University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Fall 12-16-2016 DNA Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent of Error-Prone Synthesis, and the Role of dNTP Pools Olga V. Kochenova University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Genetics Commons, Molecular Biology Commons, and the Molecular Genetics Commons Recommended Citation Kochenova, Olga V., "DNA Polymerase Zeta-Dependent Mutagenesis: Molecular Specificity, Extent of Error- Prone Synthesis, and the Role of dNTP Pools" (2016). Theses & Dissertations. 153. https://digitalcommons.unmc.edu/etd/153 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact
[email protected]. DNA POLYMERASE ζ -DEPENDENT MUTAGENESIS: MOLECULAR SPECIFICITY, EXTENT OF ERROR-PRONE SYNTHESIS, AND THE ROLE OF dNTP POOLS by Olga Kochenova A DISSERTATION Presented to the Faculty of The University of Nebraska Graduate College In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy Cancer Research Graduate Program Under the Supervision of Professor Polina V. Shcherbakova University of Nebraska Medical Center Omaha, Nebraska October, 2016 Supervisory Committee: Youri Pavlov, Ph. D. Tadayoshi Bessho, Ph. D. Michel Ouellette, Ph. D. DNA POLYMERASE ζ -DEPENDENT MUTAGENESIS: MOLECULAR SPECIFICITY, EXTENT OF ERROR-PRONE SYNTHESIS, AND THE ROLE OF dNTP POOLS Olga V. Kochenova, Ph.D. University of Nebraska, 2016 Supervisor: Polina V. Shcherbakova, Ph.D. Despite multiple DNA repair pathways, DNA lesions can escape repair and compromise normal chromosomal replication, leading to genome instability.