Exploring the Non-Canonical Functions of Metabolic Enzymes Peiwei Huangyang1,2 and M

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Non-Canonical Functions of Metabolic Enzymes Peiwei Huangyang1,2 and M © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 REVIEW SPECIAL COLLECTION: CANCER METABOLISM Hidden features: exploring the non-canonical functions of metabolic enzymes Peiwei Huangyang1,2 and M. Celeste Simon1,3,* ABSTRACT A key finding from studies of metabolic enzymes is the existence The study of cellular metabolism has been rigorously revisited over the of mechanistic links between their nuclear localization and the past decade, especially in the field of cancer research, revealing new regulation of transcription. By modulating gene expression, insights that expand our understanding of malignancy. Among these metabolic enzymes themselves facilitate adaptation to rapidly insights isthe discovery that various metabolic enzymes have surprising changing environments. Furthermore, they can directly shape a ’ activities outside of their established metabolic roles, including in cell s epigenetic landscape (Kaelin and McKnight, 2013). the regulation of gene expression, DNA damage repair, cell cycle Strikingly, several metabolic enzymes exert completely distinct progression and apoptosis. Many of these newly identified functions are functions in different cellular compartments. Nuclear fructose activated in response to growth factor signaling, nutrient and oxygen bisphosphate aldolase, for example, directly interacts with RNA ́ availability, and external stress. As such, multifaceted enzymes directly polymerase III to control transcription (Ciesla et al., 2014), whereas, link metabolism to gene transcription and diverse physiological and in the cytosol, it mediates signal transduction, vesicle trafficking pathological processes to maintain cell homeostasis. In this Review, we and cell motility (Lincet and Icard, 2015). Indeed, a growing list of summarize the current understanding of non-canonical functions of multifaceted enzymes supports the possibility that cells employ multifaceted metabolic enzymes in disease settings, especially cancer, existing proteins in different and efficient ways, without the need to and discuss specific circumstances in which they are employed. We replicate or transcribe additional genes. also highlight the important role of subcellular localization in activating The aim of this Review is to provide an overview of metabolic these novel functions. Understanding their non-canonical properties enzymes for which non-canonical functions have been identified should enhance the development of new therapeutic strategies for (Table 1) and to consider their implications in cancer. We begin by cancer treatment. discussing how some metabolic enzymes translocate to the nucleus and regulate gene expression in different contexts, explaining how KEY WORDS: Cancer metabolism, Metabolic enzymes, environmental cues are quickly relayed to regulate gene expression. Non-canonical functions We then describe the unexpected subcellular localization of several metabolic enzymes and their surprising roles in regulating major Introduction cell functions, such as cell cycle progression, DNA damage repair Altered metabolism has long been observed in cancer cells (Warburg, and apoptosis. We also review several unresolved questions about 1956a,b). With the development of new experimental techniques, multifunctional enzymes and discuss their potential therapeutic advances in cancer metabolism research have greatly enhanced our implications in cancer. understanding of how cancer cells benefit from altered metabolism to support their growth. For example, subcellular fractionation revealed Regulation of gene transcription that the majority of key glycolytic enzymes are actually present in the A growing number of metabolic enzymes have been observed in the nucleus (Kim and Dang, 2005). It is intriguing to speculate that these nucleus. It is reasonable to speculate that these enzymes are required enzymes have unexpected nuclear functions, such as activating gene for special nuclear functions, such as fundamental regulation of expression, which impacts specific cell decisions in response to fuel transcription and of the epigenome. Metabolic enzymes are highly supply and demand. An emerging paradigm proposes that metabolic sensitive to nutrient supply and demand, representing an efficient way enzymes, rather than simply being components of biochemical to quickly establish adaptive responses by sensing metabolic stress and pathways, are multi-functional proteins. They can act as mediators simultaneously modulating transcription. These enzymes participate in between growth stimuli, signaling pathways and downstream transcriptional control primarily by: (1) directly binding to target genes effectors, over and above the changes in metabolism, contributing to as transcription factors; (2) providing essential substrates for post- many other biological functions, such as gene transcription, apoptosis translational modifications; and (3) forming a transcription complex and cell cycle progression. with other proteins. It is intriguing to propose that, in order to adjust to external cues, especially those driven by nutrient availability, cells coordinate their metabolic state and gene transcription through nuclear 1Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 2Departments of Cancer metabolic enzymes via complex mechanisms. Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. 3Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Direct regulation Many glycolytic (see Box 1 for a glossary of terms) enzymes are *Author for correspondence ([email protected]) involved in transcriptional regulation by acting as transcription M.C.S., 0000-0002-7885-3359 cofactors or by directly binding to DNA (reviewed in Boukouris et al., 2016; Yu and Li, 2017). The ability of metabolic enzymes to This is an Open Access article distributed under the terms of the Creative Commons Attribution directly regulate gene transcription was first discovered in yeast, License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. where glucose inhibits the expression of genes involved in its Disease Models & Mechanisms 1 REVIEW Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 Table 1. Summary of enzymes with non-canonical functions Canonical functions Non-canonical functions Subcellular Subcellular Enzymes Function localization Function localization References Hexokinase 2 (HK2) Convert phosphorylate glucose Cytosol Repress the expression of Nucleus Ahuatzi et al., 2004; to glucose 6-phosphate genes involved in glucose Cheung et al., 2012; (G6P) repression Chiara et al., 2008; Protect cells from apoptosis Mitochondria Gottlob et al., 2001; by regulating the Majewski et al., mitochondrial permeability 2004; Pastorino transition pore and by et al., 2002 limiting the production of reactive oxygen species Phosphoglucose isomerase Interconvert G6P to fructose Cytosol Act as an autocrine factor Extracellular Ahmad et al., 2011; Fu (PGI) 6-phosphate (F6P) extracellularly to elicit cell localization et al., 2011; migration and proliferation Funasaka et al., 2007a,b; Sun et al., 1999; Watanabe et al., 1996 Phosphofructokinase (PFK) Phosphorylate F6P to fructose Cytosol Bind to transcription factor Nucleus Enzo et al., 2015 1,6-bisphosphate (F1,6BP) TEAD and stabilize its interaction with YAP/TAZ, and promote gene expression 6-phosphofructose-2-kinase/ Interconvert F6P to fructose Cytosol Promote cell cycle Nucleus Yalcin et al., 2014; fructose-2,6- 2,6-bisphosphate (F2,6BP) progression by Yalcin et al., 2009 bisphosphatase 3 upregulating cell cycle (PFKFB3) protein expression and downregulating cell cycle inhibitor p27 Fructose 1,6-bisphosphatase Hydrolyze F1,6BP to F6P Cytosol Bind to hypoxia-inducible Nucleus Li et al., 2014 1 (FBP1) factors (HIFs) and inhibit their transcriptional activation of glycolytic gene expression Aldolase A Split F1,6BP to Cytosol Participate in cytokinesis Cytoskeleton Buscaglia et al., 2006; dihydroxyacetone phosphate through its interaction with Hu et al., 2016; Kao (DHAP) and glyceraldehyde F-actin and Wiskott-Aldrich et al., 1999; 3-phosphate (G3P) syndrome protein (WASP) Ritterson Lew and family proteins Tolan, 2012 Glyceraldehyde 3-phosphate Interconvert G3P to Cytosol Bind to colony-stimulating Nucleus Grosse et al., 1986; dehydrogenase (GAPDH) 1,3-bisphophoglycerate factor-1 (CSF-1) mRNA Hara et al., 2005; (1,3BPG) and stabilize its transcripts Sen et al., 2008; Function as a key component Nucleus Sundararaj et al., in the OCA-S complex, 2004; Zheng et al., mediate its activation of 2003; Zhou et al., H2B during S phase and 2008 promote cell cycle progression Protects telomeres against Nucleus rapid shortening Increases DNA synthesis Nucleus during S phase via direct binding to single-stranded DNA (ssDNA) and stimulating the DNA- polymerase-α–primase complex GAPDH S-nitrosylation Nucleus promotes its nuclear translocation and triggers apoptosis Continued Disease Models & Mechanisms 2 REVIEW Disease Models & Mechanisms (2018) 11, dmm033365. doi:10.1242/dmm.033365 Table 1. Continued Canonical functions Non-canonical functions Subcellular Subcellular Enzymes Function localization Function localization References Facilitate apoptosis
Recommended publications
  • A Mutation in DNA Polymerase Α Rescues WEE1KO Sensitivity to HU
    International Journal of Molecular Sciences Article A Mutation in DNA Polymerase α Rescues WEE1KO Sensitivity to HU Thomas Eekhout 1,2 , José Antonio Pedroza-Garcia 1,2 , Pooneh Kalhorzadeh 1,2, Geert De Jaeger 1,2 and Lieven De Veylder 1,2,* 1 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; [email protected] (T.E.); [email protected] (J.A.P.-G.); [email protected] (P.K.); [email protected] (G.D.J.) 2 Center for Plant Systems Biology, VIB, 9052 Gent, Belgium * Correspondence: [email protected] Abstract: During DNA replication, the WEE1 kinase is responsible for safeguarding genomic integrity by phosphorylating and thus inhibiting cyclin-dependent kinases (CDKs), which are the driving force of the cell cycle. Consequentially, wee1 mutant plants fail to respond properly to problems arising during DNA replication and are hypersensitive to replication stress. Here, we report the identification of the pola-2 mutant, mutated in the catalytic subunit of DNA polymerase α, as a suppressor mutant of wee1. The mutated protein appears to be less stable, causing a loss of interaction with its subunits and resulting in a prolonged S-phase. Keywords: replication stress; DNA damage; cell cycle checkpoint Citation: Eekhout, T.; Pedroza- 1. Introduction Garcia, J.A.; Kalhorzadeh, P.; De Jaeger, G.; De Veylder, L. A Mutation DNA replication is a highly complex process that ensures the chromosomes are in DNA Polymerase α Rescues correctly replicated to be passed onto the daughter cells during mitosis. Replication starts WEE1KO Sensitivity to HU. Int.
    [Show full text]
  • Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B
    Published OnlineFirst October 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0853 Statistics in CCR Clinical Cancer Research Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B. Poirion1, Liangqun Lu1,2, and Lana X. Garmire1,2 Abstract Identifying robust survival subgroups of hepatocellular car- index (C-index) ¼ 0.68]. More aggressive subtype is associated cinoma (HCC) will significantly improve patient care. Current- with frequent TP53 inactivation mutations, higher expression ly, endeavor of integrating multi-omicsdatatoexplicitlypredict of stemness markers (KRT19 and EPCAM)andtumormarker HCC survival from multiple patient cohorts is lacking. To fill BIRC5, and activated Wnt and Akt signaling pathways. We this gap, we present a deep learning (DL)–based model on HCC validated this multi-omics model on five external datasets of that robustly differentiates survival subpopulations of patients various omics types: LIRI-JP cohort (n ¼ 230, C-index ¼ 0.75), in six cohorts. We built the DL-based, survival-sensitive model NCI cohort (n ¼ 221, C-index ¼ 0.67), Chinese cohort (n ¼ on 360 HCC patients' data using RNA sequencing (RNA-Seq), 166, C-index ¼ 0.69), E-TABM-36 cohort (n ¼ 40, C-index ¼ miRNA sequencing (miRNA-Seq), and methylation data from 0.77), and Hawaiian cohort (n ¼ 27, C-index ¼ 0.82). This TheCancerGenomeAtlas(TCGA),whichpredictsprognosis is the first study to employ DL to identify multi-omics features as good as an alternative model where genomics and clinical linked to the differential survival of patients with HCC. Given data are both considered. This DL-based model provides two its robustness over multiple cohorts, we expect this workflow to optimal subgroups of patients with significant survival differ- be useful at predicting HCC prognosis prediction.
    [Show full text]
  • Small-Molecule Inhibition of 6-Phosphofructo-2-Kinase Activity Suppresses Glycolytic Flux and Tumor Growth
    110 Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth Brian Clem,1,3 Sucheta Telang,1,3 Amy Clem,1,3 reduces the intracellular concentration of Fru-2,6-BP, Abdullah Yalcin,1,2,3 Jason Meier,2 glucose uptake, and growth of established tumors in vivo. Alan Simmons,1,3 Mary Ann Rasku,1,3 Taken together, these data support the clinical development Sengodagounder Arumugam,1,3 of 3PO and other PFKFB3 inhibitors as chemotherapeutic William L. Dean,2,3 John Eaton,1,3 Andrew Lane,1,3 agents. [Mol Cancer Ther 2008;7(1):110–20] John O. Trent,1,2,3 and Jason Chesney1,2,3 Departments of 1Medicine and 2Biochemistry and Molecular Introduction Biology and 3Molecular Targets Group, James Graham Brown Neoplastic transformation causes a marked increase in Cancer Center, University of Louisville, Louisville, Kentucky glucose uptake and catabolic conversion to lactate, which forms the basis for the most specific cancer diagnostic 18 Abstract examination—positron emission tomography of 2- F- fluoro-2-deoxyglucose (18F-2-DG) uptake (1). The protein 6-Phosphofructo-1-kinase, a rate-limiting enzyme of products of several oncogenes directly increase glycolytic glycolysis, is activated in neoplastic cells by fructose-2,6- flux even under normoxic conditions, a phenomenon bisphosphate (Fru-2,6-BP), a product of four 6-phospho- originally termed the Warburg effect (2, 3). For example, fructo-2-kinase/fructose-2,6-bisphosphatase isozymes c-myc is a transcription factor that promotes the expression (PFKFB1-4). The inducible PFKFB3 isozyme is constitu- of glycolytic enzyme mRNAs, and its expression is increased tively expressed by neoplastic cells and required for the in several human cancers regardless of the oxygen pressure high glycolytic rate and anchorage-independent growth of (4, 5).
    [Show full text]
  • Class-I and Class-II Fumarases Are a Paradigm of the Recruitment Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.232652; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Class-I and Class-II fumarases are a paradigm of the recruitment of 2 metabolites and metabolic enzymes for signalling of the DNA Damage 3 Response during evolution. 4 5 Yardena Silas 1, 2, Esti Singer 1, Norbert Lehming 2 and Ophry Pines 1, 2* 6 1. Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, 7 Hebrew University, Jerusalem, Israel 8 2. CREATE‑NUS‑HUJ Program and the Department of Microbiology and Immunology, 9 Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 10 Singapore. 11 12 [email protected] 13 [email protected] 14 [email protected] 15 [email protected] 16 17 18 19 20 21 22 23 24 25 26 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.232652; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Abstract 28 Class-II fumarase (Fumarate Hydratase, FH) and its metabolic intermediates are essential 29 components in the DNA damage response (DDR) in eukaryotic cells (human and yeast) and 30 in the prokaryote Bacillus subtilis.
    [Show full text]
  • Early Modifications of Gene Expression Induced in Liver by Azo-Dye Diet
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 206, number 2 FEBS 4070 October 1986 Early modifications of gene expression induced in liver by azo-dye diet EugCnia Lamas, Fabien Schweighoffer and Axe1 Kahn Unit& de Recherches en GP&tique et Pathologie Mol&ulaires, INSERM U 129, CHU COCHIN, 24, Rue du Faubourg Saint Jacques, 75674 Paris Cedex 14, France Received 5 August 1986 The expression and regulation of the phosphoenolpyruvate carboxykinase gene were not grossly modified by feeding rats a 3’-methyl-4-(dimethylamino)azobenzene-containing diet despite maximum expression of the L-type pyruvate kinase gene being dramatically reduced as early as the 24th hour of the carcinogenic diet. Inhibition of aldolase B mRNA synthesis occurred more slowly, being maximum at the 3rd day. After stopping administration of the carcinogen, a very rapid, but transient increase of the L-type pyruvate kinase mRNA was observed at the 24th hour, whereas aldolase B mRNA increased only slowly. The amount of aldolase A mRNA fell quickly after termination of carcinogen administration, levels being normal at the 2nd-3rd day. At this time, the histological structure of the liver was indistinguishable from that of animals still receiving the azo-dye diet. It appears, therefore, that in the rat both administration and withdrawal of the azo-dye carcinogen induce rapid modifications of the expression of some genes, before any cellular modification is distinguishable. Azo-dye diet mRNA Hepatocarcinogenesis Phosphoenolpyruvate carboxykinase Aldolase Pyruvate kinase 1. INTRODUCTION some genes. Such a possibility is of theoretical im- portance because it could constitute the basis for The azo-dye 3’-methyl-4-(dimethylamino)azo- the carcinogenic action of the dye.
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • Appendix Table A.2.3.1 Full Table of All Chicken Proteins and Human Orthologs Pool Accession Human Human Protein Human Product Cell Angios Log2( Endo Gene Comp
    Appendix table A.2.3.1 Full table of all chicken proteins and human orthologs Pool Accession Human Human Protein Human Product Cell AngioS log2( Endo Gene comp. core FC) Specific CIKL F1NWM6 KDR NP_002244 kinase insert domain receptor (a type III receptor tyrosine M 94 4 kinase) CWT Q8AYD0 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CWT Q8AYD0 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1P1Y9 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1P1Y9 CDH5 NP_001786 cadherin 5, type 2 (vascular endothelium) M 90 8.45 specific CIKL F1N871 FLT4 NP_891555 fms-related tyrosine kinase 4 M 86 -1.71 CWT O73739 EDNRA NP_001948 endothelin receptor type A M 81 -8 CIKL O73739 EDNRA NP_001948 endothelin receptor type A M 81 -8 CWT Q4ADW2 PROCR NP_006395 protein C receptor, endothelial M 80 -0.36 CIKL Q4ADW2 PROCR NP_006395 protein C receptor, endothelial M 80 -0.36 CIKL F1NFQ9 TEK NP_000450 TEK tyrosine kinase, endothelial M 77 7.3 specific CWT Q9DGN6 ECE1 NP_001106819 endothelin converting enzyme 1 M 74 -0.31 CIKL Q9DGN6 ECE1 NP_001106819 endothelin converting enzyme 1 M 74 -0.31 CWT F1NIF0 CA9 NP_001207 carbonic anhydrase IX I 74 CIKL F1NIF0 CA9 NP_001207 carbonic anhydrase IX I 74 CWT E1BZU7 AOC3 NP_003725 amine oxidase, copper containing 3 (vascular adhesion protein M 70 1) CIKL E1BZU7 AOC3 NP_003725 amine oxidase, copper containing 3 (vascular adhesion protein M 70 1) CWT O93419 COL18A1 NP_569712 collagen, type XVIII, alpha 1 E 70 -2.13 CIKL O93419
    [Show full text]
  • Datasheet: VPA00226
    Datasheet: VPA00226 Description: RABBIT ANTI ALDOA Specificity: ALDOA Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit Ig fraction prepared by ammonium sulphate precipitation Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Immunogen KLH conjugated synthetic peptide between 66-95 amino acids from the N-terminal region of human ALDOA External Database UniProt: Links P04075 Related reagents Entrez Gene: 226 ALDOA Related reagents Page 1 of 2 Synonyms ALDA Specificity Rabbit anti Human ALDOA antibody recognizes fructose-bisphosphate aldolase A, also known as epididymis secretory sperm binding protein Li 87p, fructose-1,6-bisphosphate triosephosphate-lyase, lung cancer antigen NY-LU-1 and muscle-type aldolase. Encoded by the ALDOA gene, fructose-bisphosphate aldolase A is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.
    [Show full text]
  • Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-Activated Lymphoma Cell Line
    CANCER GENOMICS & PROTEOMICS 12 : 133-142 (2015) Effect of STAT3 Inhibition on the Metabolic Switch in a Highly STAT3-activated Lymphoma Cell Line YASUTO AKIYAMA 1* , AKIRA IIZUKA 1* , AKIKO KUME 1, MASARU KOMIYAMA 1, KENICHI URAKAMI 2, TADASHI ASHIZAWA 1, HARUO MIYATA 1, MAHO OMIYA 1, MASATOSHI KUSUHARA 3 and KEN YAMAGUCHI 4 1Immunotherapy Division, 2Cancer Diagnostics Division, 3Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan; 4Office of the President, Shizuoka Cancer Center Hospital, Sunto-gun, Shizuoka, Japan Abstract. Background: Signal transducer and activator of enzymes including fructose-bisphosphate aldolase A transcription (STAT)3 is involved in a metabolic shift in (ALDOA) as a metabolic marker candidate for STAT3- cancer cells, the Warburg effect through its pro-oncogenic targeting therapy using STAT3-specific shRNA gene activity. To develop efficient STAT3 inhibitors against cancer transduction. In particular, latexin expression was up- cells, novel proteomic and metabolic target molecules need regulated in four STAT3-activated cancer cell lines including to be explored using multi-omics approaches in the context of SCC-3 transduced with STAT3-specific shRNA. The up- STAT3 gene inhibition-mediated tumor growth suppression. regulation of latexin was identified in SCC-3 tumors Materials and Methods: We found that short hairpin transplanted to nude mice after treatment with STAT3 (sh)RNA-mediated STAT3 inhibition suppressed tumor inhibitor. Conclusion: Our results suggest that STAT3 growth in a highly STAT3-activated lymphoma cell line, inactivation reverses the glycolytic shift by down-regulating SCC-3 cells, and we investigated the effect of STAT3 key enzymes and that it induces up-regulation of latexin as a inhibition on metabolic switching using 2-dimensional tumor-suppressor molecule, which partially results in cancer differential gel electrophoresis and capillary electrophoresis- cell apoptosis and tumor growth suppression.
    [Show full text]
  • Arthur Kornberg Discovered (The First) DNA Polymerase Four
    Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E.
    [Show full text]
  • Mcm10 Has Potent Strand-Annealing Activity and Limits Translocase-Mediated Fork Regression
    Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression Ryan Maylea, Lance Langstona,b, Kelly R. Molloyc, Dan Zhanga, Brian T. Chaitc,1,2, and Michael E. O’Donnella,b,1,2 aLaboratory of DNA Replication, The Rockefeller University, New York, NY 10065; bHoward Hughes Medical Institute, The Rockefeller University, New York, NY 10065; and cLaboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 Contributed by Michael E. O’Donnell, November 19, 2018 (sent for review November 8, 2018; reviewed by Zvi Kelman and R. Stephen Lloyd) The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, of function using genetics, cell biology, and cell extracts have GINS) tightly binds Mcm10, an essential replication protein in all identified Mcm10 functions in replisome stability, fork progres- eukaryotes. Here we show that Mcm10 has a potent strand- sion, and DNA repair (21–25). Despite significant advances in the annealing activity both alone and in complex with CMG. CMG- understanding of Mcm10’s functions, mechanistic in vitro studies Mcm10 unwinds and then reanneals single strands soon after they of Mcm10 in replisome and repair reactions are lacking. have been unwound in vitro. Given the DNA damage and replisome The present study demonstrates that Mcm10 on its own rap- instability associated with loss of Mcm10 function, we examined the idly anneals cDNA strands even in the presence of the single- effect of Mcm10 on fork regression. Fork regression requires the strand (ss) DNA-binding protein RPA, a property previously unwinding and pairing of newly synthesized strands, performed by associated with the recombination protein Rad52 (26).
    [Show full text]