A Translation Insight Into the Scientific Textbook

Total Page:16

File Type:pdf, Size:1020Kb

A Translation Insight Into the Scientific Textbook NEUROPHYSIOLOGY: A TRANSLATION INSIGHT INTO THE SCIENTIFIC TEXTBOOK MASTER’S DISSERTATION ON MEDICAL TRANSLATION PRACTICE MÁSTER UNIVERSITARIO EN TRADUCCIÓN MÉDICO-SANITARIA (2017/2018) Esther Andrés Caballo Supervisors: Dr. Laura Carasusán Senosiáin (Universitat Jaume I) Dr. Rocío Baños-Piñero (CenTraS-UCL) Acknowledgments This dissertation would have not been possible but for the support of many people. In the first place, I am particularly grateful to the Master’s faculty at UJI who gave me the insight and educational input into the medical translation that is needed for competence and subject-knowledge acquisition to enter into this profession. I would like to thank them all personally since I have most learnt from their lectures, feedback on my translation work, and recommendations during the master’s course of studies. Secondly, I am extremely grateful to the Erasmus+ Master Exchange Programme, whereby a Higher Education Learning Agreement for Studies was signed by and between Universitat Jaume I (Spain) and University College London (UK), which gave me the great opportunity of a five-month stay at University College London. In this prestigious university, particularly in the Centre for Translation Studies (CenTraS), I have done my translation practice on-line, conducted my research and written down this dissertation, while making full employ of the numberless resources available at the Main and Science Libraries and the Institute of Physiology at UCL. I highly appreciate the welcoming and availability of CenTraS’ administrators and teaching staff, and specially, the priceless support of my dissertation supervisor. Thirdly, I must acknowledge the wisdom of the masters, and devotedly thank Dr. Ignacio Navascués and their team, Dr. Fernando Navarro, and Dr. Vincent Montalt, and my dissertation supervisor at UJI, Dr. Laura Carasusán. Not only have they fostered and greatly enriched my capacities and aptitudes as a specialised translator in the health and biomedical field, but also given me sound advice and positive feedback for my future career. Finally, I am profoundly and heartily grateful to my media naranja, as the saying goes in Spanish, for he has always believed in my potential as a professional freelance medical translator and always provided a wholehearted and generous support. ii Contents 1 INTRODUCTION ..................................................................................................................................... 7 1.1 MEDICALTRANSLATION AS COMMUNICATIVE SERVICE. THE TRANSLATOR’S ROLE AND COMPETENCES. THE TRANSLATION ASSIGNMENT AND BRIEF. ........................................................................................ 8 1.2 THE SCIENTIFIC TEXTBOOK AS MEDICAL TRANSCULTURAL GENRE ....................................................... 16 1.3 KNOWLEDGE FIELD OF NEUROPHYSIOLOGY: AN OUTLINE OF TRANSLATED TOPICS ................................ 30 1.4 TERMINOLOGY AND PHRASEOLOGY ON NEUROSCIENCE....................................................................... 31 2 TRANSLATION AS A PRODUCT: SOURCE TEXT AND TARGET TEXT ...................................... 34 2.1 TEXT FRAGMENTS IN CHAPTER 8 ........................................................................................................ 35 2.2 FIGURES ........................................................................................................................................... 49 2.3 TABLES............................................................................................................................................. 57 2.4 RUNNING PROBLEMS ......................................................................................................................... 59 3 TRANSLATION AS A PROCESS: THE TRANSLATOR AT WORK ................................................ 61 3.1 THE TRANSLATION PROCESS. DRAFTING METHODOLOGY ..................................................................... 61 3.2 TRANSLATION PROBLEM CATEGORIES AND SOLVING STRATEGIES ........................................................ 66 3.2.1 Pragmatic Translation Problems ................................................................................................. 69 3.2.2 Intercultural Translation Problems .............................................................................................. 78 3.2.3 Cognitive Translation Problems ................................................................................................... 80 3.2.3.1 Terminological Problems of Translation .............................................................................................81 3.2.4 Interlingual Translation Problems ............................................................................................. 101 3.2.5 Text-Specific Translation Problems ............................................................................................ 110 4 TERM GLOSSARY .............................................................................................................................. 118 5 CORPORA AD HOC: COMPARABLE TEXTS IN SL AND TL ....................................................... 153 5.1 PARALLEL TEXTS IN SOURCE LANGUAGE .......................................................................................... 154 5.2 PARALLEL TEXTS IN TARGET LANGUAGE .......................................................................................... 154 6 RESOURCES AND TOOLS ................................................................................................................. 155 6.1 LEXICOGRAPHIC RESOURCES ........................................................................................................... 155 6.2 ENCYCLOPAEDIC RESOURCES .......................................................................................................... 155 6.3 SUBJECT-KNOWLEDGE RESOURCES .................................................................................................. 156 7 CONCLUSION ..................................................................................................................................... 159 iii Abbreviations ENGLISH ABBREVIATIONS LO: learning outcome SC: source culture SL: Source language ST: Source Text TC: target culture TL: target language TT: target text SPANISH ABBREVIATIONS OA: objetivo de aprendizaje Abbreviations indicating references consists of the initial of the dictionary’s, the glossary’s or the book’s name, and it is followed by the citation when appropriate. AMA: Atlas of Microscopic Anatomy (Bergman, Afifi and Heidger, 2018) BVS: Biblioteca Virtual en Salud, Terminología DeCS/MeSH, BIREME, OPS. CAN: Color atlas of neuroscience: neuroanatomy and neurophysiology (Greenstein and Greenstein, 2000). CMD: Churchill’s Medical Dictionary (Churchill Livingstone, 1989) DCM: Stedman Bilingüe. Diccionario de ciencias Médicas: inglés- español, español-inglés (Beatty, 2006). DITM: Diccionario Ilustrado de Términos Médicos (Instituto Químico Biológico, 2004). DMBHE: Diccionario médico-biológico, histórico y etimológico (Cortés Gabaudan, Francisco (coord.) and Jesús Ureña Bracero). DTM: Diccionario de Términos Médicos (Real Academia Nacional de Medicina, 2012). GKBST: A Glossary of Key Brain Science Terms (The Dana Foundation, 2016). GNST: Glossary of Neurosurgical Terminology (American Association of Neurological Surgeons [AANS], 2018). iv GNT: Glossary of Neuroscience Terms (The BrainU™ project, 2018). GNTE: Glossary of Neuroanatomical Terms and Eponyms (Kiernan, 2008). LND: NINDS list of neurological disorders (National Institute of Neurological Disorders and Stroke). MWMD: Medical Dictionary (Merriam-Webster, Inc., 2018.) ND: Neural Definitions (Krantz, 2010). THB: The Human Brain: Essentials of Behavioural Neuroscience (Jackson, 2000). TMPH: Guyton and Hall Textbook of Medical Physiology (Guyton and Hall, 2006). v List of Tables and Figures Table 1. Estimation of system of genres used in academic scientific interaction (author’s creation) ............. 18 Table 2. Proposal of genre family for the genre scientific textbook (author’s creation) .................................. 21 Table 3. Contextual focus of exposition text-type in ST and TT (author’s creation) ...................................... 23 Table 4. Generic functional pattern and moves of scientific textbook in ST and TT (author’s creation) ...... 29 Table 5. Determinologisation procedures regarding terminological units (author’s creation) ....................... 33 Figure 1. The translator’s TXLF editor in Wordfast Pro 5 ............................................................................. 34 Table 6. Drafting methodological factors in the translation process (author’s creation) ................................ 66 Table 7. Translation strategy in figure wording and labelling (author’s creation) ......................................... 70 Table 8. Translation strategy in titling (author’s creation) ............................................................................. 71 Table 9. Translation strategy in bracketed referencing (author’s creation) ................................................... 72 Table 10. Translation strategy in parenthetical referencing (author’s creation) ............................................ 72 Figure 2. Bloom’s taxonomy............................................................................................................................. 74 Figure 3. Verb wheel in spanish based on Bloom’s Taxonomy.......................................................................
Recommended publications
  • Nervous Tissue
    Department of Histology and Embryology Medical faculty KU Bratislava NERVOUS TISSUE RNDr. Mária Csobonyeiová, PhD ([email protected]) Nerve tissue neurons /main cells/ (perikaryon = cell body=soma,dendrites,axon), 4 -150 µm glial cells /supporting cells/ - 10 times more abudant CNS- oligodendrocytes, astrocytes, ependymal cells,microglia PNS - Schwann cells, satelite cells Neuron independentNeuron anatomical and functional unit responsible for: receiving of different types of stimuli transducing them into the nerve impulses conducting them to the nerve centers development – embryonal neuroectoderm Morphology of the neurons Pseudounipolar neuron! (spinal ganglion) Methods used in neurohistology Staining methods: Luxol blue and cresyl violet (nucleus+nucleolus+Nissl body) Luxol blue (myelin sheath) and nuclear red (nucleus + nucleolus+Nissl body) Impregnations according - Holmes – neurons, axon, dendrites - neurofibrils (brown-violet) Golgi – neurons + astrocytes (black) with golden background Cajal – astrocytes (black) with red background Rio del Hortega – microglia (black) with gray-violet background OsO4 - myelin sheath (black), staining for lipids and lipoproteins (myelin) Microglia (phagocytosis) Astrocytes (supporting role, Oligodendrocytes nutrition, healing (formation of myelin of defects - glial sheath) scars, formation of BBB) Ependymal cells (regulation of stable chemical constitution of CSF) CSN Gray matter: White matter: - bodies of neurons, dendrites - myelinated and unmyelinated axons - initial portion
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Clustering of Na+ Channels and Node of Ranvier Formation in Remyelinating Axons
    The Journal of Neuroscience, January 1995, 15(l): 492503 Clustering of Na+ Channels and Node of Ranvier Formation in Remyelinating Axons Sanja Dugandgija-NovakoviC,’ Adam G. Koszowski,2 S. Rock Levinson,2 and Peter Shragerl ‘Department of Physiology, University of Rochester Medical Center, Rochester, New York 14642 and 2Department of Physiology, University of Colorado Health Sciences Center, Denver, Colorado 80262 Polyclonal antibodies were raised against a well conserved nodal regions(Black et al., 1990). The density of Na+ channels, region of the vertebrate Na+ channel and were affinity pu- in particular, is about 25 times higher at nodesof Ranvier than rified for use in immunocytochemistry. Focal demyelination at internodal sites (Shrager, 1989). There has been vigorous of rat sciatic axons was initiated by an intraneural injection debate over the mechanism of Na+ channel clustering during of lysolecithin and Na+ channel clustering was followed at myelination, particularly with respect to the role of Schwann several stages of myelin removal and repair. At 1 week post- cells, and studies have included both developing nerve and injection axons contained long, fully demyelinated regions. pathological conditions (Ellisman, 1979; Rosenbluth, 1979; Ro- Na+ channel clusters appeared only at heminodes forming senbluth and Blakemore, 1984; Le Beau et al., 1987; England the borders of these zones, and at widely spaced isolated et al., 1990, 1991; Joe and Angelides, 1992, 1993).There remain sites that may represent former nodes of Ranvier. Over the many interesting questions, particularly regarding remodeling next few days proliferating Schwann cells adhered to axons that occurs following myelin disruption. When axons are de- and began to extend processes.
    [Show full text]
  • Regulation of Myelin Structure and Conduction Velocity by Perinodal Astrocytes
    Correction NEUROSCIENCE Correction for “Regulation of myelin structure and conduc- tion velocity by perinodal astrocytes,” by Dipankar J. Dutta, Dong Ho Woo, Philip R. Lee, Sinisa Pajevic, Olena Bukalo, William C. Huffman, Hiroaki Wake, Peter J. Basser, Shahriar SheikhBahaei, Vanja Lazarevic, Jeffrey C. Smith, and R. Douglas Fields, which was first published October 29, 2018; 10.1073/ pnas.1811013115 (Proc. Natl. Acad. Sci. U.S.A. 115,11832–11837). The authors note that the following statement should be added to the Acknowledgments: “We acknowledge Dr. Hae Ung Lee for preliminary experiments that informed the ultimate experimental approach.” Published under the PNAS license. Published online June 10, 2019. www.pnas.org/cgi/doi/10.1073/pnas.1908361116 12574 | PNAS | June 18, 2019 | vol. 116 | no. 25 www.pnas.org Downloaded by guest on October 2, 2021 Regulation of myelin structure and conduction velocity by perinodal astrocytes Dipankar J. Duttaa,b, Dong Ho Wooa, Philip R. Leea, Sinisa Pajevicc, Olena Bukaloa, William C. Huffmana, Hiroaki Wakea, Peter J. Basserd, Shahriar SheikhBahaeie, Vanja Lazarevicf, Jeffrey C. Smithe, and R. Douglas Fieldsa,1 aSection on Nervous System Development and Plasticity, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; bThe Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817; cMathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information
    [Show full text]
  • The “Road Map”
    PRACTICAL ROADMAP NERVOUS TISSUE DR N GRAVETT NEURONS • MOTOR • SENSORY Anterior (ventral) horn Dorsal root of spinal of spinal cord cord Multipolar Pseudounipolar ANTERIOR HORN CELLS • Slide 64 Spinal Cord (vervet monkey) Stain: Kluver and Berrera Technique NOTE: with this technique, myelin stains dark blue and basophilic substances such as rER and nuclei stain violet. In this case we use “blue” and “purple” to describe the staining and not eosinophilic and basophilic. SPINAL CORD Anterior Ventral Horn Arachnoid Ventricle Pia Mater Grey Matter White Matter Posterior Horn Dura Mater Dorsal ANTERIOR HORN CELL Neuropil Cell Body Dendrite Vesicular Nucleus Nucleolus Nucleus of Nissl Bodies Neuroglial Cell ANTERIOR HORN CELL Neuropil Cell Body Vesicular Nucleus Nucleolus Nissl Body Nucleus of Neuroglial Cell Dendrite Nissl Body Axon Hillock Axon SPINAL (DORSAL ROOT) GANGLION CELLS • Slide 62 Spinal Ganglion Stain: H&E NOTE: The spinal ganglion is also known as the dorsal root ganglia and contains pseudounipolar neuron cell bodies. SPINAL (DORSAL ROOT) GANGLIA Cell Bodies Processes (Axons and Dendrites) SPINAL (DORSAL ROOT) GANGLIA Cell Bodies Processes (Axons and Dendrites) NOTE: The neuronal cell bodies of the dorsal root ganglia are “clumped” together, and one cannot see any processes entering or leaving the cell bodies. The processes (axons and dendrites) are seen towards the edge/periphery of the group of cell bodies. SPINAL (DORSAL ROOT) GANGLIA Satellite cells (arranged in ring like fashion around the cell body) Cell Body Nucleolus Vesicular Fine Granular Nucleus Nissl Substance Nucleus of Satellite cell PERIPHERAL BRANCH OF A SPINAL NERVE • Slide 32 Median Nerve Stain: Mallory’s Technique NOTE: Three dyes are used in Mallory’s technique, which results in collagen fibres (such as connective tissue) staining blue, the “neurokeratin” staining red, and nuclei staining reddish-orange PERIPHERAL NERVE Myelinated Axons Vein L.S.
    [Show full text]
  • Review Chromatolysis: Do Injured Axons
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2018 doi:10.20944/preprints201802.0111.v1 Review Chromatolysis: Do Injured Axons Regenerate Poorly when Ribonucleases Fragment or Degranulate Rough Endoplasmic Reticulum, Disaggregate Polyribosomes, Degrade Monoribosomes and Lyse RNA? Running title: Which ribonucleases limit axon regeneration? Lawrence David Falcon Moon a a Neurorestoration Group, Wolfson Centre for Age-Related Diseases, 16-20 Newcomen Street, London, SE1 1UL, United Kingdom [email protected] Acknowledgments: This work was supported by a grant from the Wings for Life foundation and through a grant to the “AxonRepair” consortium from ERA-NET NEURON that is co-sponsored by the Medical Research Council. Thanks to Emeritus Professor Thomas Sears and Professor Simone Di Giovanni for providing feedback on a draft. Abstract: After axonal injury, chromatolysis (fragmentation of Nissl substance) occurs in both intrinsic neurons (whose processes are within the CNS) and extrinsic neurons (whose axons extend outside the CNS). Electron microscopy shows that chromatolysis involves fission of the rough endoplasmic reticulum. In intrinsic neurons (which do not regenerate axons) or in extrinsic neurons denied axon regeneration, chromatolysis is often accompanied by degranulation (loss of ribosomes from rough endoplasmic reticulum), disaggregation of polyribosomes and degradation of monoribosomes into dust-like particles. Ribosomes and rough endoplasmic reticulum may also be degraded in autophagic vacuoles by Ribophagy and Reticulophagy, respectively. In other words, chromatolysis is disruption of parts of the protein synthesis infrastructure. Whereas some neurons may show transient or no chromatolysis, severely injured neurons can remain chromatolytic and never again synthesise normal levels of protein; some may atrophy or die.
    [Show full text]
  • Cytochemical Differentiation of the Axon Membrane in A- Andc-Fibres
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.40.4.379 on 1 April 1977. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1977, 40, 379-385 Cytochemical differentiation of the axon membrane in A- and C-fibres S. G. WAXMAN AND D. C. QUICK From the Department ofNeurology, Harvard Medical School, Beth Israel Hospital, Boston, and Program in Health Sciences and Technology, and Research Laboratory ofElectronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA SUMMARY Guinea pig and rat sciatic nerves were fixed with cacodylate-buffered aldehydes and OS04, and were stained with ferric ion and ferrocyanide. Cytoplasmic surfaces of the non-myelinated nodal axon membrane ofA-fibres display distinct electron-dense aggregates of stain. These aggregates were not observed in association with the paranodal or internodal axolemma. The membranes of C-fibres exhibit no staining under these conditions. Thus, the nodal axolemma of normal myelinated fibres is structurally distinct from both the myelinated internodal membrane, and from the axolemma of C-fibres. The ferric ion-ferrocyanide technique may provide a method for marking axonal mem- brane with normal nodal properties. Protected by copyright. In previous studies (Quick and Waxman, 1977) we therefore, extended our studies on the distribution of demonstrated that, under appropriate conditions, ferric ion binding to peripheral nerve axon mem- ferric ion is bound to the cytoplasmic surface of the branes. In the present paper we show that cytoplasmic axon membrane at nodes of Ranvier in mammalian ferric ion binding occurs only for A-fibre nodal peripheral myelinated axons. The binding of ferric membrane, and does not occur for C-fibres in the ion occurred specifically at the nodal axon membrane, peripheral nervous system.
    [Show full text]
  • Comparative Light Microscopic Study of Trigeminal Ganglion Neurons in Mammals
    Current Neurobiology 2010, 1 (1): 25-29 Comparative Light Microscopic Study of Trigeminal Ganglion Neurons in Mammals M. Naushad A Dilkash, Syed Sayeed Ahmed* and Aijaz Ahmed Khan Dept. of Anatomy, JN Medical College, Aligarh Muslim University, Aligarh, India *Dept. of Oral and Maxillofacial Surgery, Dr. Z A Dental College, AMU, Aligarh, India. Abstract Trigeminal ganglion (TRG) consists of collection of primary sensory neurons. The different subsets of neurons have been identified on the basis of morphological and neurochemical characteristics. It remains to be resolved as to whether the various neuronal subsets remain alike across the mammalian species and if there exists some species specific characteristic neurons. The present study was conducted on adult mammals (rat, rabbit, and goat) of either sex. TRG of both sides were procured and fixed in 10% buffered formalin and processed for paraffin embedding. 10 µm thick sections stained with Haematoxylin and Eosin were examined under light microscope and relevant findings were recorded in photomicrographs. It was noticed that the main cellular constituents (neuron and glia) of TRG could be easily identified and features of most of the neurons matched with earlier light microscopic descriptions [1, 2]. However, few neurons in the present study revealed certain additional features. For example – in the medium size neuron, large Nissl granules formed single peripheral ring; in the medium and large sized neurons, coarse Nissl granules formed two concentric (perinuclear and peripheral) rings; and a couple of neurons appeared to share common sheath – a kin to binucleate neurons. In addition, the neuronal somatic size appeared to have direct relationship with the body size of the animal.
    [Show full text]
  • Differential Distribution of Closely Related Potassium Channels in Rat Schwann Cells
    The Journal of Neuroscience, May 1995, 15(5): 3761-3774 Differential Distribution of Closely Related Potassium Channels in Rat Schwann Cells Huaiyu Mi,’ Thomas J. Deerinck,2 Mark H. Ellisman, and Thomas L. Schwarz’ ‘Department of Molecular and Cellular Physiology, Beckman Center, Stanford University, Stanford, California 94305 and ?San Diego Microscopy and Imaging Resource, Department of Neuroscience, School of Medicine, UCSD, La Jolla, California 92093 Closely related K+ channels can coassemble to form het- 1992; Salkoff et al., 1992). The function of these molecularly eromultimers in expression systems, as well as in vivo. defined channels within their normal environment is less well Whether in vivo this coassembly is random and inevitable understood. It has been difficult to correlate cloned and ex- or whether highly homologous channels can be segregated pressed channels with currents that are observed in vivo. More- and targeted independently within a given cell has not been over, it is not known how channels become distributed in ap- determined. In this study, we address these questions by propriate domains within the cell or how the association of sub- characterizing and localizing voltage-dependent K+ chan- units is regulated. Finally, in many cell types, the function of nels in Schwann cells. Transcripts for three closely related the channel in the physiology of the cell is not understood. This members of the Shaker-like family of K+ channels are is particularly true in the case of voltage-dependent K+ channels found in adult rat sciatic nerve: Kvl.1, Kv1.2, and Kv1.5. in electrically inexcitable cells such as Schwann cells.
    [Show full text]
  • NIH Public Access Author Manuscript Brain Res
    NIH Public Access Author Manuscript Brain Res. Author manuscript; available in PMC 2010 April 17. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Brain Res. 2009 April 17; 1266: 29±36. doi:10.1016/j.brainres.2009.02.031. Morphological and ultrastructural features of Iba1-immunolabeled microglial cells in the hippocampal dentate gyrus Lee A. Shapiro1,2, Zachary D. Perez3, Maira L. Foresti2, Gabriel M. Arisi2, and Charles E. Ribak3 1 Department of Surgery, Division of Neurosurgery, Texas A&M University College of Medicine 2 Scott & White Hospital, Neuroscience Research Institute, Temple, TX 3 Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA Abstract Microglia are found throughout the central nervous system, respond rapidly to pathology and are involved in several components of the neuroinflammatory response. Iba1 is a marker for microglial cells and previous immunocytochemical studies have utilized this and other microglial-specific antibodies to demonstrate the morphological features of microglial cells at the light microscopic level. However, there is a paucity of studies that have used microglial-specific antibodies to describe the ultrastructural features of microglial cells and their processes. The goal of the present study is to use Iba1 immuno-electron microscopy to elucidate the fine structural features of microglial cells and their processes in the hilar region of the dentate gyrus of adult Sprague-Dawley rats. Iba1-labeled cell bodies were observed adjacent to neurons and capillaries, as well as dispersed in the neuropil. The nuclei of these cells had dense heterochromatin next to the nuclear envelope and lighter chromatin in their center.
    [Show full text]
  • Development of a Model for Microphysiological Simulations
    ISSN 1539–2791 Volume 3 • Number 2 • 2005 NeuroinformaticsNeuroinformatics IN THIS ISSUE Editors The Impact of the NIH Giorgio A. Ascoli Public Access Policy on Literature Informatics Erik De Schutter Statistical Criteria in fMRI Studies David N. Kennedy of Multisensory Integration Comparison of Vector Space Model Methodologies to Reconcile Cross-Species Neuroanatomical Concepts Development of a Model for Microphysiological Simulations Indexed and Abstracted in: Medline/Pubmed/Index Medicus Science Citation Index® HumanaJournals.com Search, Read, and Download NI_3_2_cvr 1 6/9/05, 11:36 AM Sosinsky.qxd 25/05/2005 04:08 pm Page 133 Neuroinformatics © Copyright 2005 by Humana Press Inc. All rights of any nature whatsoever are reserved. ISSN 1539-2791/05/133–162/$30.00 DOI: 10.1385/NI:03:02:133 Original Article Development of a Model for Microphysiological Simulations Small Nodes of Ranvier From Peripheral Nerves of Mice Reconstructed by Electron Tomography Gina E. Sosinsky1,*,Thomas J. Deerinck1, Rocco Greco1, Casey H. Buitenhuys1, Thomas M. Bartol 2 and Mark H. Ellisman1,* 1 National Center for Microscopy and Imaging Research, Department of Neurosciences and the Center for Research on Biological Systems, University of California, San Diego, CA2 Computational Neurobiology Laboratory, Salk Institute, La Jolla, CA Abstract ods, we have constructed accurate 3D models of the nodal complex from mouse spinal roots The node of Ranvier is a complex structure with resolution better than 7.5 nm. These recon- found along myelinated nerves of vertebrate structed volumes contain 75–80% of the thick- animals. Specific membrane, cytoskeletal, junc- ness of the nodal region. We also directly imaged tional, extracellular matrix proteins and the glial axonal junctions that serve to anchor organelles interact to maintain and regulate the terminal loops of the myelin lamellae to the associated ion movements between spaces in axolemma.
    [Show full text]
  • Índice De Denominacións Españolas
    VOCABULARIO Índice de denominacións españolas 255 VOCABULARIO 256 VOCABULARIO agente tensioactivo pulmonar, 2441 A agranulocito, 32 abaxial, 3 agujero aórtico, 1317 abertura pupilar, 6 agujero de la vena cava, 1178 abierto de atrás, 4 agujero dental inferior, 1179 abierto de delante, 5 agujero magno, 1182 ablación, 1717 agujero mandibular, 1179 abomaso, 7 agujero mentoniano, 1180 acetábulo, 10 agujero obturado, 1181 ácido biliar, 11 agujero occipital, 1182 ácido desoxirribonucleico, 12 agujero oval, 1183 ácido desoxirribonucleico agujero sacro, 1184 nucleosómico, 28 agujero vertebral, 1185 ácido nucleico, 13 aire, 1560 ácido ribonucleico, 14 ala, 1 ácido ribonucleico mensajero, 167 ala de la nariz, 2 ácido ribonucleico ribosómico, 168 alantoamnios, 33 acino hepático, 15 alantoides, 34 acorne, 16 albardado, 35 acostarse, 850 albugínea, 2574 acromático, 17 aldosterona, 36 acromatina, 18 almohadilla, 38 acromion, 19 almohadilla carpiana, 39 acrosoma, 20 almohadilla córnea, 40 ACTH, 1335 almohadilla dental, 41 actina, 21 almohadilla dentaria, 41 actina F, 22 almohadilla digital, 42 actina G, 23 almohadilla metacarpiana, 43 actitud, 24 almohadilla metatarsiana, 44 acueducto cerebral, 25 almohadilla tarsiana, 45 acueducto de Silvio, 25 alocórtex, 46 acueducto mesencefálico, 25 alto de cola, 2260 adamantoblasto, 59 altura a la punta de la espalda, 56 adenohipófisis, 26 altura anterior de la espalda, 56 ADH, 1336 altura del esternón, 47 adipocito, 27 altura del pecho, 48 ADN, 12 altura del tórax, 48 ADN nucleosómico, 28 alunarado, 49 ADNn, 28
    [Show full text]