Biology and Histopathology of Ustilago Filiformis (= U. Longissima), a Causal Agent of Leaf Stripe Smut of Glyceria Multiflora

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Histopathology of Ustilago Filiformis (= U. Longissima), a Causal Agent of Leaf Stripe Smut of Glyceria Multiflora JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 4 (2015) DOI: 10.1515/jppr-2015-0059 Biology and histopathology of Ustilago filiformis (=U. longissima), a causal agent of leaf stripe smut of Glyceria multiflora Analía Perelló1*, Marta Mónica Astiz Gasso2, Marcelo Lovisolo3 1 Technologist Institute Santa Catalina (IFSC), 1836 Llavallol, Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 2 Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 3 Chair of Botany, Faculty of Agricultural Sciences, National University of Lomas de Zamora, 1832 Lomas de Zamora, Buenos Aires, Argentina Received: March 16, 2015 Accepted: November 12, 2015 Abstract: The aims of this study were to clarify the reproductive biology of the Ustilago filiformis Schrank, as causal agent of the stripe smut of Glyceria multiflora, determine the infection process of the pathogen and analyze the histological changes associated host- Glyceria any fungus attack. Moreover, the life cycle of the fungus was elucidated for the first time. Both teliospores and basidiospores were found to be equally efficient in producing the infection in Glyceria plants after the plants had been inoculated. These results constitute an important contribution for the understanding of the epidemiology of the disease. Key words: basidiospores, infection cycle, stripe smut, teliospores Introduction dia, the USSR (Siberia); Europe – Austria, Bulgaria, Czech, Smut fungi are Basidiomycota fungi belonging to the Denmark, Finland, France, Germany, Hungary, Italy, Po- order Ustilaginales. They received this name due to the land, Romania, Spain, Sweden, Switzerland, the United very conspicuous symptoms of black teliospore masses Kingdom, the former Yugoslavia; and North and South resembling smut, which they often produce on the host America. plants. There have been over 1,100 smut species recog- In Argentina, the disease was detected in the cities nized in over 93 genera. Smuts infect more than 4,000 of Jeppener and La Plata which are in the Buenos Aires plant species belonging to approximately 75 different Province. The pathogen is transmitted through telio- plant families. The biggest group of this fungi infects spores spreading by wind and water (Hirschhorn 1986; monocots belonging to the Graminea, which include ce- Mordue 1991; Astiz Gassó et al. 2006). real crops. The smuts encompass, among others, the gen- Glyceria multiflora Steudel is a native species. It is era Ustilago and Tilletia. The latter cause, the so-called, aquatic, glabrous, perennial, rhizomatous with long til- bunt diseases of various cereal crops. Between the spe- lers, and it has wide ligule, narrow panicle lax, 20–60 cm cies genus Ustilago, the name of Ustilago longissima (based long, and reddish–dark fruit cariopsis (Burkart 1969). In on Uredo longissima Sowerby 1799) should be replaced by Argentina, it inhabits marginal areas of low grasslands Ustilago filiformis (based on Lycoperdon filiformis Schrank, of Mesopotamia and “Cuenca del Salado”, which are in in Hoppe 1793), accepted by the 13th International Bo- the Buenos Aires Province. In these areas, it is of high tanical Congress in Sydney, Australia, 1981 (Vánky 1985; value as cattle forage (Vidal and Piergentili 1973). The MycoBanK 2015). high productivity and good palatability of this species Ustilago filiformis is the causal agent of the stripe smut make it an interesting alternative in marginal farming in many species of the genus Glyceria, such as G. fluitans, areas of the country (Rossi et al. 2006, 2009; Alonso et al. G. grandis, G. multiflora, G. nemoralis, G. obtusa, G. plicata, 2009). and G. striata (Mordue 1991). Stripe smut produces chlo- Other smut species are recognised in terms of their rosis and necrosis on the leaves. The infected plants are life cycle and histopathology e.g. Sporisorium reilianum slightly stunted, and pale or yellowish-green. They pro- f. sp. zeae on Zea mays and Sorghum bicolor (L.) Moench duce new tillers partially atrophied of a pale greenish yel- (Wilson and Frederiksen 1970; Matyac 1985; Martinez low color, and have a weak aspect. The plants usually fail et al. 2002). to reach the flowering stage due to fungus damage. The The first aim of this work was to explain the repro- geographical distribution of the disease is generalised to ductive biology of the fungus U. filiformis. The second temperate areas of the world such as: Asia – Northern In- aim was to determine the pathogen’s process of infection. *Corresponding address: [email protected] 430 Journal of Plant Protection Research 55 (4), 2015 The third aim was to analyse the histological changes of Laboratory inoculation assay the host-Glyceria associated with the fungus attack. Small bits of Glyceria leaves (2 cm) were inoculated with a suspension of (1) basidiospores (106–8 spores ∙ ml–1) and Materials and Methods (2) teliospores (106–8 spores ∙ ml–1) in sterile distilled wa- The methodology used in this research was adapted and ter obtained from the culture media (PB). The control modified based on previous techniques used for the study plants received the PB media alone without the fungus. of smut fungi as mentioned by Fernández et al. (1978), Inoculated leaf samples were placed in Petri dishes with Matyac (1985), Craig and Frederiksen (1992), Maurya et sterile filter paper moistened with sterile distilled wa- al. (2010) and Kosiada (2011). ter to maintain a relative humidity of 80–90%. Then, the dishes were kept in an oven (BINDER KBF LQC) at Isolation of Ustilago filiformis and in vitro assays 25±2°C photoperiod 12 : 12 (L : D) h. After 24 h, samples were mounted in cotton blue lactophenol for observa- Glyceria samples of healthy plants and plants infected tion and histopathological examination under light mi- with U. filiformis, were collected in 2009 at Jeppener croscope. (35°16´39.5”S; 58°11´53.7” O/–35.277639, –58.19825), Bue- nos Aires Province, Argentina. Subsequently, symptom- Field inoculation assay atic plants were taken to the laboratory for morpho- logical and biometrical observations and to identify the The inoculum was prepared in Erlermeyer flasks with 200 smut. In addition, isolates of the fungus on agar media cm3 of PC media, and sprayed at a concentration of 106–8 were performed to study the type of teliospore germina- basidiospores ∙ ml−1 on the Glyceria plants at the seedling tion and the colony development of the fungus. Fungal stage (shoot apical meristem with axillary buds). The in- spores (0.5 g) were treated for 3 min in a 2% (w/v) hy- oculation was repeated every time plants produced new pochlorite sodium solution (55 g Cl/l), and afterwards buds during the vegetative stage (approximately every washed in sterile distilled water. After that, teliospores 20 days). Untreated plants (the controls) received PB me- were seeded on two agar media: (1) 2% Water Agar (AA) dia alone. Inoculation was performed during spring 2009 for observing the germination type, and (2) 2% Potato (November-December). Two containers of six plants each Dextrose Agar (PDA) for the study of colony characteris- one (replications) of G. multiflora were selected for field in- tics and fungus morphology. Cultures in PDA were kept oculation assays. Another two containers were selected as in the refrigerator at 5±2°C to be used in the artificial the control. For both the inoculated plants and the controls, inoculations carried out on the host, Glyceria (Craig and the observations and sampling started 24 h after the inocu- Frederiksen 1992). lations were done. Macro- and microscopic observations were performed to check if any new tillers were infected. Inoculum preparation Histopathological study For this experiment, basidiospores axenic cultures were obtained using the methodology described above. In Er- Samples of G. multiflora that had been inoculated under lenmeyer flasks with a 200-ml Potato Broth medium 2% field conditions were collected for the histopathological (PB), the fungal cultures were seeded. They were sub- study and compared with the untreated controls. Sam- sequently placed in a shaker 200 rpp, and placed in an ples were fixed in a mix of formalin-acetic acid-alcohol oven (BINDER KBF LQC) at 25±2°C in the dark. Every (FAA) and later treated with 10% hydrofluoric acid for 24 h, a sample was taken to quantify the basidiospores 24 h to soften the tissue and remove the silica from the concentration. The quantification was done with the aid epidermis. Inclusion was performed in paraffin. Trans- of a Neubauer haemocytometer. When the basidiospore verse and longitudinal sections (10−12 µ thick) were concentration reached 106–8 basidiospores ∙ ml−1, the sam- obtained using a microtome type Minot (Senior Rotary ples were placed in the refrigerator (5°C) to be used for Microtome Arcane Brand Model RTM-30). Samples future inoculations (Wilson and Frederiksen 1970; Mar- were double stained with safranin-fast green. The tech- tinez et al. 2002). nique described by Bracegirdle and Miles (1975) and D´Ambrogio Argüeso (1986) was used for the histopatho- Glyceria plants logical determination. Two containers (2 m wide × 10 m long) coated with thick black plastic 200 μ were conditioned to transplant the Results and Discussion Glyceria plants in environmental conditions similar to Identification of the species and colony morphology those where this species develops. Twelve healthy Glyce- ria plants were obtained from the wetlands of Jeppener. Macro- and microscopic observations of infected Glyceria In spring (September−October), as soon as the emergence plants confirmed that the sori observed in the inoculated of tillers began, the samples were kept for laboratory as- diseased plants agree with the ones described for the species says. Four other containers, twelve plants in total, were U. filiformis. This species produces sori in leaves resulting in selected for being inoculated under field conditions.
Recommended publications
  • Corn Smuts, RPD No
    report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent.
    [Show full text]
  • Physiologic Specialization Within Sphacelotheca Reiliana (Kühn) Clint
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1960 Physiologic specialization within Sphacelotheca reiliana (Kühn) Clint. on Sorghum and the Biology of its Chlamydospores in the Soil Ibrahim Aziz Al-Sohaily Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Al-Sohaily, Ibrahim Aziz, "Physiologic specialization within Sphacelotheca reiliana (Kühn) Clint. on Sorghum and the Biology of its Chlamydospores in the Soil" (1960). Electronic Theses and Dissertations. 2704. https://openprairie.sdstate.edu/etd/2704 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. '... PHYSIOLOGIC SPECIALIZATION WITHI.N SPHACELOTHECA REILIANA (KUHN) CLINT. ON SORGHUM AND THE BIOLOOY OF ITS CHLAMIDOSPORES I.N THE SOIL BY IBRAHIM AZIZ AL-SOHAILY A thesis suanitted in partial fulfillment of the requirements for the degree Ibctor of Philosophy, Department of Plant Pathology, South Dakota State College of Agriculture and Mechanic Arts December, 1960 '....1 A S ATE COLLEGE LIB 7 , PHYSIOLOOIC SPECIALIZATION WITHIN SPHACELOTHECA REILIANA (Kum�) CLINT. ON SORGHUM AND THE BIOLOGY OF ITS CHLAl1YOOSPORES Ill THE SOIL Abstract IBRAIIDl AZIZ AL-SO'rIAILY Under the �ervision of Professor George Saneniuk Corresponding to the title, the present study was concerned with two aspects. In the first of these, two chlamydosporous sori from corn were collected from California and Washington and 18 chlamydosporous sori from sorghum were collected from California, New Mexico, Texas and India.
    [Show full text]
  • ANNOTATED CHECKLIST and KEY for SMUT FUNGI in COLOMBIA* Lista Anotada Y Clave Para Los Ustilaginales De Colombia
    Caldasia 24(1) 2002: 103-119 ANNOTATED CHECKLIST AND KEY FOR SMUT FUNGI IN COLOMBIA* Lista anotada y clave para los ustilaginales de Colombia M. PIEPENBRING Botanisches Institut, J. W. Goethe-Universität, 60054 Frankfurt, Germany. FAX: 0049 69 79824822. [email protected] ABSTRACT 71 species of smut fungi known for Colombia are cited in a checklist together with their host plants, collection data, and some comments. 20 species of smut fungi are reported for the first time for Colombia. The list includes the new species Aurantiosporium colombianum and the new combination Sporisorium concelatum. Ustilago garcesi is recognized as a synonym of Sporisorium panici-leucophaei. Four species of host plants were not yet known to be infected by the respective smut species. The smuts known for Colombia are presented in a key which contains distinctive characteristics of sori and spores. Key words. Aurantiosporium colombianum, Sporisorium concelatum, Sporisorium paspali-notati, Ustilaginales, Ustilago garcesi. RESUMEN 71 especies de carbón conocidas para Colombia se citan en una lista junto con sus plantas hospederas, datos de colección y algunos comentarios. Veinte especies de carbón se reportan por primera vez para Colombia. La lista incluye la especie nueva Aurantiosporium colombianum y la combinación nueva Sporisorium concelatum. Ustilago garcesi es un sinónimo de Sporisorium panici-leucophaei. Cuatro especies de plantas hospederas se citan por primera vez como hospedero de su respectivo carbón. Los carbones conocidos para Colombia se presentan en una clave que incluye las características distinctivas de los soros y de las esporas. Palabras clave. Aurantiosporium colombianum, Sporisorium concelatum, Ustilaginales, Ustilago garcesi. INTRODUCTION they develop usually dark, powdery masses After the rust fungi (Uredinales), the smut of teliospores (“spores”) in sori.
    [Show full text]
  • Corn Smuts S
    A Pacific Northwest Extension Publication Oregon State University • University of Idaho • Washington State University PNW 647 • July 2013 Corn Smuts S. K. Mohan, P. B. Hamm, G. H. Clough, and L. J. du Toit orn smuts are widely distributed throughout the world. The incidence of corn smuts in the Pacific Northwest (PNW) varies Cby location and is usually low. Nonetheless, these diseases occasionally cause significant economic losses when susceptible cultivars are grown under conditions favorable for disease development. Smut diseases of corn are, in general, more destructive to sweet corn than to field corn. The term smut is derived from the powdery, dark brown to black, soot-like mass of spores produced in galls. These galls can form on various plant parts. Three types of smut infect corn—common smut, caused by Ustilago maydis (= Ustilago zeae); head smut, caused by Sphacelotheca reiliana; and false smut, caused by Ustilaginoidea virens. False smut is not a concern in the PNW, so this publication deals University S. Krishna by State Mohan,Photo © Oregon only with common and head smuts. Figure 1. Common smut galls on an ear of sweet corn. Each gall represents a single kernel infected by the common Common smut smut fungus. Common smut is caused by the fungal pathogen U. maydis and is also known as boil smut or blister smut (Figure 1). Common smut occurs throughout PNW corn production areas, although it is less common in western Oregon and western Washington than east of the Cascade Mountains. Infection in commercial plantings may result in considerable damage and yield loss in some older sweet corn cultivars, but yield loss in some of the newer, less susceptible cultivars is rarely significant.
    [Show full text]
  • The Effect of Low Temperature on Growth and Development of Phalaenopsis
    Pak. J. Bot., 52(5): 1849-1855, 2020. DOI: http://dx.doi.org/10.30848/PJB2020-5(17) DEVELOPMENT OF A dCAPS MARKER BASED ON A MINOR RESISTANCE GENE RELATED TO HEAD SMUT IN BIN8.03 IN MAIZE LIN ZHANG1#, XUAN ZHOU2#, XIAOHUI SUN1, YU ZHOU1, XING ZENG1, ZHOUFEI WANG3, ZHENHUA WANG1 AND HONG DI1* 1Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China 2Promotion Station of Machinery Technology for Agricultural and Animal Husbandry, Huhhot 010000, Inner Mongolia Autonomous Region, China 3The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China #Lin Zhang and Xuan Zhou contributed equally to this research. *Corresponding author’s email: [email protected] Abstract Head smut can cause maize yield losses of up to 80% in the maize-growing region of Northern China. Molecular markers based on candidate resistance genes have proved to be useful for highly sensitive selection of resistance in maize breeding programs. In the present study, a SNP (single-nucleotide polymorphism) in resistant and susceptible maize lines was identified within the nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene GRMZM2G047152 in bin 8.03. Using this SNP, we developed the derived cleaved amplified polymorphic sequence marker DNdCAPS8.03-1. The molecular coincidence rate of the combination of markers DNdCAPS8.03-1 and LSdCAP2 (related to the QTL qHS2.09) was higher than that of a single marker in a set of 56 inbred maize lines belonging to five heterotic groups. These results provide information and tools that will prove to be useful in marker-assisted selection (MAS) in breeding maize for head smut resistance.
    [Show full text]
  • Comparative Analysis of the Maize Smut Fungi Ustilago Maydis and Sporisorium Reilianum
    Comparative Analysis of the Maize Smut Fungi Ustilago maydis and Sporisorium reilianum Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Bernadette Heinze aus Johannesburg Marburg / Lahn 2009 Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: Erstgutachterin: Prof. Dr. Regine Kahmann Zweitgutachter: Prof. Dr. Michael Bölker Tag der mündlichen Prüfung: Die Untersuchungen zur vorliegenden Arbeit wurden von März 2003 bis April 2007 am Max-Planck-Institut für Terrestrische Mikrobiologie in der Abteilung Organismische Interaktionen unter Betreuung von Dr. Jan Schirawski durchgeführt. Teile dieser Arbeit sind veröffentlicht in : Schirawski J, Heinze B, Wagenknecht M, Kahmann R . 2005. Mating type loci of Sporisorium reilianum : Novel pattern with three a and multiple b specificities. Eukaryotic Cell 4:1317-27 Reinecke G, Heinze B, Schirawski J, Büttner H, Kahmann R and Basse C . 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology 9(3): 339-355. Erklärung Erklärung Ich versichere, dass ich meine Dissertation mit dem Titel ”Comparative analysis of the maize smut fungi Ustilago maydis and Sporisorium reilianum “ selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Diese Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient. Ort, Datum Bernadette Heinze In memory of my fathers Jerry Goodman and Christian Heinze. “Every day I remind myself that my inner and outer life are based on the labors of other men, living and dead, and that I must exert myself in order to give in the same measure as I have received and am still receiving.
    [Show full text]
  • Redalyc.NFLUENCE of PLANTING DEPTHS on the INCIDENCE OF
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Prom, Louis K.; Montes-Garcia, Noe; Odvody, Gary N. NFLUENCE OF PLANTING DEPTHS ON THE INCIDENCE OF SORGHUM HEAD SMUT, CAUSED BY Sporisorium reilianum Tropical and Subtropical Agroecosystems, vol. 17, núm. 1, 2014, pp. 1-4 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93930735014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 17 (2014): 33 - 38 Short note [Nota corta] INFLUENCE OF PLANTING DEPTHS ON THE INCIDENCE OF SORGHUM HEAD SMUT, CAUSED BY Sporisorium reilianum [INFLUENCIA DE LA PROFUNDIDAD DE SIEMBRA EN LA INCIDENCIA DEL CARBÓN DE LA PANOJA CAUSADA POR Sporisorium reilianum] Louis K. Prom1*, Noe Montes-Garcia2, and Gary N. Odvody3 1USDA-ARS, Southern Plains Agricultural Research Center, Crop Germplasm Research Unit, 2765 F & B Road, College Station, Texas 77845. Tel. # (979) 260-9393. E-mail: [email protected] 2Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Centro de Investigación Regional del Noreste, Rio Bravo, Tamaulipas, Mexico. 3Department of Plant Pathology and Microbiology, Texas A&M University Agricultural Research and Extension Center, Corpus Christi, TX 78406 *Corresponding author SUMMARY RESUMEN The study was conducted at the Texas A&M El estudio fue realizado en la Estación Experimental Experiment Station in Beeville, TX, to determine the de Texas A&M en Beeville, TX, para determinar el effect of planting depths on the incidence of sorghum efecto de la profundidad de siembra en la incidencia head smut.
    [Show full text]
  • Taxonomic Diversity of Some Rusts and Smuts of Khyber Pakhtunkhwa and Adjacent Hills of Pakistan.Pdf
    Taxonomic Diversity of Some Rusts and Smuts of Khyber Pakhtunkhwa and Adjacent Hills of Pakistan A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN BOTANY BY AAMNA ISHAQ DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN February, 2017 Taxonomic Diversity of Some Rusts and Smuts of Khyber Pakhtunkhwa and Adjacent Hills of Pakistan A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY In Botany BY AAMNA ISHAQ Supervisors Prof. Dr. Abdul Nasir Khalid Dr. Najam-ul-Sehar Afshan DEPARTMENT OF BOATNY UNIVERSITY OF THE PUNJAB LAHORE-PAKISTAN Dedicated to My loving Parents and My Sisters Without whom none of my success would be possible APPROVAL CERTIFICATE I certify that the research work described in this thesis submitted by Aamna Ishaq d/o Muhammad Ishaq Malik has been carried out under my direct supervision. I have personally gone through all the data reported in the manuscript and certify their authenticity. I also certify that the thesis has been prepared according to the prescribed format. I recommend it to be processed for evaluation by the external examiner for the award PhD degree in Botany. Prof. Dr. Abdul Nasir Khalid Department of Botany University of the Punjab, Lahore, Pakistan. ACKNOWLEDGEMENTS First of all, I would like to thank almighty Allah Subhanahu Wa Ta'ala for giving me strength to start and successfully complete this work. I would like to pay my heartiest gratitude to my respected teacher and PhD supervisor, Dr.
    [Show full text]
  • Head Smut of Sorghum and Maize
    HEAD SMUT OF SORGHUM AND MAIZE By ALDEN A. POTTER, Assistant Pathologist, Office of Cereal Investigations, Bureau of Plant Industry GENERAL CHARACTERISTICS OF THE DISEASE DISTRIBUTION In the agriculture of western Kansas and Texas and similar parts of the Great Plains area various sorghum varieties have recently attained considerable importance as a dry-land crop in the farming operations which are developing in the sections formerly devoted to cattle ranges. This fact, together with the importance of broom corn in some sections, has led to an investigation of the diseases of the sorghum crop by the Office of Cereal Investigations of the Bureau of Plant Industry. The study of the head smut has an added importance from the fact that it occurs on maize (Indian corn) and has been reported by McAlpine (1910, p. 290)1 as serious on that crop in Australia, and by Evans (1911) and Mundy (1910, p. 1) in South Africa (PI. XXXI). It has been found on maize in some abundance in this country (Norton, 1895; Hitch- cock and Norton, 1896, p. 198), although the writer, in rather extensive observations, has never seen such a case; nor has it been recently reported. The parasite is widely distributed in sorghum-growing regions through- out the world, and in some sections, chiefly tropical or subtropical, it is very destructive. Munerati (1910, p. 718) has found it abundant on Sorghum halepensis, and it has also been reported from Italy by Passerini (1877, p. 236), Mottareale (1903, p.'3), and Cugini (1891, p. 83); from India by Cooke (1876, p.
    [Show full text]
  • Effects of Loose Kernel Smut Caused by Sporisorium Cruentum Onrhizomes
    Journal of Plant Protection Research ISSN 1427-4337 ORIGINAL ARTICLE Eff ects of loose kernel smut caused by Sporisorium cruentum onrhizomes of Sorghum halepense Marta Monica Astiz Gassó1*, Marcelo Lovisolo2, Analia Perelló3 1 Santa Catalina Phytotechnical Institute, Faculty of Agricultural and Forestry Sciences UNLP Calle 60 y 119 (1900) La Plata, Buenos Aires, Argentina 2 Morphologic Botany, Faculty of Agricultural Sciences – National University Lomas de Zamora. Ruta Nº 4, km 2 (1836) Llavallol, Buenos Aires, Argentina 3 Phytopathology, CIDEFI, FCAyF-UNLP, CONICET. Calle 60 y 119 (1900) La Plata, Buenos Aires, Argentina Vol. 57, No. 1: 62–71, 2017 Abstract DOI: 10.1515/jppr-2017-0009 Th e eff ect of loose kernel smut fungus Sporisorium cruentum on Sorghum halepense (John- son grass) was investigated in vitro and in greenhouse experiments. Smut infection in- Received: July 13, 2016 duced a decrease in the dry matter of rhizomes and aerial vegetative parts of the plants Accepted: January 17, 2017 evaluated. Moreover, the diseased plants showed a lower height than controls. Th e infec- tion resulted in multiple smutted buds that caused small panicles infected with the fungus. *Corresponding address: In addition, changes were observed in the structural morphology of the host. Leaf tissue [email protected] sections showed hyphae degrading chloroplasts and vascular bundles colonized by the fun- gus. Subsequently, cells collapsed and widespread necrosis was observed as a symptom of the disease. Th e pathogen did not colonize the gynoecium of Sorghum plants until the tas- sel was fully developed. Th e sporulation process of the fungus led to a total disintegration of anthers and tissues.
    [Show full text]
  • The Status of Application, Capacities and the Enabling Environment for Agricultural Biotechnologies in the Asia-Pacific Region
    THE STATUS OF APPLICATION, CAPACITIES AND THE ENABLING ENVIRONMENT FOR AGRICULTURAL BIOTECHNOLOGIES IN THE ASIA-PACIFIC REGION Regional background study WORKING DOCUMENT The status of application, capacities and the enabling environment for agricultural biotechnologies in the Asia-Pacific region Bangkok, December 2018 © FAO 2019 ii Required citation: FAO. 2019. The status of application, capacities and the enabling environment for agricultural biotechnologies in the Asia-Pacific region. Regional background study. Bangkok. 185 pp. Licence: CC BY-NC-SA 3.0 IGO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited.
    [Show full text]
  • Objective Plant Pathology
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305442822 Objective plant pathology Book · July 2013 CITATIONS READS 0 34,711 3 authors: Surendra Nath M. Gurivi Reddy Tamil Nadu Agricultural University Acharya N G Ranga Agricultural University 5 PUBLICATIONS 2 CITATIONS 15 PUBLICATIONS 11 CITATIONS SEE PROFILE SEE PROFILE Prabhukarthikeyan S. R ICAR - National Rice Research Institute, Cuttack 48 PUBLICATIONS 108 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Management of rice diseases View project Identification and characterization of phytoplasma View project All content following this page was uploaded by Surendra Nath on 20 July 2016. The user has requested enhancement of the downloaded file. Objective Plant Pathology (A competitive examination guide)- As per Indian examination pattern M. Gurivi Reddy, M.Sc. (Plant Pathology), TNAU, Coimbatore S.R. Prabhukarthikeyan, M.Sc (Plant Pathology), TNAU, Coimbatore R. Surendranath, M. Sc (Horticulture), TNAU, Coimbatore INDIA A.E. Publications No. 10. Sundaram Street-1, P.N.Pudur, Coimbatore-641003 2013 First Edition: 2013 © Reserved with authors, 2013 ISBN: 978-81972-22-9 Price: Rs. 120/- PREFACE The so called book Objective Plant Pathology is compiled by collecting and digesting the pertinent information published in various books and review papers to assist graduate and postgraduate students for various competitive examinations like JRF, NET, ARS conducted by ICAR. It is mainly helpful for students for getting an in-depth knowledge in plant pathology. The book combines the basic concepts and terminology in Mycology, Bacteriology, Virology and other applied aspects.
    [Show full text]