Orlistat, a Novel Potent Antitumor Agent for Ovarian Cancer: Proteomic Analysis of Ovarian Cancer Cells Treated with Orlistat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Modifications of Gene Expression Induced in Liver by Azo-Dye Diet
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 206, number 2 FEBS 4070 October 1986 Early modifications of gene expression induced in liver by azo-dye diet EugCnia Lamas, Fabien Schweighoffer and Axe1 Kahn Unit& de Recherches en GP&tique et Pathologie Mol&ulaires, INSERM U 129, CHU COCHIN, 24, Rue du Faubourg Saint Jacques, 75674 Paris Cedex 14, France Received 5 August 1986 The expression and regulation of the phosphoenolpyruvate carboxykinase gene were not grossly modified by feeding rats a 3’-methyl-4-(dimethylamino)azobenzene-containing diet despite maximum expression of the L-type pyruvate kinase gene being dramatically reduced as early as the 24th hour of the carcinogenic diet. Inhibition of aldolase B mRNA synthesis occurred more slowly, being maximum at the 3rd day. After stopping administration of the carcinogen, a very rapid, but transient increase of the L-type pyruvate kinase mRNA was observed at the 24th hour, whereas aldolase B mRNA increased only slowly. The amount of aldolase A mRNA fell quickly after termination of carcinogen administration, levels being normal at the 2nd-3rd day. At this time, the histological structure of the liver was indistinguishable from that of animals still receiving the azo-dye diet. It appears, therefore, that in the rat both administration and withdrawal of the azo-dye carcinogen induce rapid modifications of the expression of some genes, before any cellular modification is distinguishable. Azo-dye diet mRNA Hepatocarcinogenesis Phosphoenolpyruvate carboxykinase Aldolase Pyruvate kinase 1. INTRODUCTION some genes. Such a possibility is of theoretical im- portance because it could constitute the basis for The azo-dye 3’-methyl-4-(dimethylamino)azo- the carcinogenic action of the dye. -
An ER Stress/Defective Unfolded Protein Response Model Richard T
ORIGINAL RESEARCH Ethanol Induced Disordering of Pancreatic Acinar Cell Endoplasmic Reticulum: An ER Stress/Defective Unfolded Protein Response Model Richard T. Waldron,1,2 Hsin-Yuan Su,1 Honit Piplani,1 Joseph Capri,3 Whitaker Cohn,3 Julian P. Whitelegge,3 Kym F. Faull,3 Sugunadevi Sakkiah,1 Ravinder Abrol,1 Wei Yang,1 Bo Zhou,1 Michael R. Freeman,1,2 Stephen J. Pandol,1,2 and Aurelia Lugea1,2 1Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California; 2Department of Medicine, or 3Psychiatry and Biobehavioral Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California Pancreatic acinar cells Pancreatic acinar cells - no pathology - - Pathology - Ethanol feeding ER sXBP1 Pdi, Grp78… (adaptive UPR) aggregates Proper folding and secretion • disordered ER of proteins processed in the • impaired redox folding endoplasmic reticulum (ER) • ER protein aggregation • secretory defects SUMMARY METHODS: Wild-type and Xbp1þ/- mice were fed control and ethanol diets, then tissues were homogenized and fraction- Heavy alcohol consumption is associated with pancreas ated. ER proteins were labeled with a cysteine-reactive probe, damage, but light drinking shows the opposite effects, isotope-coded affinity tag to obtain a novel pancreatic redox ER reinforcing proteostasis through the unfolded protein proteome. Specific labeling of active serine hydrolases in ER with response orchestrated by X-box binding protein 1. Here, fluorophosphonate desthiobiotin also was characterized pro- ethanol-induced changes in endoplasmic reticulum protein teomically. Protein structural perturbation by redox changes redox and structure/function emerge from an unfolded was evaluated further in molecular dynamic simulations. protein response–deficient genetic model. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Original Article PDIA3 Knockdown in Dendritic Cells Regulates IL-4 Dependent Mast Cell Degranulation
Int J Clin Exp Med 2019;12(7):8482-8491 www.ijcem.com /ISSN:1940-5901/IJCEM0089109 Original Article PDIA3 knockdown in dendritic cells regulates IL-4 dependent mast cell degranulation Liyuan Tao1,2, Yue Hu1,3, Bin Lv1,3, Lu Zhang1,3, Zhaomeng Zhuang1,3, Meng Li1,3 1Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China; 2Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou 310003, China; 3Key Laboratory of Digestive Pathophysiology of Zhejiang Province, First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310006, China Received November 28, 2018; Accepted March 13, 2019; Epub July 15, 2019; Published July 30, 2019 Abstract: Background: A previous study found that expression of protein disulfide isomerase A3 (PDIA3) in den- dritic cells (DCs) is a potential mediator of exaggerated intestinal mucosal immunity response in a rodent model of irritable bowel syndrome (IBS). Aim: The aim of this study was to explore the roles of PDIA3 in the interaction between DCs and mast cells (MCs) in the context of IBS. Methods: This study investigated the effects of shRNA- mediated knockdown of PDIA3 expression in a dendritic cell line and spleen lymphocyte co-cultures. Resultant co-culture supernatants were used to challenge MC. PDIA3 expression was assessed using q-PCR and Western blotting. Expression of surface markers was analyzed by flow cytometry. CD4+ and CD8+ T-cell proliferation were examined using Cell Trace CFSE kits. Cytokine production was determined by ELISA testing. MC viability was ascer- tained using CCK-8 production. -
Exploring the Non-Canonical Functions of Metabolic Enzymes Peiwei Huangyang1,2 and M
© 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 REVIEW SPECIAL COLLECTION: CANCER METABOLISM Hidden features: exploring the non-canonical functions of metabolic enzymes Peiwei Huangyang1,2 and M. Celeste Simon1,3,* ABSTRACT A key finding from studies of metabolic enzymes is the existence The study of cellular metabolism has been rigorously revisited over the of mechanistic links between their nuclear localization and the past decade, especially in the field of cancer research, revealing new regulation of transcription. By modulating gene expression, insights that expand our understanding of malignancy. Among these metabolic enzymes themselves facilitate adaptation to rapidly insights isthe discovery that various metabolic enzymes have surprising changing environments. Furthermore, they can directly shape a ’ activities outside of their established metabolic roles, including in cell s epigenetic landscape (Kaelin and McKnight, 2013). the regulation of gene expression, DNA damage repair, cell cycle Strikingly, several metabolic enzymes exert completely distinct progression and apoptosis. Many of these newly identified functions are functions in different cellular compartments. Nuclear fructose activated in response to growth factor signaling, nutrient and oxygen bisphosphate aldolase, for example, directly interacts with RNA ́ availability, and external stress. As such, multifaceted enzymes directly polymerase III to control transcription (Ciesla et al., 2014), -
Datasheet: VPA00226
Datasheet: VPA00226 Description: RABBIT ANTI ALDOA Specificity: ALDOA Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit Ig fraction prepared by ammonium sulphate precipitation Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Immunogen KLH conjugated synthetic peptide between 66-95 amino acids from the N-terminal region of human ALDOA External Database UniProt: Links P04075 Related reagents Entrez Gene: 226 ALDOA Related reagents Page 1 of 2 Synonyms ALDA Specificity Rabbit anti Human ALDOA antibody recognizes fructose-bisphosphate aldolase A, also known as epididymis secretory sperm binding protein Li 87p, fructose-1,6-bisphosphate triosephosphate-lyase, lung cancer antigen NY-LU-1 and muscle-type aldolase. Encoded by the ALDOA gene, fructose-bisphosphate aldolase A is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. -
Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-Activated Lymphoma Cell Line
CANCER GENOMICS & PROTEOMICS 12 : 133-142 (2015) Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-activated Lymphoma Cell Line YASUTO AKIYAMA 1* , AKIRA IIZUKA 1* , AKIKO KUME 1, MASARU KOMIYAMA 1, KENICHI URAKAMI 2, TADASHI ASHIZAWA 1, HARUO MIYATA 1, MAHO OMIYA 1, MASATOSHI KUSUHARA 3 and KEN YAMAGUCHI 4 1Immunotherapy Division, 2Cancer Diagnostics Division, 3Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 4Office of the President, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan Abstract. Background: Signal transducer and activator of enzymes including fructose-bisphosphate aldolase A transcription (STAT)3 is involved in a metabolic shift in (ALDOA) as a metabolic marker candidate for STAT3- cancer cells, the Warburg effect through its pro-oncogenic targeting therapy using STAT3-specific shRNA gene activity. To develop efficient STAT3 inhibitors against cancer transduction. In particular, latexin expression was up- cells, novel proteomic and metabolic target molecules need regulated in four STAT3-activated cancer cell lines including to be explored using multi-omics approaches in the context of SCC-3 transduced with STAT3-specific shRNA. The up- STAT3 gene inhibition-mediated tumor growth suppression. regulation of latexin was identified in SCC-3 tumors Materials and Methods: We found that short hairpin transplanted to nude mice after treatment with STAT3 (sh)RNA-mediated STAT3 inhibition suppressed tumor inhibitor. Conclusion: Our results suggest that STAT3 growth in a highly STAT3-activated lymphoma cell line, inactivation reverses the glycolytic shift by down-regulating SCC-3 cells, and we investigated the effect of STAT3 key enzymes and that it induces up-regulation of latexin as a inhibition on metabolic switching using 2-dimensional tumor-suppressor molecule, which partially results in cancer differential gel electrophoresis and capillary electrophoresis- cell apoptosis and tumor growth suppression. -
Identification and Characterization of Genes That Control Fat
Claire D’Andre et al. Journal of Animal Science and Biotechnology 2013, 4:43 http://www.jasbsci.com/content/4/1/43 JOURNAL OF ANIMAL SCIENCE AND BIOTECHNOLOGY RESEARCH Open Access Identification and characterization of genes that control fat deposition in chickens Hirwa Claire D’Andre1,3*, Wallace Paul2, Xu Shen3, Xinzheng Jia3, Rong Zhang3, Liang Sun3 and Xiquan Zhang3 Abstract Background: Fat deposits in chickens contribute significantly to meat quality attributes such as juiciness, flavor, taste and other organoleptic properties. The quantity of fat deposited increases faster and earlier in the fast- growing chickens than in slow-growing chickens. In this study, Affymetrix Genechip® Chicken Genome Arrays 32773 transcripts were used to compare gene expression profiles in liver and hypothalamus tissues of fast-growing and slow-growing chicken at 8 wk of age. Real-time RT-PCR was used to validate the differential expression of genes selected from the microarray analysis. The mRNA expression of the genes was further examined in fat tissues. The association of single nucleotide polymorphisms of four lipid-related genes with fat traits was examined in a F2 resource population. Results: Four hundred genes in the liver tissues and 220 genes hypothalamus tissues, respectively, were identified to be differentially expressed in fast-growing chickens and slow-growing chickens. Expression levels of genes for lipid metabolism (SULT1B1, ACSBG2, PNPLA3, LPL, AOAH) carbohydrate metabolism (MGAT4B, XYLB, GBE1, PGM1, HKDC1)cholesttrol biosynthesis (FDPS, LSS, HMGCR, NSDHL, DHCR24, IDI1, ME1) HSD17B7 and other reaction or pro- cesses (CYP1A4, CYP1A1, AKR1B1, CYP4V2, DDO) were higher in the fast-growing White Recessive Rock chickens than in the slow-growing Xinghua chickens. -
MMP-25 Metalloprotease Regulates Innate Immune Response Through NF- Κb Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G
MMP-25 Metalloprotease Regulates Innate Immune Response through NF- κB Signaling Clara Soria-Valles, Ana Gutiérrez-Fernández, Fernando G. Osorio, Dido Carrero, Adolfo A. Ferrando, Enrique Colado, This information is current as M. Soledad Fernández-García, Elena Bonzon-Kulichenko, of September 27, 2021. Jesús Vázquez, Antonio Fueyo and Carlos López-Otín J Immunol 2016; 197:296-302; Prepublished online 3 June 2016; doi: 10.4049/jimmunol.1600094 Downloaded from http://www.jimmunol.org/content/197/1/296 Supplementary http://www.jimmunol.org/content/suppl/2016/06/01/jimmunol.160009 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 41 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/197/1/296.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology MMP-25 Metalloprotease Regulates Innate Immune Response through NF-kB Signaling Clara Soria-Valles,* Ana Gutie´rrez-Ferna´ndez,* Fernando G. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Inhibitor for Protein Disulfide‑Isomerase Family a Member 3
ONCOLOGY LETTERS 21: 28, 2021 Inhibitor for protein disulfide‑isomerase family A member 3 enhances the antiproliferative effect of inhibitor for mechanistic target of rapamycin in liver cancer: An in vitro study on combination treatment with everolimus and 16F16 YOHEI KANEYA1,2, HIDEYUKI TAKATA2, RYUICHI WADA1,3, SHOKO KURE1,3, KOUSUKE ISHINO1, MITSUHIRO KUDO1, RYOTA KONDO2, NOBUHIKO TANIAI4, RYUJI OHASHI1,3, HIROSHI YOSHIDA2 and ZENYA NAITO1,3 Departments of 1Integrated Diagnostic Pathology, and 2Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School; 3Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo 113‑8602; 4Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School Musashi Kosugi Hospital, Tokyo 211‑8533, Japan Received April 16, 2020; Accepted October 28, 2020 DOI: 10.3892/ol.2020.12289 Abstract. mTOR is involved in the proliferation of liver 90.2±10.8% by 16F16 but to 62.3±12.2% by combination treat‑ cancer. However, the clinical benefit of treatment with mTOR ment with Ev and 16F16. HuH‑6 cells were resistant to Ev, and inhibitors for liver cancer is controversial. Protein disulfide proliferation was reduced to 86.7±6.1% by Ev and 86.6±4.8% isomerase A member 3 (PDIA3) is a chaperone protein, and by 16F16. However, combination treatment suppressed prolif‑ it supports the assembly of mTOR complex 1 (mTORC1) and eration to 57.7±4.0%. Phosphorylation of S6K was reduced by stabilizes signaling. Inhibition of PDIA3 function by a small Ev in both Li‑7 and HuH‑6 cells. Phosphorylation of 4E‑BP1 molecule known as 16F16 may destabilize mTORC1 and was reduced by combination treatment in both Li‑7 and HuH‑6 enhance the effect of the mTOR inhibitor everolimus (Ev). -
A Novel Pseudomonas Geniculata AGE Family Epimerase/Isomerase and Its Application in D-Mannose Synthesis
foods Article A Novel Pseudomonas geniculata AGE Family Epimerase/Isomerase and Its Application in d-Mannose Synthesis Zhanzhi Liu 1,2, Ying Li 1,2, Jing Wu 1,2 and Sheng Chen 1,2,* 1 State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; [email protected] (Z.L.); [email protected] (Y.L.); [email protected] (J.W.) 2 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China * Correspondence: [email protected] Received: 29 September 2020; Accepted: 3 December 2020; Published: 6 December 2020 Abstract: d-mannose has exhibited excellent physiological properties in the food, pharmaceutical, and feed industries. Therefore, emerging attention has been applied to enzymatic production of d-mannose due to its advantage over chemical synthesis. The gene age of N-acetyl-d-glucosamine 2-epimerase family epimerase/isomerase (AGEase) derived from Pseudomonas geniculata was amplified, and the recombinant P. geniculata AGEase was characterized. The optimal temperature and pH of P. geniculata AGEase were 60 ◦C and 7.5, respectively. The Km, kcat, and kcat/Km of P. geniculata AGEase for d-mannose were 49.2 8.5 mM, 476.3 4.0 s 1, and 9.7 0.5 s 1 mM 1, respectively. ± ± − ± − · − The recombinant P. geniculata AGEase was classified into the YihS enzyme subfamily in the AGE enzyme family by analyzing its substrate specificity and active center of the three-dimensional (3D) structure. Further studies on the kinetics of different substrates showed that the P.