Therapeutic Targeting of Aldolase a Interactions Inhibits Lung Cancer Metastasis

Total Page:16

File Type:pdf, Size:1020Kb

Therapeutic Targeting of Aldolase a Interactions Inhibits Lung Cancer Metastasis Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Therapeutic Targeting of Aldolase A Interactions Inhibits Lung Cancer Metastasis 2 and Prolongs Survival 3 4 Yu-Chan Chang 1, Jean Chiou1, Yi-Fang Yang2, Chia-Yi Su1, Yuan-Feng Lin3, Chia-Ning Yang4, 5 Pei-Jung Lu5, Ming-Shyan Huang 6, Chih-Jen Yang7* and Michael Hsiao 1,8* 6 7 1. Genomics Research Center, Academia Sinica, Taipei, Taiwan. 8 2. Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical 9 University, Kaohsiung, Taiwan. 10 3. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11 Taiwan. 12 4. Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan. 13 5. Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan 14 6. Department of Internal Medicine, E-DA Cancer Hospital, School of Medicine, I-Shou University, 15 Kaohsiung, Taiwan. 16 7. Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical 17 University, Kaohsiung, Taiwan. 18 8. Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 19 Taiwan. 20 21 *To whom correspondence should be addressed: 22 Dr. Michael Hsiao, Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, 23 Nankang-Dist., Taipei, Taiwan. Tel: +886-2-2787-1243, Fax: +886-2-2789-9931, E-mail: 24 [email protected] 25 Or to 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Dr. Chih-Jen Yang, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, 2 Kaohsiung Medical University, No. 68 Chunghwa 3rd Road, Cianjin District, 80145 Kaohsiung City, 3 Taiwan. Tel: +886-7-320-8159, Email: [email protected] 4 5 Competing financial interest 6 The authors declare that they have no competing interests. 7 8 9 Running Title: Targeting of ALDOA inhibits lung cancer metastasis 10 11 2 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Abstract 2 Cancer metabolic reprogramming promotes tumorigenesis and metastasis, however, the underlying 3 molecular mechanisms are still being uncovered. In this study, we show that the glycolytic enzyme 4 aldolase A (ALDOA) is a key enzyme involved in lung cancer metabolic reprogramming and metastasis. 5 Overexpression of ALDOA increased migration and invasion of lung cancer cell lines in vitro and 6 formation of metastatic lung cancer foci in vivo. ALDOA promoted metastasis independent of its 7 enzymatic activity. Immunoprecipitation and proteomic analyses revealed gamma-actin binds to 8 ALDOA; blocking this interaction using specific peptides decreased metastasis both in vitro and in vivo. 9 Screening of clinically available drugs based on the crystal structure of ALDOA identified raltegravir, an 10 anti-retroviral agent that targets HIV integrase, as a pharmacological inhibitor of ALDOA-gamma-actin 11 binding that produced anti-metastatic and survival benefits in a xenograft model with no significant 12 toxicity. In summary, ALDOA promotes lung cancer metastasis by interacting with gamma-actin, 13 targeting this interaction provides a new therapeutic strategy to treat lung cancer metastasis. 14 15 Significance 16 This study demonstrates the role of aldolase A and its interaction with γ-actin in the metastasis of 17 non-small lung cancer and that blocking this interaction could be an effective cancer treatment. 18 19 Key word: Aldolase A, non-glycolytic function, raltegravir 20 3 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Introduction 2 Lung cancer is the most common cancer in terms of mortality and incidence rates worldwide, and 3 non-small cell lung cancer (NSCLC) accounts for 80% in these cohorts (1). Metastasis remains a major 4 cause of disease mortality and failure for NSCLC after treatment. Genetic alteration events involved in 5 the aggressive progression of lung cancer have been recently reported, but the precise molecular 6 mechanisms for this progression remain unclear (2). Additionally, metabolic variation has been 7 demonstrated as a mechanism for tumorigenesis (3). In fact, Otto Warburg demonstrated that 8 malignancies turn over glycolysis in the absence of oxygen concentration to produce adenosine 9 triphosphate (ATP), the so-called Warburg effect, for progressive development (4). Physiologically, 10 glycolysis is the initial step for glucose metabolism, and the subsequent intermediates can be converted 11 to synthesize lipid acid, amino acids or nucleotides (5). Recent studies reported that the glycolytic 12 enzymes at each step of glycolysis has been aberrantly over-activated under hypoxia or oncogenic 13 stimulation (6). Therefore, several studies have been performed to identify promising glycolytic 14 enzymes or metabolic pathways through proteomic or high-throughput biochemical approaches to 15 identify novel biomarkers for diagnosis or druggable targets for cancer therapy (7-9). Although several 16 inhibitors of glycolytic enzymes have been developed as anti-cancer agents, their combination with 17 other chemotherapeutics or identification of cancer-specific glycolytic enzymes has still been pursued to 18 reduce off-target effects (10). 19 Fructose-bisphosphate aldolase is a member of the family of the glycolytic enzymes that catalyzes 20 the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate (GAP) and 21 dihydroxyacetone phosphate (DHAP) (11). The family comprises 3 members: ALDOA, ALDOB and 22 ALDOC. Differences indicate that aldolases A, B, and C are distinct proteins, and the products of this 23 family show developmentally regulated expression and location (12). ALDOA is highly conserved from 24 rabbits to humans, and it is the most extensively studied isozyme of the aldolase family (13). ALDOA 25 protein has demonstrated higher expression in various types of tumor cells (14-21). However, recent 4 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 studies have shown that the only well-established effect of ALDOA is keratinocyte migration following 2 the induction of lamellipodia formation (11) or epithelial-mesenchymal transition (EMT) (22). 3 Additionally, multiple growth factor signaling pathways crosslink with alternative metabolism, 4 including the EGFR/MAPK, MEK-ERK or PI3K/AKT-mTOR pathways (23-25). However, the link 5 between ALDOA and metabolism in tumorigenesis pathways is still unknown. 6 The nonglycolytic functions of enzymes involved in glycolysis have recently been identified to be 7 predominantly associated with the mechanisms of cancer development (26-31). For example, pyruvate 8 kinase M2 (PKM2) is extensively upregulated in tumors, allowing for high lactate production via 9 aerobic glycolysis, the so-called Warburg effect, thereby promoting tumor growth (32). Moreover, 10 PKM2 acts as a phosphotyrosine-binding protein (33) and appears to be phosphorylated by epidermal 11 growth factor receptor (EGFR)-activated ERK2 directly via a protein-protein interaction (PPI) before 12 translocation into the nucleus, where PKM2 acts as a coactivator of -catenin (34) or HIF-1α (35) or as 13 a kinase to phosphorylate histone H3 (36) to promote gene transcription for tumor growth. Despite the 14 above evidence, the PPIs of other glycolytic enzymes, apart from their role in glucose metabolism, may 15 reprogram cellular signaling networks and gene transcription, thereby facilitating cancer progression. 16 Therefore, identifying the cancer-associated PPIs of glycolytic enzymes is valuable to further develop 17 new anti-cancer agents with fewer side effects. 18 Using an RNA interference (RNAi)-based screen, we have determined that, compared with other 19 glycolytic enzymes, aldolase A (ALDOA) is a key molecule that mediates the in vitro 20 migration/invasion abilities of lung cancer cells. Notably, upregulated ALDOA forms a 21 cancer-associated PPI with -actin, irrespective of enhanced glycolysis, and ultimately promotes lung 22 cancer metastasis. Raltegravir, which blocks the binding of ALDOA with -actin, reduces the metastasis 23 ability in vitro and prolongs survival rate in vivo. These findings demonstrate a novel therapeutic 24 potential for ALDOA and a new aspect of targeting nonglycolytic PPIs for cancer therapy. 5 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript
Recommended publications
  • Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment
    Cancer Microenvironment (2019) 12:149–167 https://doi.org/10.1007/s12307-019-00226-0 REVIEW Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment Mohd Rihan1 & Lakshmi Vineela Nalla1 & Anil Dharavath1 & Amit Shard3 & Kiran Kalia2 & Amit Khairnar1 Received: 18 March 2019 /Accepted: 17 May 2019 /Published online: 10 June 2019 # Springer Nature B.V. 2019 Abstract Metabolic reprogramming is a newly emerged hallmark of cancer attaining a recent consideration as an essential factor for the progression and endurance of cancer cells. A prime event of this altered metabolism is increased glucose uptake and discharge of lactate into the cells surrounding constructing a favorable tumor niche. Several oncogenic factors help in promoting this consequence including, pyruvate kinase M2 (PKM2) a rate-limiting enzyme of glycolysis in tumor metabolism via exhibiting its low pyruvate kinase activity and nuclear moon-lightening functions to increase the synthesis of lactate and macromolecules for tumor proliferation. Not only its role in cancer cells but also its role in the tumor microenvironment cells has to be understood for developing the small molecules against it which is lacking with the literature till date. Therefore, in this present review, the role of PKM2 with respect to various tumor niche cells will be clarified. Further, it highlights the updated list of therapeutics targeting PKM2 pre-clinically and clinically with their added limitations. This upgraded understanding of PKM2 may provide a pace for the reader in developing
    [Show full text]
  • PKM2 Determines Myofiber Hypertrophy in Vitro and Increases
    International Journal of Molecular Sciences Article PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle 1, 2,3, , 4 Sander A. J. Verbrugge y , Sebastian Gehlert * y , Lian E. M. Stadhouders , Daniel Jacko 3 , Thorben Aussieker 3, Gerard M. J. de Wit 4, Ilse S. P. Vogel 4, Carla Offringa 4, 1 4, , 1, , Martin Schönfelder , Richard T. Jaspers * z and Henning Wackerhage * z 1 Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; [email protected] (S.A.J.V.); [email protected] (M.S.) 2 Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany 3 Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; [email protected] (D.J.); [email protected] (T.A.) 4 Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; [email protected] (L.E.M.S.); [email protected] (G.M.J.d.W.); [email protected] (I.S.P.V.); c.off[email protected] (C.O.) * Correspondence: [email protected] (S.G.); [email protected] (R.T.J.); [email protected] (H.W.); Tel.: +49-5121-883-11951 (S.G.); +31-20-5988463 (R.T.J.); +49-89-289-24480 (H.W.) Joint first authors. y Joint last authors.
    [Show full text]
  • A20 Promotes Melanoma Progression Via the Activation of Akt Pathway
    Ma et al. Cell Death and Disease (2020) 11:794 https://doi.org/10.1038/s41419-020-03001-y Cell Death & Disease ARTICLE Open Access A20 promotes melanoma progression via the activation of Akt pathway Jinyuan Ma1, Huina Wang1,SenGuo1, Xiuli Yi1, Tao Zhao1,YuLiu1,QiongShi1,TianwenGao1,ChunyingLi1 and Weinan Guo1 Abstract Melanoma is the most life-threatening skin cancer with increasing incidence around the world. Although recent advances in targeted therapy and immunotherapy have brought revolutionary progress of the treatment outcome, the survival of patients with advanced melanoma remains unoptimistic, and metastatic melanoma is still an incurable disease. Therefore, to further understand the mechanism underlying melanoma pathogenesis could be helpful for developing novel therapeutic strategy. A20 is a crucial ubiquitin-editing enzyme implicated immunity regulation, inflammatory responses and cancer pathogenesis. Herein, we report that A20 played an oncogenic role in melanoma. We first found that the expression of A20 was significantly up-regulated in melanoma cell lines. Then, we showed that knockdown of A20 suppressed melanoma cell proliferation in vitro and melanoma growth in vivo through the regulation of cell-cycle progression. Moreover, A20 could potentiate the invasive and migratory capacities of melanoma cell in vitro and melanoma metastasis in vivo by promoting epithelial–mesenchymal transition (EMT). Mechanistically, we found that Akt activation mediated the oncogenic effect of A20 on melanoma development, with the involvement of glycolysis. What’s more, the up-regulation of A20 conferred the acquired resistance to Vemurafenib in BRAF-mutant melanoma. Taken together, we demonstrated that up-regulated A20 promoted melanoma progression via the activation of Akt pathway, and that A20 could be exploited as a potential therapeutic target for 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; melanoma treatment.
    [Show full text]
  • Early Modifications of Gene Expression Induced in Liver by Azo-Dye Diet
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 206, number 2 FEBS 4070 October 1986 Early modifications of gene expression induced in liver by azo-dye diet EugCnia Lamas, Fabien Schweighoffer and Axe1 Kahn Unit& de Recherches en GP&tique et Pathologie Mol&ulaires, INSERM U 129, CHU COCHIN, 24, Rue du Faubourg Saint Jacques, 75674 Paris Cedex 14, France Received 5 August 1986 The expression and regulation of the phosphoenolpyruvate carboxykinase gene were not grossly modified by feeding rats a 3’-methyl-4-(dimethylamino)azobenzene-containing diet despite maximum expression of the L-type pyruvate kinase gene being dramatically reduced as early as the 24th hour of the carcinogenic diet. Inhibition of aldolase B mRNA synthesis occurred more slowly, being maximum at the 3rd day. After stopping administration of the carcinogen, a very rapid, but transient increase of the L-type pyruvate kinase mRNA was observed at the 24th hour, whereas aldolase B mRNA increased only slowly. The amount of aldolase A mRNA fell quickly after termination of carcinogen administration, levels being normal at the 2nd-3rd day. At this time, the histological structure of the liver was indistinguishable from that of animals still receiving the azo-dye diet. It appears, therefore, that in the rat both administration and withdrawal of the azo-dye carcinogen induce rapid modifications of the expression of some genes, before any cellular modification is distinguishable. Azo-dye diet mRNA Hepatocarcinogenesis Phosphoenolpyruvate carboxykinase Aldolase Pyruvate kinase 1. INTRODUCTION some genes. Such a possibility is of theoretical im- portance because it could constitute the basis for The azo-dye 3’-methyl-4-(dimethylamino)azo- the carcinogenic action of the dye.
    [Show full text]
  • Exploring the Non-Canonical Functions of Metabolic Enzymes Peiwei Huangyang1,2 and M
    © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 REVIEW SPECIAL COLLECTION: CANCER METABOLISM Hidden features: exploring the non-canonical functions of metabolic enzymes Peiwei Huangyang1,2 and M. Celeste Simon1,3,* ABSTRACT A key finding from studies of metabolic enzymes is the existence The study of cellular metabolism has been rigorously revisited over the of mechanistic links between their nuclear localization and the past decade, especially in the field of cancer research, revealing new regulation of transcription. By modulating gene expression, insights that expand our understanding of malignancy. Among these metabolic enzymes themselves facilitate adaptation to rapidly insights isthe discovery that various metabolic enzymes have surprising changing environments. Furthermore, they can directly shape a ’ activities outside of their established metabolic roles, including in cell s epigenetic landscape (Kaelin and McKnight, 2013). the regulation of gene expression, DNA damage repair, cell cycle Strikingly, several metabolic enzymes exert completely distinct progression and apoptosis. Many of these newly identified functions are functions in different cellular compartments. Nuclear fructose activated in response to growth factor signaling, nutrient and oxygen bisphosphate aldolase, for example, directly interacts with RNA ́ availability, and external stress. As such, multifaceted enzymes directly polymerase III to control transcription (Ciesla et al., 2014),
    [Show full text]
  • Datasheet: VPA00226
    Datasheet: VPA00226 Description: RABBIT ANTI ALDOA Specificity: ALDOA Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit Ig fraction prepared by ammonium sulphate precipitation Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Immunogen KLH conjugated synthetic peptide between 66-95 amino acids from the N-terminal region of human ALDOA External Database UniProt: Links P04075 Related reagents Entrez Gene: 226 ALDOA Related reagents Page 1 of 2 Synonyms ALDA Specificity Rabbit anti Human ALDOA antibody recognizes fructose-bisphosphate aldolase A, also known as epididymis secretory sperm binding protein Li 87p, fructose-1,6-bisphosphate triosephosphate-lyase, lung cancer antigen NY-LU-1 and muscle-type aldolase. Encoded by the ALDOA gene, fructose-bisphosphate aldolase A is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.
    [Show full text]
  • Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-Activated Lymphoma Cell Line
    CANCER GENOMICS & PROTEOMICS 12 : 133-142 (2015) Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-activated Lymphoma Cell Line YASUTO AKIYAMA 1* , AKIRA IIZUKA 1* , AKIKO KUME 1, MASARU KOMIYAMA 1, KENICHI URAKAMI 2, TADASHI ASHIZAWA 1, HARUO MIYATA 1, MAHO OMIYA 1, MASATOSHI KUSUHARA 3 and KEN YAMAGUCHI 4 1Immunotherapy Division, 2Cancer Diagnostics Division, 3Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 4Office of the President, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan Abstract. Background: Signal transducer and activator of enzymes including fructose-bisphosphate aldolase A transcription (STAT)3 is involved in a metabolic shift in (ALDOA) as a metabolic marker candidate for STAT3- cancer cells, the Warburg effect through its pro-oncogenic targeting therapy using STAT3-specific shRNA gene activity. To develop efficient STAT3 inhibitors against cancer transduction. In particular, latexin expression was up- cells, novel proteomic and metabolic target molecules need regulated in four STAT3-activated cancer cell lines including to be explored using multi-omics approaches in the context of SCC-3 transduced with STAT3-specific shRNA. The up- STAT3 gene inhibition-mediated tumor growth suppression. regulation of latexin was identified in SCC-3 tumors Materials and Methods: We found that short hairpin transplanted to nude mice after treatment with STAT3 (sh)RNA-mediated STAT3 inhibition suppressed tumor inhibitor. Conclusion: Our results suggest that STAT3 growth in a highly STAT3-activated lymphoma cell line, inactivation reverses the glycolytic shift by down-regulating SCC-3 cells, and we investigated the effect of STAT3 key enzymes and that it induces up-regulation of latexin as a inhibition on metabolic switching using 2-dimensional tumor-suppressor molecule, which partially results in cancer differential gel electrophoresis and capillary electrophoresis- cell apoptosis and tumor growth suppression.
    [Show full text]
  • Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration
    Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology 5-9-2016 Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration Yinwei Zhang Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Zhang, Yinwei, "Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration." Dissertation, Georgia State University, 2016. https://scholarworks.gsu.edu/biology_diss/166 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. FUNCTIONS OF EXTRACELLULAR PYTUVATE KINASE M2 IN TISSUE REPAIR AND REGENERATION by YINWEI ZHANG Under the Direction of Zhi-Ren Liu, PhD ABSTRACT Pyruvate kinase M2 (PKM2) is a glycolytic enzyme expressed in highly proliferating cells. Studies of PKM2 have been focused on its function of promoting cell proliferation in cancer cells. Our laboratory previously discovered that extracellular PKM2 released from cancer cells promoted angiogenesis by activating endothelial cell proliferation and migration. PKM2 activated endothelial cells through integrin αvβ3. Angiogenesis and myofibroblast differentiation are key processes during wound healing. In this dissertation, I demonstrate that extracellular PKM2 released from activated neutrophils
    [Show full text]
  • Brownian Dynamics Simulations of Aldolase Binding Glyceraldehyde 3- Phosphate Dehydrogenase and the Possibility of Substrate Channeling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 80 June 2001 2527–2535 2527 Brownian Dynamics Simulations of Aldolase Binding Glyceraldehyde 3- Phosphate Dehydrogenase and the Possibility of Substrate Channeling Igor V. Ouporov,* Harvey R. Knull,† Amanda Huber,* and Kathryn A. Thomasson* *Department of Chemistry, University of North Dakota; and †Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA ABSTRACT Brownian dynamics (BD) simulations test for channeling of the substrate, glyceraldehyde 3-phosphate (GAP), as it passes between the enzymes fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde 3-phosphate dehydro- genase (GAPDH). First, BD simulations determined the favorable complexes between aldolase and GAPDH; two adjacent subunits of GAPDH form salt bridges with two subunits of aldolase. These intermolecular contacts provide a strong electrostatic interaction between the enzymes. Second, BD simulates GAP moving out of the active site of the A or D aldolase subunit and entering any of the four active sites of GAPDH. The efficiency of transfer is determined as the relative number of BD trajectories that reached any active site of GAPDH. The distribution functions of the transfer time were calculated based on the duration of successful trajectories. BD simulations of the GAP binding from solution to aldolase/GAPDH complex were compared to the channeling simulations. The efficiency of transfer of GAP within an aldolase/GAPDH complex was 2 to 3% compared to 1.3% when GAP was binding to GAPDH from solution.
    [Show full text]
  • Platelet Isoform of Phosphofructokinase Promotes Aerobic Glycolysis and the Progression of Non‑Small Cell Lung Cancer
    MOLECULAR MEDICINE REPORTS 23: 74, 2021 Platelet isoform of phosphofructokinase promotes aerobic glycolysis and the progression of non‑small cell lung cancer FUAN WANG1, LING LI2 and ZHEN ZHANG3 1Department of Surgical Group, Medical College of Pingdingshan University, Pingdingshan, Henan 467000; 2Department of Respiratory Medicine, First People's Hospital of Jinan, Jinan, Shandong 250000; 3Department of Neurosurgery, Shandong Provincial Hospital, Jinan, Shandong 250012, P.R. China Received April 2, 2020; Accepted October 19, 2020 DOI: 10.3892/mmr.2020.11712 Abstract. The platelet isoform of phosphofructokinase by western blotting. Glucose uptake, lactate production and (PFKP) is a rate‑limiting enzyme involved in glycolysis that the adenosine trisphosphate/adenosine diphosphate ratio serves an important role in various types of cancer. The aim were measured using the corresponding kits. The results of of the present study was to explore the specific regulatory the present study demonstrated that PFKP expression was relationship between PFKP and non‑small cell lung cancer upregulated in NSCLC tissues and cells, and PFKP expression (NSCLC) progression. PFKP expression in NSCLC tissues was related to lymph node metastasis and histological grade. and corresponding adjacent tissues was detected using In addition, overexpression of PFKP inhibited cell apoptosis, reverse transcription‑quantitative polymerase chain reac‑ and promoted proliferation, migration, invasion and glycolysis tion (RT‑qPCR) and immunohistochemical analysis. PFKP of H1299 cells, whereas knockdown of PFKP had the opposite expression in human bronchial epithelial cells (16HBE) and effects. In conclusion, PFKP inhibited cell apoptosis, and NSCLC cells (H1299, H23 and A549) was also detected using promoted proliferation, migration, invasion and glycolysis of RT‑qPCR.
    [Show full text]
  • JMJD5 Regulates PKM2 Nuclear Translocation and Reprograms HIF-1Α–Mediated Glucose Metabolism
    JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α–mediated glucose metabolism Hung-Jung Wanga,b, Ya-Ju Hsiehc, Wen-Chi Chenga, Chun-Pu Lina, Yu-shan Lina, So-Fang Yanga, Chung-Ching Chena, Yoshihiro Izumiyad, Jau-Song Yuc, Hsing-Jien Kungb,d,1, and Wen-Ching Wanga,e,1 aInstitute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; bNational Health Research Institutes, Miaoli 35053, Taiwan; cProteomics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 33302, Taiwan; dDepartment of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Center, Sacramento, CA 95817; and eCenter of Biomedical Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan Edited* by Shu Chien, University of California, San Diego, La Jolla, CA, and approved November 19, 2013 (received for review June 13, 2013) JMJD5, a Jumonji C domain-containing dioxygenase, is important (FBP), amino acid serine (7), and SAICAR (succinylaminoimi- for embryonic development and cancer growth. Here, we show dazolecarboxamide ribose-5′-phosphate), a metabolite of the de that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia- novo purine nucleotide synthesis pathway (8). On the other hand, induced cell proliferation. JMJD5 interacts directly with pyruvate various stimuli including growth factors are known to negatively kinase muscle isozyme (PKM)2 to modulate metabolic flux in can- affect the pyruvate kinase activity of PKM2, thereby diverting the cer cells. The JMJD5-PKM2 interaction resides at the intersubunit metabolic flow to the anabolic process. This was carried out interface region of PKM2, which hinders PKM2 tetramerization principally by posttranslational modifications: Y105 phosphory- and blocks pyruvate kinase activity.
    [Show full text]
  • Orlistat, a Novel Potent Antitumor Agent for Ovarian Cancer: Proteomic Analysis of Ovarian Cancer Cells Treated with Orlistat
    INTERNATIONAL JOURNAL OF ONCOLOGY 41: 523-532, 2012 Orlistat, a novel potent antitumor agent for ovarian cancer: proteomic analysis of ovarian cancer cells treated with Orlistat HUI-QIONG HUANG1*, JING TANG1*, SHENG-TAO ZHOU1, TAO YI1, HONG-LING PENG1, GUO-BO SHEN2, NA XIE2, KAI HUANG2, TAO YANG2, JIN-HUA WU2, CAN-HUA HUANG2, YU-QUAN WEI2 and XIA ZHAO1,2 1Gynecological Oncology of Biotherapy Laboratory, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan; 2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China Received February 9, 2012; Accepted March 19, 2012 DOI: 10.3892/ijo.2012.1465 Abstract. Orlistat is an orally administered anti-obesity drug larly PKM2. These changes confirmed our hypothesis that that has shown significant antitumor activity in a variety of Orlistat is a potential inhibitor of ovarian cancer and can be tumor cells. To identify the proteins involved in its antitumor used as a novel adjuvant antitumor agent. activity, we employed a proteomic approach to reveal protein expression changes in the human ovarian cancer cell line Introduction SKOV3, following Orlistat treatment. Protein expression profiles were analyzed by 2-dimensional polyacrylamide In the 1920s, the Nobel Prize winner Otto Warburg observed gel electrophoresis (2-DE) and protein identification was a marked increase in glycolysis and enhanced lactate produc- performed on a MALDI-Q-TOF MS/MS instrument. More tion in tumor cells even when maintained in conditions of high than 110 differentially expressed proteins were visualized oxygen tension (termed Warburg effect), leading to widespread by 2-DE and Coomassie brilliant blue staining.
    [Show full text]