophy of science. One related set of topics involves the concept of scientific theories, their role in explanation, and their connection to non-explanatory projects such as prediction and classification. Some of these analyses have adopted a theory-centered view of explanation, where explanations involve derivations from or reductions to particular theories. In this work, the periodic table is often used as a paradigmatic example of a non-explanatory project as it cannot be reduced to or derived from any underlying theory (Shapere 1977; Scerri 1997a; Scerri and Worrall 2001; Woody 2014). In this sense, the periodic table is said to be “devoid of theoretical status” as it does “not seek to explain the facts but merely to classify them” (Scerri 1997a, p. 239). These and other analyses go to great lengths to clarify how the table lacks explanatory power, despite being useful for classification and prediction (Shapere 1977; Scerri 1997a; Scerri and Worrall 2001). In recent work, more diverse accounts of explanation have been acknowledged, beyond these theory-centered formulations.2 However, despite this work, it has still been suggested that the periodic table “seems a rather poor candidate for explanatory status” under any of these various accounts (Woody 2014, p. 143). This paper examines the status of the periodic table with respect to causal expla- nation. It engages with claims that the table lacks “causal structure” (Woody 2014,p. 143) and explanatory power (Scerri 1997a, p. 239). When these claims are examined in the context of chemists’ discussions and use of the periodic table, they raise a number of puzzles. First, chemists claim that the table allows them to explain particular proper- ties of the elements and their periodic nature (Chang 2007, p. 326) (Myers 2003, p. 66) (Weller et al. 2014, p. 273). Second, they often invoke information in the table in ways that suggest it has causal implications. The table contains information about chemical and physical properties of the elements, which chemists state are “explained,” “ratio- nalized,” and “determine[d]” by atomic structure (Weller et al. 2014, p. 271), (Myers 2003, pp. 44, 66, 85). The relationship between atomic structure and chemical prop- erties is said to be “best conceived as one of cause and effect, with atomic structure determining chemical properties” (Strong 1959, p. 344). Relatedly, standard chemistry 1 Even those philosophers who ascribe some explanatory status to the periodic table deny its role in causal explanation (Kitcher 1989, pp. 428–429) (Woody 2014, p. 143). 2 A non-exhaustive list of different accounts of scientific explanation include: causal (Woodward 2003), non-causal (Batterman 2010; Saatsi and Pexton 2018), mechanistic (Bechtel and Richardson 2010), unifi- catory (Kitcher 1989), and deductive-nomological accounts (Hempel 1965). 123 Synthese textbooks maintain that a goal of the field is to “explain periodic variations in atomic radii, electronegativities, charges, and covalent bond types in terms of our theory of the electronic structure of the atom itself” (Wulfsberg 1991, p. 371). These consider- ations lead to a number of questions. First, if the table is “merely” classificatory, why do scientists seem to invoke it in explanations of these phenomena? Second, if the table lacks causal structure, why is it cited in explanations that appear to be causal? Furthermore, what exactly does it mean to say that a figure has or “reveals” causal structure as opposed to capturing some non-causal classification? The central nature of this table in the field of chemistry and the strong tension between philosophical and scientific claims about its explanatory status motivate these questions and the search for satisfying answers. This paper argues that the modern periodic table does reveal causal structure in the sense of containing causal information that figures in explanations in chemistry. I provide an analysis of what it means for a figure to reveal causal structure where this distinguishes the project of causal explanation from mere classification, prediction, and description. The rest of this paper is organized as follows. Section 2 reviews background leading up to the development of the modern periodic table. In Sect. 3, the interventionist account of causation is introduced and used to specify a set of criteria for causal structure. These criteria are used to examine the table in Sects. 3 and 4 where information relevant to the explanandum and explanans are examined. Section 5 clarifies differences between the modern periodic table and systems that are “merely” classificatory, such as Linnaean taxonomy and the Dewey Decimal system. Section 6 concludes. 2 The periodic table: some background The modern periodic table originated with developments in the mid-19th century. Soon after the acceptance of a standardized set of atomic weights published by Cannizzaro from 1858–1860, it was discovered that many chemical and physical properties of the elements are a periodic function of their atomic weight (Moeller, 1980 p. 23) (Scerri 2007, p. 66). Properties such as atomic volume were shown to increase in repeated intervals among elements serially ordered by atomic weight, as shown in Meyer’s graph in Fig. 1 (Meyer 1870). In this figure, the repeating peaks correspond to elements that share the property of large atomic volume (Li, Na, K, Rb, Cs), while the valleys correspond to elements with low atomic volume (B, Al, Co, Rh). Attempts to clearly capture this pattern led to a number of representational formats, including some of the earliest periodic tables. Mendeleev produced some of the most well-known examples of these tables in which he ordered elements of increasing atomic weight in columns from top-to-bottom and left-to right, such that their chemical similarity or “family resemblance” was captured along a horizontal dimension, by rows (in later tables, including the modern one, these similarities are captured vertically) (Mendeleev 1869) (Scerri 2007, p. 125).3 This can be seen in Fig. 2 where, for example, the 3 Meyer and others produced similar tables, with horizontal similarities. Mendeleev had other non-tabular representations of chemical periodicity. 123 Synthese Fig. 1 Periodicity in graphical format (Meyer 1870) 14th row from the top identifies elements (Li, Na, K, Rb, Cs, Tl) with the shared properties of large atomic volume and a valence (or combining power) of 1. The consistent periodic relationship between an element’s properties and atomic weight led Mendeleev to use this “periodic law” to make a number of predictions about the behavior of undiscovered elements of particular atomic weights (Moeller et al. 1980, p. 158). Some of these predictions would be confirmed in later work and they are represented by various question marks in his table.4 While many chemical and physical properties were shown to follow a periodic pattern, ordering the elements on the basis of atomic weight sometimes produced inconsistencies in this pattern.
Recommended publications
  • Course CHEM 3341, Inorganic Chemistry Professor Dr. Sheel Dodani Term Fall 2016 Meetings MWF 10:00-10:50 AM, MC 2.410
    Course CHEM 3341, Inorganic Chemistry Professor Dr. Sheel Dodani Term Fall 2016 Meetings MWF 10:00-10:50 AM, MC 2.410 Professor’s Contact Information Office Phone 972-883-7283 Other Phone N/A Office Location Bioengineering Science Building (BSB) Email Address [email protected] Office Hours Wednesdays 11:30 AM – 12:30 PM, Thursdays 4 PM – 5 PM BSB 11.302 Other Information Please contact me for appointments outside of office hours General Course Information Pre-requisites, Co- requisites, & other Chem 2323 and Chem 2325 restrictions Survey of inorganic chemistry with emphasis on the modern concepts and theories of inorganic chemistry including electronic and geometric Course Description structure of inorganic compounds. Topics address contemporary physical and descriptive inorganic chemistry. Objectives The goal of this course is to provide students with a thorough foundation in atomic structure, periodicity, bonding and symmetry with subsequent extension of these basic principles to acid/base, solid state and coordination chemistry. Students will develop an understanding of the elements and the ability to predict the structures, certain properties and reactivities of a range of representative ionic and covalent compounds. Learning Expected Learning Outcomes Outcomes Upon successful completion of this course, students will therefore: 1. Be able to explain atomic structure and bonding using currently accepted theories. 2. Be able to use group theory to describe molecular orbital diagrams and molecular properties. 3. Be able to integrate knowledge of atomic structure with the structure and properties of ionic and molecular compounds. 4. Be able to explain the history, bonding and properties of representative main group elements, coordination and organometallic compounds Inorganic Chemistry, 5th Edition Required Texts & by Gary L.
    [Show full text]
  • General Inorganic Chemistry
    General Inorganic Chemistry Pre DP Chemistry Period 1 • Teacher: Annika Nyberg • [email protected] • Urgent messages via Wilma! Klicka här för att ändra format på underrubrik i bakgrunden • Course book: • CliffsNotes: Chemistry Quick Review http://www.chem1.com/acad/webtext/virtualtextbook.html Content • Introduction • The Structure of Matter (Chapter 1) • The Atom (Chapter 2 and 3) • Chemical bonding (Chapter 5) • The Mole (Chapter 2) • Solutions (Chapter 9) • Acids and bases (Chapter 10) • Quiz • Revision • EXAM 9.00-11.45 Assessment Exam: 80 % Quiz: 20% + practical work, activity and absences 1. Chemistry: a Science for the twenty-first century ● Chemistry has ancient roots, but is now a modern and active, evolving science. ● Chemistry is often called the central science, because a basic knowledge of chemistry is essential for students in biology, physics, geology and many other subjects. https://www.youtube.com/watch?v=tTlnrhiadnI ● Chemical research and development has provided us with new substances with specific properties. These substances have improved the quality of our lives. Health and medicine vaccines sanitation systems antibiotics anesthesia and all other drugs Energy new alternative energy sources (e.g. solar energy to electric energy, nuclear fission) electric cars with long lasting batteries Environment greenhouse gases acid rain and smog Materials and Technology ● polymers (rubber and nylon), ceramics (cookware), liquid crystals (electronic displays), adhesives (Post-It notes), coatings (latex-paint), silicon chips (computers) Food and Agriculture substances for biotechnology ● The purpose of this course is to make you understand how chemists see the world. ● In other words, if you see one thing (in the macroscopic world) you think another (visualize the particles and events in the microscopic world).
    [Show full text]
  • Philosophy of Science and Philosophy of Chemistry
    Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science.
    [Show full text]
  • THE EPISTEMOLOGICAL AUTONOMY of CHEMISTRY By
    THE EPISTEMOLOGICAL AUTONOMY OF CHEMISTRY By ROBIN PFLUGHAUPT Integrated Studies Project submitted to Dr. Russell Thompson in partial fulfillment of the requirements for the degree of Master of Arts – Integrated Studies Athabasca, Alberta November, 2009 THE EPISTEMOLOGICAL AUTONOMY OF CHEMISTRY 2 Abstract The “logicians’ program” or attempt to situate scientific methodology within a logical framework has come to a standstill following radical developments within the philosophy of science and science and technology studies. One of the most persistent concepts remaining from the traditional philosophy of science or logical empiricism however is the unification of science through the reducibility of chemical and biological phenomena to physical laws and explanations. Towards the end of the 19th century, chemistry underwent a physical revolution in order to describe dynamic processes and express chemical phenomena mathematically, and developments within quantum mechanics during the 1920s encouraged the assumption that chemistry is fully reducible to physics. Theoretical chemistry is briefly overviewed to reveal that quantum chemistry developed through the assistance of models developed within the “organic structuralist tradition” and empirical data to generate abstract approximations that are cumbersome to calculate. From these approximations, however chemists have produced powerful models, in particular molecular orbitals, that have become invaluable conceptual tools within chemistry since they “black box” quantum mechanical calculations and rationalize chemical processes. Despite shared ontology between physics and chemistry, since it is impossibly cumbersome to fully explain chemical phenomena at the particle level, there is the appearance of “emergentism” at the molecular level, and physics does not capture chemistry’s engineering ideology and “disciplinary matrices”, philosophical concepts including “supervenience” have been used to argue for the epistemological autonomy of chemistry.
    [Show full text]
  • Chemistry ‐ Student Learning Outcomes CHEM 100 Introduction to Chemistry 1.Analyze Chemical Reactions and Chemical Problems Through Stoichiometry
    Chemistry ‐ Student Learning Outcomes CHEM 100 Introduction To Chemistry 1.analyze chemical reactions and chemical problems through stoichiometry. (ILO2) 2. predict properties of matter using atomic theory. (ILO2) 3. use the periodic table properly to determine trends in elements (atomic size, number of valence electrons, metallic character, electronegativity, etc.). (ILO2, ILO4) 4. perform chemical experiments in a safe, accurate, and scientific manner, using proper glasswares, graphs, and spreadsheets. (ILO2, ILO4) CHEM 160 Introduction to General, 1. calculate drug dosage using English and Metric unit interconversions and dimensional Organic & Biological analysis. (ILO4) Chemistry 2. identify different classes of organic compounds. (ILO2) 3. identify different functional groups in organic compounds. (ILO2) 4. write a research paper on biochemical disorders. (ILO4) 5. discuss the geographical/ethnic distribution of biochemical disorders. (ILO5) CHEM 200 General Inorganic Chemistry I 1. perform dimensional analysis calculations as they relate to problems involving percent composition and density. (ISLO2) 2. write chemical formulas, and name inorganic compounds. (ISLO2) 3. relate chemical equations and stoichiometry as they apply to the mole concept. (ISLO2) 4. identify the basic types of chemical reactions including precipitation, neutralization, and oxidation‐reduction. (ISLO4) 5. knowledge of atomic structure and quantum mechanics and apply these concepts to the study of periodic properties of the elements. (ISLO4) CHEM 202 General Inorganic Chemistry 1. examine and develop concepts of covalent bonding, orbital hybridization and II molecular orbital theory. (ISLO4) 2. identify and perform organic addition and elimination reactions. (ISLO2) 3. compare and analyze Thermodynamics properties and differentiate between spontaneity and maximum useful work heat and Free energy. (ISLO2) 4.
    [Show full text]
  • CHEM 110 Week 1 Inorganic Chemistry I Atoms, Elements, and Compounds
    CHEM 110 Week 1 Inorganic Chemistry I Atoms, Elements, and Compounds Week 1 Reading Assignment Your week 1 reading assignment has been selected from chapters 3 and 5 in your textbook. As part of your reading assignment, you are expected to work the sample problems and the selected “questions and problems” at the end of your book sections. The answers to the odd numbered “questions and problems” can be found at the end of your book chapters. You should use this key to check yourself. If you are having problems arriving at the correct answer as listed in the back of your book chapter, please email me. Read section 3.1 and answer the odd numbered “questions and problems” on page 85. Read section 3.2 and answer the odd numbered “questions and problems” on page 91. Read section 3.3 and answer “questions and problems” 3.15 and 3.17 on page 94. You do not have to know the experimental details used to determine the structure of an atom. Read section 3.4 and answer the odd numbered “questions and problems” on page 97. Read about isotopes and atomic mass in section 3.5 and answer “questions and problems” 3.29 and 3.31 on page 100. Skip the part on calculating atomic mass using isotopes. Read section 3.6. Read section 3.7. Read about “Group Number and Valence Electrons” and “Electron-Dot Symbols” in section 3.8. Answer “questions and problems” 3.57 and 3.59 on page 118. Read section 5.1 and answer the odd numbered “questions and problems” on page 163 and 164.
    [Show full text]
  • Kant's Critique of Judgment and the Scientific Investigation of Matter
    Kant’s Critique of Judgment and the Scientific Investigation of Matter Daniel Rothbart, Irmgard Scherer Abstract: Kant’s theory of judgment establishes the conceptual framework for understanding the subtle relationships between the experimental scientist, the modern instrument, and nature’s atomic particles. The principle of purposive- ness which governs judgment has also a role in implicitly guiding modern experimental science. In Part 1 we explore Kant’s philosophy of science as he shows how knowledge of material nature and unobservable entities is possible. In Part 2 we examine the way in which Kant’s treatment of judgment, with its operating principle of purposiveness, enters into his critical project and under- lies the possibility of rational science. In Part 3 we show that the centrality given to judgment in Kant’s conception of science provides philosophical in- sight into the investigation of atomic substances in modern chemistry. Keywords : Kant , judgment , purposiveness , experimentation , investigation of matter . Introduction Kant’s philosophy of science centers on the problem of how it is possible to acquire genuine knowledge of unobservable entities, such as atoms and molecules. “What and how much can the understanding and reason know apart from all experience?” ( CPuR , Axvii). This raises the question of the role of experiments in the knowability ( Erkennbarkeit ) and the experientiality (Erfahrbarkeit ) of nature. Kant’s insights into the character of scientific experimentation are not given the hearing they deserve. We argue that Kant’s theory of judgment establishes the conceptual framework for understanding the subtle inter- actions between the experimental chemist, the modern chemical instrument, and molecular substance.
    [Show full text]
  • 25Th Anniversary of Molecules—Recent Advances in Inorganic Chemistry
    molecules Editorial 25th Anniversary of Molecules—Recent Advances in Inorganic Chemistry Burgert Blom 1,* , Erika Ferrari 2 , Vassilis Tangoulis 3 ,Cédric R. Mayer 4, Axel Klein 5 and Constantinos C. Stoumpos 6 1 Maastricht Science Programme, Assistant Professor of Inorganic Chemistry and Catalysis, Maastricht University, Kapoenstraat 2, P.O. Box 616, 6200 MD Maastricht, The Netherlands 2 Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy; [email protected] 3 Department of Chemistry, University of Patras, 26504 Patras, Greece; [email protected] 4 Laboratoire LuMin, FRE CNRS 2036, CNRS, Université Paris-Sud, ENS Paris-Saclay, Centrale Supelec, Université Paris-Saclay, F-91405 Orsay CEDEX, France; [email protected] 5 Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, 50939 Köln, Germany; [email protected] 6 Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; [email protected] * Correspondence: [email protected] Celebrating the “25th Anniversary of Molecules” with a Special Issue dedicated to “Recent Advances in Inorganic Chemistry” strengthens the renewed role that inorganic chemistry, one of the oldest chemistry divisions, has lately earned thanks to cutting-edge perspectives and interdisciplinary applications, eventually receiving the veneration and respect which its age might require [1,2]. The last 25 years have seen staggering advances in both solid-state, molecular, catalytic Citation: Blom, B.; Ferrari, E.; Tangoulis, V.; Mayer, C.R.; Klein, A.; and bio-inorganic chemistry. Some notable highlights in molecular inorganic chemistry Stoumpos, C.C. 25th Anniversary of over the last 2.5 decades certainly must include the propensity of heavy p-block elements Molecules—Recent Advances in (those in period 3 or higher) to undergo multiple bonding with other heavy p-block Inorganic Chemistry.
    [Show full text]
  • Philosophy of Chemistry: an Emerging Field with Implications for Chemistry Education
    DOCUMENT RESUME ED 434 811 SE 062 822 AUTHOR Erduran, Sibel TITLE Philosophy of Chemistry: An Emerging Field with Implications for Chemistry Education. PUB DATE 1999-09-00 NOTE 10p.; Paper presented at the History, Philosophy and Science Teaching Conference (5th, Pavia, Italy, September, 1999). PUB TYPE Opinion Papers (120) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Chemistry; Educational Change; Foreign Countries; Higher Education; *Philosophy; Science Curriculum; *Science Education; *Science Education History; *Science History; Scientific Principles; Secondary Education; Teaching Methods ABSTRACT Traditional applications of history and philosophy of science in chemistry education have concentrated on the teaching and learning of "history of chemistry". This paper considers the recent emergence of "philosophy of chemistry" as a distinct field and explores the implications of philosophy of chemistry for chemistry education in the context of teaching and learning chemical models. This paper calls for preventing the mutually exclusive development of chemistry education and philosophy of chemistry, and argues that research in chemistry education should strive to learn from the mistakes that resulted when early developments in science education were made separate from advances in philosophy of science. Contains 54 references. (Author/WRM) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** 1 PHILOSOPHY OF CHEMISTRY: AN EMERGING FIELD WITH IMPLICATIONS FOR CHEMISTRY EDUCATION PERMISSION TO REPRODUCE AND U.S. DEPARTMENT OF EDUCATION DISSEMINATE THIS MATERIAL HAS Office of Educational Research and improvement BEEN GRANTED BY RESOURCES INFORMATION SIBEL ERDURAN CENTER (ERIC) This document has been reproducedas ceived from the person or organization KING'S COLLEGE, UNIVERSITYOF LONDON originating it.
    [Show full text]
  • Classic Model of Perception Pattern Recognition Challenge Robust
    Classic Model of Perception Perception & Pattern Recognition Pattern Recognition Why is pattern recognition difficult? • Process of connecting perceptual • Accomplished with incomplete or information w/info in LTM ambiguous information – Visual Pattern Recognition – Auditory Pattern Recognition (Speech) – Importance of Context Challenge Robust • Many different exemplars are recognized • Used by on-line vendors to test for as being the same presence of a human (Turing Test) 1 Models of Pattern Recognition Template Matching • Template Models • Retinal image matched to pre- • Feature Models existing patterns • Neural Network Models • Recognition – when retinal image matches • Prototype Models pattern • Examples – Check Reading – Zip Code Sorting Problems • Image falls on wrong part of retina • Image different size than template • Orientation • Templates, templates, templates • New objects? Models of Pattern Recognition Feature Theory • Template Models • Stimuli broken down into features • Feature Models • Features combine and recombine • Prototype Models • Objects defined by • Neural Network Models – Constituent features – Relationships between features 2 Letter Recognition Pandemonium W A depiction of Selfridge’s (1959) Pandemonium model Supporting Evidence Hubel & Wiesel • Edge detection cells in cats (Hubel & • Different cells like different features Wiesel, 1962) Gibson, Shapiro, & Yonas (1968) Groupings by RT • Analyze letters in terms of features • Ask people to determine if 2 letters are the same vs. different • Compare the clustering of letters in the reaction time task to the similarities of the features 3 Find the ‘Z’ vs ‘Q’ Object Perception EIMVWX CDG9RU XMZWVI RDQOCG VIEXWM GRDCOU WVXQIE DCURZG Faster to find ‘Z’ on the right, Faster to find ‘Q’ on the left (due to letters w/similar features in the surround) Geons Degraded Objects • Can help explain recognition of degraded • Disrupt Geon • Deletion Control – (midsegment) objects – (concavity) Limitations of geons Features vs.
    [Show full text]
  • History and Idealism: the Theory of R. G. Collingwood
    History and Idealism: The Theory of R. G. Collingwood Saul A. Kripke This is the final submitted version of the following article: Kripke, S. A. (2017), History and Idealism: The Theory of R. G. Collingwood. Collingwood and British Idealism Studies, 23: 9-29, which has been published in final form by Imprint Academic at https://www.ingentaconnect.com/content/imp/col/2017/00000023/00 000001/art00002. 1 History and Idealism: The Theory of R. G. Collingwood1 Saul A. Kripke In this essay, the phrase, “the idealist theory of history,” will denote the idealist cultural philosophy of history, as proposed by Collingwood and others, not the idealist speculative philosophy, as adumbrated by Hegel and various kindred spirits. The distinction between a speculative and cultural philosophy of history, as formulated by Walsh (1951: 13-15), contrasts the philosopher’s “speculative” task (or alleged task) of formulating the teleology or ultimate meaning of history with the “cultural” task of investigating the epistemological foundations of historical research.2 A speculative idealist theory of history will attempt to show, as Hegel has done, that history progresses according to dialectical laws of “thought” or “world spirit,”3 but a critical (or cultural) idealist view of history need make no such commitment.4 1 This paper was written for an undergraduate history course at Harvard, in my third (junior) year of college (1960-1; second term). My teacher, Richard T. Vann, urged me to publish it even then. Since a couple of Collingwood scholars expressed interest in this paper, I have finally followed Vann’s advice. I have kept the paper pretty much as it was, with very minor stylistic revisions (such as replacing the then conventional use of ‘he’ by an alternation of ‘he’ and ‘she’).
    [Show full text]
  • Bridging the Philosophies of Biology and Chemistry
    CALL FOR PAPERS First International Conference on Bridging the Philosophies of Biology and Chemistry 25-27 June 2019 University of Paris Diderot, France Extended Deadline for Abstract Submission: 28 February 2019 The aim of this conference is to bring philosophers of biology and philosophers of chemistry together and to explore common grounds and topics of interest. We particularly welcome papers on (1) the philosophy of interdisciplinary fields between biology and chemistry; (2) historical case studies on the disciplinary divergence and convergence of biology and chemistry; and (3) the similarities and differences between philosophical approaches to biology and chemistry. Philosophy is broadly construed and includes epistemological, methodological, ontological, metaphysical, ethical, political, and legal issues of science. For a detailed description of possible topics, please see below and visit the conference website http://www.sphere.univ-paris-diderot.fr/spip.php?article2228&lang=en Instructions for Abstract Submission Submit a Word file including author name(s), affiliation, paper title, and an abstract of maximum 500 words by 28 February 2019 to Jean-Pierre Llored ([email protected]) . Registration If you are interested in participating, please register by sending an e-mail to Jean-Pierre Llored ([email protected]) before 30 April 2019. Venue Room 454A, Building Condorcet, University Paris Diderot, 4, rue Elsa Morante, 75013 Paris, France Sponsors CNRS; Laboratory SPHERE, Laboratory LIED, and Department of History and Philosophy of Science, University of Paris Diderot; Fondation de la Maison de la Chimie; Free University of Brussels; University of Lille Organizers Cécilia Bognon, Quentin Hiernaux, Jean-Pierre Llored, Joachim Schummer First international Conference on Bridging the Philosophies of Biology and Chemistry 25-27 June 2019, University of Paris Diderot, France Description Background For much of the twentieth century, philosophy of science had almost exclusively been focused on physics and mathematics.
    [Show full text]