Pyruvate Kinase Inhibits Proliferation During Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation Katherine Tech1,2, Andrey P

Total Page:16

File Type:pdf, Size:1020Kb

Pyruvate Kinase Inhibits Proliferation During Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation Katherine Tech1,2, Andrey P Published OnlineFirst May 17, 2017; DOI: 10.1158/0008-5472.CAN-16-3304 Cancer Molecular and Cellular Pathobiology Research Pyruvate Kinase Inhibits Proliferation during Postnatal Cerebellar Neurogenesis and Suppresses Medulloblastoma Formation Katherine Tech1,2, Andrey P. Tikunov1, Hamza Farooq3,4, A. Sorana Morrissy3,4, Jessica Meidinger2, Taylor Fish2, Sarah C. Green1, Hedi Liu2, Yisu Li5, Andrew J. Mungall5, Richard A. Moore5, Yussanne Ma5, Steven J.M. Jones5, Marco A. Marra5, Matthew G. Vander Heiden6,7, Michael D. Taylor3,4,8,9, Jeffrey M. Macdonald1, and Timothy R. Gershon2,10,11 Abstract Aerobic glycolysis supports proliferation through unresolved sively expressed the less active PKM2. Isoform-specific Pkm2 mechanisms. We have previously shown that aerobic glycolysis is deletion in CGNPs blocked all Pkm expression. Pkm2-deleted required for the regulated proliferation of cerebellar granule CGNPs showed reduced lactate production and increased neuron progenitors (CGNP) and for the growth of CGNP-derived SHH-driven proliferation. 13C-flux analysis showed that Pkm2 medulloblastoma. Blocking the initiation of glycolysis via dele- deletion reduced the flow of glucose carbons into lactate and tion of hexokinase-2 (Hk2) disrupts CGNP proliferation and glutamate without markedly increasing glucose-to-ribose flux. restricts medulloblastoma growth. Here, we assessed whether Pkm2 deletion accelerated tumor formation in medulloblasto- disrupting pyruvate kinase-M (Pkm), an enzyme that acts in the ma-prone ND2:SmoA1 mice, indicating the disrupting PKM terminal steps of glycolysis, would alter CGNP metabolism, releases CGNPs from a tumor-suppressive effect. These findings proliferation, and tumorigenesis. We observed a dichotomous show that distal and proximal disruptions of glycolysis have pattern of PKM expression, in which postmitotic neurons opposite effects on proliferation, and that efforts to block the throughout the brain expressed the constitutively active PKM1 oncogenic effect of aerobic glycolysis must target reactions isoform, while neural progenitors and medulloblastomas exclu- upstream of PKM. Cancer Res; 77(12); 1–14. Ó2017 AACR. Introduction amplifying cells that proliferate in the postnatal brain (3, 4) that utilize aerobic glycolysis during normal brain development (5). Increased aerobic glycolysis, a common feature of proliferating CGNPs are also cells-of-origin for SHH-subgroup medulloblas- cells during developmental and malignant growth (1, 2), has been toma (6, 7). Medulloblastomas coopt developmentally regulated proposed as a target for anticancer therapy. CGNPs are transit programs of CGNPs (6, 7), including the metabolic phenotype of increased aerobic glycolysis (5, 8). Understanding how aerobic 1 glycolysis supports CGNP proliferation and medulloblastoma Joint Department of Biomedical Engineering, University of North Carolina at tumorigenesis is essential for designing metabolically directed Chapel Hill and North Carolina State University, Chapel Hill, North Carolina. 2Department of Neurology, University of North Carolina School of Medicine, medulloblastoma therapies. Chapel Hill, North Carolina. 3Developmental & Stem Cell Biology Program, The During postnatal brain development, CGNPs proliferate in Hospital for Sick Children, Toronto, Ontario, Canada. 4The Arthur and Sonia the cerebellum in response to locally secreted Sonic Hedgehog Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, (SHH), generating the largest neuron population in the mam- Ontario, Canada. 5Michael Smith Genome Sciences Centre, BC Cancer Agency, – 6 malian brain (9 11). In synchrony with increased CGNP pro- Vancouver, British Columbia, Canada. David H. Koch Institute for Integrative liferation, SHH signaling induces hexokinase-2 (HK2) and Cancer Research, Massachusetts Institute of Technology, Cambridge, Massa- chusetts. 7Dana-Farber Cancer Institute, Boston, Massachusetts. 8Department of aerobic glycolysis (5, 8). Approximately 30% of medulloblas- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, toma patients show SHH pathway activation (12, 13) and mice Canada. 9Division of Neurosurgery, The Hospital for Sick Children, Toronto, with activating SHH pathway mutations develop spontaneous Ontario, Canada. 10Lineberger Comprehensive Cancer Center, University of medulloblastomas that recapitulate the human disease 11 North Carolina School of Medicine, Chapel Hill, North Carolina. UNC Neurosci- (14, 15). These tumors arise from CGNPs and, like their ence Center, University of North Carolina School of Medicine, Chapel Hill, North cells-of-origin, upregulate HK2 and aerobic glycolysis (5, 8). Carolina. CGNP proliferation and SHH-driven tumorigenesis in mice Note: Supplementary data for this article are available at Cancer Research typify aerobic glycolysis supporting tumorigenesis arising from Online (http://cancerres.aacrjournals.org/). developmental growth. Corresponding Author: Timothy R. Gershon, Department of Neurology, Uni- We have previously shown that conditional deletion of Hk2 in versity of North Carolina at Chapel Hill, Chapel Hill, NC 27599. Phone: 919-966- the developing brain blocks SHH-induced aerobic glycolysis, 3618; Fax: 919-966-2922; E-mail: [email protected] disrupts CGNP differentiation, and reduces medulloblastoma doi: 10.1158/0008-5472.CAN-16-3304 growth, extending the survival of medulloblastoma-prone mice Ó2017 American Association for Cancer Research. (5). These findings demonstrate the importance of aerobic www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst May 17, 2017; DOI: 10.1158/0008-5472.CAN-16-3304 Tech et al. glycolysis in development and cancer, suggesting that blocking Materials and Methods glycolysis through HK2 inhibition may produce a clinically sig- Animals nificant antitumor effect. Development of selective HK2 inhibi- All wild-type and genetically engineered mice were main- tors for anticancer therapy, however, has been problematic (16). tained on the C57/Bl6 background with at least 5 backcrosses. Whether targeting glycolysis downstream of HK2 would similarly ND2:SmoA1 mice were provided by Dr. James Olson (Fred inhibit tumor growth is unknown. To determine whether the Hutchinson Cancer Research Center, Seattle, WA). Math1-Cre distal portion of the glycolytic pathway is required for the pro- mice were provided by Dr. David Rowitch (University of liferation of normal and transformed CGNPs, we analyzed the California San Francisco, San Francisco, CA) and Robert Wechs- effect of disrupting pyruvate kinase (PK) during cerebellar neu- ler-Reya (Sanford-Burnham Medical Research Institute, La Jolla, rogenesis and medulloblastoma formation. CA). Eva Anton (University of North Carolina at Chapel Hill, While HK2 initiates glycolysis, PK catalyzes the final step, fl/fl Chapel Hill, NC) provided hGFAP-Cre mice. Pkm2 mice were converting phosphoenolpyruvate (PEP) and ADP into pyruvate generously shared by Dr. Matthew Vander Heiden (Massachu- and ATP (17). Pkm is the pyruvate kinase expressed in the brain setts Institute of Technology, Cambridge, MA). Medulloblas- (18). Alternative splicing of a single exon from Pkm gives rise to toma-prone mice were monitored daily for abnormalities of either Pkm1, which includes exon 9, or Pkm2, where exon 9 head shape and movement. At the onset of tumor symptoms, replaces exon 10 (19). PKM1 is constitutively active and typically such as weight loss, ataxia, and impaired movement, animals expressed in differentiated cells, while PKM2 has a regulated were sacrificedandsurvivaltimetoonsetofsymptomswas activity and is commonly expressed in cancer (20–24). PKM2 considered the event-free survival. can be activated by fructose-1,6-bisphosphate, an upstream gly- For 5-ethynyl-20-deoxyuridine (EdU) experiments, mice were colytic intermediate (23, 24) and inactivated by interaction with intraperitoneally injected with EdU (#A10044, Life Technologies) tyrosine-phosphorylated proteins responding to growth factor at 40 mg/kg in 50 mL of HBSS and dissected 24 hours later. Brains receptor signaling (20, 21, 25). While the regulated activity of were fixed in 4% paraformaldehyde in 1Â PBS for 24 hours at 4C, PKM2 may allow proliferating cells to adjust their metabolism to then processed for histology. All animal handling and protocols dynamic requirements (2), the specific benefit of low PKM2 were carried out in accordance with established NIH practices activity has not been identified. and approved under University of North Carolina Institutional PKM2 is expressed in diverse cancers, suggesting a role in cancer Animal Care and Use Committee #13-121.0 and 15-306.0. growth. Xenograft tumors engineered to overexpress either iso- form showed that PKM2 expression confers a relative growth Cell culture techniques advantage (26). Other studies have reported nonmetabolic, CGNPs were isolated and cultured as previously described growth-promoting functions such as transcriptional regulation (5, 34). Briefly, cerebella were dissected from P5 pups, disso- (27, 28) and histone phosphorylation (29, 30). However, iso- ciated,andallowedtoadheretocoatedculturewellsin fi form-speci c deletion studies show that PKM2 is not required for DMEM/F12 (#11320, Life Technologies) with 25 mmol/L KCl, fi Pkm2 tumor formation. Aged mice with isoform-speci c deletion supplemented with FBS and N2. After 4 hours, media were develop liver cancer (31) and breast
Recommended publications
  • Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment
    Cancer Microenvironment (2019) 12:149–167 https://doi.org/10.1007/s12307-019-00226-0 REVIEW Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment Mohd Rihan1 & Lakshmi Vineela Nalla1 & Anil Dharavath1 & Amit Shard3 & Kiran Kalia2 & Amit Khairnar1 Received: 18 March 2019 /Accepted: 17 May 2019 /Published online: 10 June 2019 # Springer Nature B.V. 2019 Abstract Metabolic reprogramming is a newly emerged hallmark of cancer attaining a recent consideration as an essential factor for the progression and endurance of cancer cells. A prime event of this altered metabolism is increased glucose uptake and discharge of lactate into the cells surrounding constructing a favorable tumor niche. Several oncogenic factors help in promoting this consequence including, pyruvate kinase M2 (PKM2) a rate-limiting enzyme of glycolysis in tumor metabolism via exhibiting its low pyruvate kinase activity and nuclear moon-lightening functions to increase the synthesis of lactate and macromolecules for tumor proliferation. Not only its role in cancer cells but also its role in the tumor microenvironment cells has to be understood for developing the small molecules against it which is lacking with the literature till date. Therefore, in this present review, the role of PKM2 with respect to various tumor niche cells will be clarified. Further, it highlights the updated list of therapeutics targeting PKM2 pre-clinically and clinically with their added limitations. This upgraded understanding of PKM2 may provide a pace for the reader in developing
    [Show full text]
  • PKM2 Determines Myofiber Hypertrophy in Vitro and Increases
    International Journal of Molecular Sciences Article PKM2 Determines Myofiber Hypertrophy In Vitro and Increases in Response to Resistance Exercise in Human Skeletal Muscle 1, 2,3, , 4 Sander A. J. Verbrugge y , Sebastian Gehlert * y , Lian E. M. Stadhouders , Daniel Jacko 3 , Thorben Aussieker 3, Gerard M. J. de Wit 4, Ilse S. P. Vogel 4, Carla Offringa 4, 1 4, , 1, , Martin Schönfelder , Richard T. Jaspers * z and Henning Wackerhage * z 1 Department for Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60/62, 80992 München/Munich, Germany; [email protected] (S.A.J.V.); [email protected] (M.S.) 2 Department for the Biosciences of Sports, Institute of Sports Science, University of Hildesheim, Universitätsplatz 1, 31141 Hildesheim, Germany 3 Department for Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, Germany; [email protected] (D.J.); [email protected] (T.A.) 4 Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; [email protected] (L.E.M.S.); [email protected] (G.M.J.d.W.); [email protected] (I.S.P.V.); c.off[email protected] (C.O.) * Correspondence: [email protected] (S.G.); [email protected] (R.T.J.); [email protected] (H.W.); Tel.: +49-5121-883-11951 (S.G.); +31-20-5988463 (R.T.J.); +49-89-289-24480 (H.W.) Joint first authors. y Joint last authors.
    [Show full text]
  • A20 Promotes Melanoma Progression Via the Activation of Akt Pathway
    Ma et al. Cell Death and Disease (2020) 11:794 https://doi.org/10.1038/s41419-020-03001-y Cell Death & Disease ARTICLE Open Access A20 promotes melanoma progression via the activation of Akt pathway Jinyuan Ma1, Huina Wang1,SenGuo1, Xiuli Yi1, Tao Zhao1,YuLiu1,QiongShi1,TianwenGao1,ChunyingLi1 and Weinan Guo1 Abstract Melanoma is the most life-threatening skin cancer with increasing incidence around the world. Although recent advances in targeted therapy and immunotherapy have brought revolutionary progress of the treatment outcome, the survival of patients with advanced melanoma remains unoptimistic, and metastatic melanoma is still an incurable disease. Therefore, to further understand the mechanism underlying melanoma pathogenesis could be helpful for developing novel therapeutic strategy. A20 is a crucial ubiquitin-editing enzyme implicated immunity regulation, inflammatory responses and cancer pathogenesis. Herein, we report that A20 played an oncogenic role in melanoma. We first found that the expression of A20 was significantly up-regulated in melanoma cell lines. Then, we showed that knockdown of A20 suppressed melanoma cell proliferation in vitro and melanoma growth in vivo through the regulation of cell-cycle progression. Moreover, A20 could potentiate the invasive and migratory capacities of melanoma cell in vitro and melanoma metastasis in vivo by promoting epithelial–mesenchymal transition (EMT). Mechanistically, we found that Akt activation mediated the oncogenic effect of A20 on melanoma development, with the involvement of glycolysis. What’s more, the up-regulation of A20 conferred the acquired resistance to Vemurafenib in BRAF-mutant melanoma. Taken together, we demonstrated that up-regulated A20 promoted melanoma progression via the activation of Akt pathway, and that A20 could be exploited as a potential therapeutic target for 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; melanoma treatment.
    [Show full text]
  • Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration
    Georgia State University ScholarWorks @ Georgia State University Biology Dissertations Department of Biology 5-9-2016 Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration Yinwei Zhang Follow this and additional works at: https://scholarworks.gsu.edu/biology_diss Recommended Citation Zhang, Yinwei, "Functions of Extracellular Pyruvate Kinase M2 in Tissue Repair and Regeneration." Dissertation, Georgia State University, 2016. https://scholarworks.gsu.edu/biology_diss/166 This Dissertation is brought to you for free and open access by the Department of Biology at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Biology Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. FUNCTIONS OF EXTRACELLULAR PYTUVATE KINASE M2 IN TISSUE REPAIR AND REGENERATION by YINWEI ZHANG Under the Direction of Zhi-Ren Liu, PhD ABSTRACT Pyruvate kinase M2 (PKM2) is a glycolytic enzyme expressed in highly proliferating cells. Studies of PKM2 have been focused on its function of promoting cell proliferation in cancer cells. Our laboratory previously discovered that extracellular PKM2 released from cancer cells promoted angiogenesis by activating endothelial cell proliferation and migration. PKM2 activated endothelial cells through integrin αvβ3. Angiogenesis and myofibroblast differentiation are key processes during wound healing. In this dissertation, I demonstrate that extracellular PKM2 released from activated neutrophils
    [Show full text]
  • Platelet Isoform of Phosphofructokinase Promotes Aerobic Glycolysis and the Progression of Non‑Small Cell Lung Cancer
    MOLECULAR MEDICINE REPORTS 23: 74, 2021 Platelet isoform of phosphofructokinase promotes aerobic glycolysis and the progression of non‑small cell lung cancer FUAN WANG1, LING LI2 and ZHEN ZHANG3 1Department of Surgical Group, Medical College of Pingdingshan University, Pingdingshan, Henan 467000; 2Department of Respiratory Medicine, First People's Hospital of Jinan, Jinan, Shandong 250000; 3Department of Neurosurgery, Shandong Provincial Hospital, Jinan, Shandong 250012, P.R. China Received April 2, 2020; Accepted October 19, 2020 DOI: 10.3892/mmr.2020.11712 Abstract. The platelet isoform of phosphofructokinase by western blotting. Glucose uptake, lactate production and (PFKP) is a rate‑limiting enzyme involved in glycolysis that the adenosine trisphosphate/adenosine diphosphate ratio serves an important role in various types of cancer. The aim were measured using the corresponding kits. The results of of the present study was to explore the specific regulatory the present study demonstrated that PFKP expression was relationship between PFKP and non‑small cell lung cancer upregulated in NSCLC tissues and cells, and PFKP expression (NSCLC) progression. PFKP expression in NSCLC tissues was related to lymph node metastasis and histological grade. and corresponding adjacent tissues was detected using In addition, overexpression of PFKP inhibited cell apoptosis, reverse transcription‑quantitative polymerase chain reac‑ and promoted proliferation, migration, invasion and glycolysis tion (RT‑qPCR) and immunohistochemical analysis. PFKP of H1299 cells, whereas knockdown of PFKP had the opposite expression in human bronchial epithelial cells (16HBE) and effects. In conclusion, PFKP inhibited cell apoptosis, and NSCLC cells (H1299, H23 and A549) was also detected using promoted proliferation, migration, invasion and glycolysis of RT‑qPCR.
    [Show full text]
  • Therapeutic Targeting of Aldolase a Interactions Inhibits Lung Cancer Metastasis
    Author Manuscript Published OnlineFirst on July 29, 2019; DOI: 10.1158/0008-5472.CAN-18-4080 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Therapeutic Targeting of Aldolase A Interactions Inhibits Lung Cancer Metastasis 2 and Prolongs Survival 3 4 Yu-Chan Chang 1, Jean Chiou1, Yi-Fang Yang2, Chia-Yi Su1, Yuan-Feng Lin3, Chia-Ning Yang4, 5 Pei-Jung Lu5, Ming-Shyan Huang 6, Chih-Jen Yang7* and Michael Hsiao 1,8* 6 7 1. Genomics Research Center, Academia Sinica, Taipei, Taiwan. 8 2. Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical 9 University, Kaohsiung, Taiwan. 10 3. Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11 Taiwan. 12 4. Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan. 13 5. Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan, Taiwan 14 6. Department of Internal Medicine, E-DA Cancer Hospital, School of Medicine, I-Shou University, 15 Kaohsiung, Taiwan. 16 7. Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical 17 University, Kaohsiung, Taiwan. 18 8. Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 19 Taiwan. 20 21 *To whom correspondence should be addressed: 22 Dr. Michael Hsiao, Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec. 2, 23 Nankang-Dist., Taipei, Taiwan. Tel: +886-2-2787-1243, Fax: +886-2-2789-9931, E-mail: 24 [email protected] 25 Or to 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research.
    [Show full text]
  • JMJD5 Regulates PKM2 Nuclear Translocation and Reprograms HIF-1Α–Mediated Glucose Metabolism
    JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1α–mediated glucose metabolism Hung-Jung Wanga,b, Ya-Ju Hsiehc, Wen-Chi Chenga, Chun-Pu Lina, Yu-shan Lina, So-Fang Yanga, Chung-Ching Chena, Yoshihiro Izumiyad, Jau-Song Yuc, Hsing-Jien Kungb,d,1, and Wen-Ching Wanga,e,1 aInstitute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; bNational Health Research Institutes, Miaoli 35053, Taiwan; cProteomics Core Laboratory, Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 33302, Taiwan; dDepartment of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Center, Sacramento, CA 95817; and eCenter of Biomedical Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan Edited* by Shu Chien, University of California, San Diego, La Jolla, CA, and approved November 19, 2013 (received for review June 13, 2013) JMJD5, a Jumonji C domain-containing dioxygenase, is important (FBP), amino acid serine (7), and SAICAR (succinylaminoimi- for embryonic development and cancer growth. Here, we show dazolecarboxamide ribose-5′-phosphate), a metabolite of the de that JMJD5 is up-regulated by hypoxia and is crucial for hypoxia- novo purine nucleotide synthesis pathway (8). On the other hand, induced cell proliferation. JMJD5 interacts directly with pyruvate various stimuli including growth factors are known to negatively kinase muscle isozyme (PKM)2 to modulate metabolic flux in can- affect the pyruvate kinase activity of PKM2, thereby diverting the cer cells. The JMJD5-PKM2 interaction resides at the intersubunit metabolic flow to the anabolic process. This was carried out interface region of PKM2, which hinders PKM2 tetramerization principally by posttranslational modifications: Y105 phosphory- and blocks pyruvate kinase activity.
    [Show full text]
  • Inhibition of Anaplerosis Attenuated Vascular Proliferation in Pulmonary Arterial Hypertension
    Journal of Clinical Medicine Article Inhibition of Anaplerosis Attenuated Vascular Proliferation in Pulmonary Arterial Hypertension Mathews Valuparampil Varghese y, Joel James y, Cody A Eccles, Maki Niihori, Olga Rafikova * and Ruslan Rafikov * Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ 85721, USA; [email protected] (M.V.V.); [email protected] (J.J.); [email protected] (C.A.E.); [email protected] (M.N.) * Correspondence: orafi[email protected] (O.R.); ruslanrafi[email protected] (R.R.); Tel.: +1-520-626-1303 (O.R.); +1-520-626-6092 (R.R.) These authors contributed equally to this work. y Received: 13 December 2019; Accepted: 4 February 2020; Published: 6 February 2020 Abstract: Vascular remodeling is considered a key event in the pathogenesis of pulmonary arterial hypertension (PAH). However, mechanisms of gaining the proliferative phenotype by pulmonary vascular cells are still unresolved. Due to well-established pyruvate dehydrogenase (PDH) deficiency in PAH pathogenesis, we hypothesized that the activation of another branch of pyruvate metabolism, anaplerosis, via pyruvate carboxylase (PC) could be a key contributor to the metabolic reprogramming of the vasculature. In sugen/hypoxic PAH rats, vascular proliferation was found to be accompanied by increased activation of Akt signaling, which upregulated membrane Glut4 translocation and caused upregulation of hexokinase and pyruvate kinase-2, and an overall increase in the glycolytic flux. Decreased PDH activity and upregulation of PC shuttled more pyruvate to oxaloacetate. This results in the anaplerotic reprogramming of lung vascular cells and their subsequent proliferation. Treatment of sugen/hypoxia rats with the PC inhibitor, phenylacetic acid 20 mg/kg, starting after one week from disease induction, significantly attenuated right ventricular systolic pressure, Fulton index, and pulmonary vascular cell proliferation.
    [Show full text]
  • The Combination of the Expression of Hexokinase 2 and Pyruvate Kinase M2 Is a Prognostic Marker in Patients with Pancreatic Cancer
    MOLECULAR AND CLINICAL ONCOLOGY 3: 563-571, 2015 The combination of the expression of hexokinase 2 and pyruvate kinase M2 is a prognostic marker in patients with pancreatic cancer HISATAKA OGAWA1,2, HIROAKI NAGANO1, MASAMITSU KONNO2, HIDETOSHI EGUCHI1, JUN KOSEKI3, KOICHI KAWAMOTO1,2, NAOHIRO NISHIDA1,2, HUGH COLVIN1, AKIRA TOMOKUNI1, YOSHITO TOMIMARU1, NAOKI HAMA1, HIROSHI WADA1, SHIGERU MARUBASHI1, SHOGO KOBAYASHI1, MASAKI MORI1, YUICHIRO DOKI1 and HIDESHI ISHII2,3 Departments of 1Gastroenterological Surgery, 2Frontier Science for Cancer and Chemotherapy, and 3Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Suita, Osaka565 -0871, Japan Received September 19, 2014; Accepted December 5, 2014 DOI: 10.3892/mco.2015.490 Abstract. Metabolism may determine the biologically were significantly correlated with poor prognosis (P<0.03). In malignant behavior of pancreatic cancer. To investigate the the multivariate analysis, pathological nodal metastasis was an significance and prognostic value of cancer metabolism in independent prognostic factor for overall survival, whereas the cancer patients, we investigated the expression of two key positive expression of HK2 and PKM2 exhibited borderline enzymes in anaerobic glycolysis, hexokinase 2 (HK2) and significance (P=0.08 and 0.12, hazard ratio = 2.57 and 2.16, pyruvate kinase isoenzyme type M2 (PKM2), in surgical respectively). In addition, the combination of high expression specimens obtained from 36 patients who underwent curative of HK2 as well as PKM2 was found to be significant (P<0.05). resection of pancreatic ductal carcinoma. The HK2-glycolysis These results suggested that the expression of HK2 and PKM2, axis is a key system in the clinical imaging of tumors via posi- particularly their combination, in surgical specimens obtained tron emission tomography.
    [Show full text]
  • Endothelial Pyruvate Kinase M2 Maintains Vascular Integrity
    Endothelial pyruvate kinase M2 maintains vascular integrity Boa Kim, … , Kristina Li, Zolt Arany J Clin Invest. 2018;128(10):4543-4556. https://doi.org/10.1172/JCI120912. Research Article Metabolism Vascular biology Graphical abstract Find the latest version: https://jci.me/120912/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Endothelial pyruvate kinase M2 maintains vascular integrity Boa Kim,1 Cholsoon Jang,2 Harita Dharaneeswaran,1 Jian Li,1 Mohit Bhide,1 Steven Yang,1 Kristina Li,1 and Zolt Arany1 1Cardiovascular Institute and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. 2Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA. The M2 isoform of pyruvate kinase (PKM2) is highly expressed in most cancer cells, and has been studied extensively as a driver of oncogenic metabolism. In contrast, the role of PKM2 in nontransformed cells is little studied, and nearly nothing is known of its role, if any, in quiescent cells. We show here that endothelial cells express PKM2 almost exclusively over PKM1. In proliferating endothelial cells, PKM2 is required to suppress p53 and maintain cell cycle progression. In sharp contrast, PKM2 has a strikingly different role in quiescent endothelial cells, where inhibition of PKM2 leads to degeneration of tight junctions and barrier function. Mechanistically, PKM2 regulates barrier function independently of its canonical activity as a pyruvate kinase. Instead, PKM2 suppresses NF-kB and its downstream target, the vascular permeability factor angiopoietin 2. As a consequence, loss of endothelial cell PKM2 in vivo predisposes mice to VEGF-induced vascular leak, and to severe bacteremia and death in response to sepsis.
    [Show full text]
  • Potential Role for Pyruvate Kinase M2 in the Regulation of Murine Cardiac Glycolytic flux During in Vivo Chronic Hypoxia
    Bioscience Reports (2021) 41 BSR20203170 https://doi.org/10.1042/BSR20203170 Research Article Potential role for pyruvate kinase M2 in the regulation of murine cardiac glycolytic flux during in vivo chronic hypoxia Michal K. Handzlik1, David J. Tooth1, Dumitru Constantin-Teodosiu1,2,PaulL.Greenhaff1,2 and Downloaded from http://portlandpress.com/bioscirep/article-pdf/41/6/BSR20203170/913238/bsr-2020-3170.pdf by guest on 28 September 2021 Mark A. Cole1 1School of Life Sciences, University of Nottingham Medical School, Queen’s Medical Centre, Nottingham, U.K.; 2MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham, U.K. Correspondence: Mark A. Cole ([email protected]) Carbohydrate metabolism in heart failure shares similarities to that following hypoxic expo- sure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability. As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose la- belling in combination with detailed and extensive enzymatic and metabolomic approaches to provide evidence of the underlying mechanism that allows heart survivability. Following 3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a retrograde mode with function measured via an intraventricular balloon and glycolytic flux quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen and central carbon intermediates determined via liquid chromatography tandem mass spec- trometry (LC-MS/MS).
    [Show full text]
  • O-Glcnacylation Destabilizes the Active Tetrameric PKM2 to Promote the Warburg Effect
    O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect Yang Wanga,1, Jia Liua,1, Xin Jina,1, Dapeng Zhangb,c, Dongxue Lia, Fengqi Haoa, Yunpeng Fenga, Shan Gua, Fanlin Menga, Miaomiao Tiana, Yi Zhenga, Ling Xina, Xinbo Zhanga, Xue Hana, L. Aravindd, and Min Weia,2 aKey Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, People’s Republic of China; bDepartment of Biology, Saint Louis University, St. Louis, MO 63103; cProgram of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103; and dNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 Edited by Gregg L. Semenza, Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 13, 2017 (received for review March 14, 2017) The Warburg effect, characterized by increased glucose uptake and posttranslational modifications. On the one hand, PKM2 is allo- lactate production, is a well-known universal across cancer cells and sterically activated by fructose 1,6-bisphosphate (FBP) (12), an other proliferating cells. PKM2, a splice isoform of the pyruvate kinase upstream intermediate in glycolysis, and serine, which is synthesized (PK) specifically expressed in these cells, serves as a major regulator of from a glycolytic intermediate 3-phosphoglycerate (13). On the other this metabolic reprogramming with an adjustable activity subjected hand, PKM2 activity is regulated by several posttranslational modi- to numerous allosteric effectors and posttranslational modifications. fications, such as phosphorylation, acetylation, and SUMOylation (14–19). These modifications, such as acetylation on Lys433 or Here, we have identified a posttranslational modification on PKM2, 105 O-GlcNAcylation, which specifically targets Thr405 and Ser406, residues phosphorylation on Tyr , impair PKM2 activity by blocking the of the region encoded by the alternatively spliced exon 10 in cancer association of FBP (16, 17).
    [Show full text]