Maize Package Mashed.Com

Total Page:16

File Type:pdf, Size:1020Kb

Maize Package Mashed.Com maize INTEGRATED PEST MANAGEMENT INNOVATION LAB Maize Package mashed.com aize, or corn, is a cereal grain first domesticated in southern WHAT IS IPM? Mexico about 10,000 years ago. Maize is a staple food in many parts of the world, with the total global production Integrated pest management M (IPM), an environmentally-sound surpassing that of wheat or rice. It is consumed directly and is also used for corn ethanol, animal feed, and other maize products, such and economical approach to pest as corn starch and corn syrup. There are seven maize groups based control, was developed in response on the structure of the grain: flint maize, dent maize, sweet (and super to pesticide misuse in the 1960s. sweet) maize, floury maize, popcorn, waxy maize, and pod corn. Pesticide misuse has led to pesticide The U.S. is the world’s largest maize producer. In Asia, the maize resistance among prevailing pests, a crop is rotated with other cereal crops such as rice, barley, millet, as resurgence of non-target pests, loss of biodiversity, and environmental well as crops like pulses and oilseeds. In African countries, maize is and human health hazards. Lab (IPM IL) Management Innovation Pest Integrated successfully rotated with sorghum, millet, cassava, cowpea, soybean, potatoes, and other vegetables. Maize is a cold-intolerant crop with a shallow root system. The crop depends on soil moisture and is a WHAT ARE more water-efficient crop than others, like soybeans. Maize is most IPM PACKAGES? sensitive to drought at the time of silk emergence when the flowers are ready for pollination. The constraints to maize production are biotic The IPM Innovation Lab has and abiotic. The most important abiotic constraints are low soil fertility, developed and tested robust IPM drought, and soil erosion. Among biotic constraints, insect pests, packages, holistic suites of IPM IPM PACKAGES FOR HEALTH CROP IPM PACKAGES diseases and weeds are foremost. These pests are grouped into three recommendations and practices categories – field pests, field-to-store pests, and store pests. Different for the production of vegetables parts of the maize crop (seed, root, foliage, tassel, stem, ear, and and other crops. Farmers who use grain) are susceptible to different insect pests. The list of major insect IPM packages in planting, pro- pests includes lepidoptera pests (cutworms, armyworms, earworms, duction, and throughout the supply borers, grain moths), coleoptera pests (wireworms, grubs, grain chain see enhanced profitability borers, weevils), and sap-sucking insect pests that serve as vectors in their crops. The recommended of diseases (leafhoppers and aphids). Major diseases include leaf/ practices in IPM packages cover sheath blight, downy mildew, ear/stalk rot, rust, anthracnose, maize economically significant pest spe- cies over a wide range of cropping lethal necrosis virus, and maize streak virus. Maize also faces a major systems across the tropical world, problem of weeds including several species of grasses, broadleaf resulting in benefits to human plants, and sedges (such as Cyperus sp., Striga sp.). health and the environment. This brochure was created and distributed by the Feed the Future Innovation Lab for Integrated Pest Management (IPM IL). It was made possible through the United States Agency for International Development and the generous support of the American people through USAID Cooperative Agreement No. AID-OAA-L-15-00001 diseases Langfritz seed cropprotectionnetwork.org Photos (From left): • Southern leaf blight of maize • Ear rot DISEASES Phaeosphaeria maydis disease. Susceptible varieties ear leaf, which expand over (Physodermataceae)] should not be planted in previ- the ear, and at later stages Smut (Sphacelotheca reiliana) ously infected areas. white fungal growth spreads (Microbotryaceae) Cercospora zeae-maydis only over and between the kernels. infects corn. This disease Ear rots [Fusarium verticilli- Resistant varieties are also available. Crop rotation is very Smut is distributed in Asia, causes considerable yield oides (=Fusarium moniliforme) useful to manage ear rots Africa, the Americas, and loss in most maize-growing (Nectriaceae), Diplodia maydis because the fungus survives Europe and invades plants areas of Africa. The disease (=Stenocarpella maydis) poorly overtime on infested during emergence or at is usually associated with (Diaporthaceae)] debris. the seedling stage through an increase in the maize soilborne teliospores. It grows production area, continuous Fusarium verticillioides is systemically with the meristem planting of maize on the same a seed-borne endophyte in Turcicum blight (Setosphaeria and does not get transmitted plot of land year after year, maize. It is very common turcica, Exserohilum turcicum) from one plant to the other. and the use of minimum tillage and also difficult to eliminate. (Pleosporaceae) Infection is visible at a late practices. The initial symptoms Warm dry weather early in the stage of plant development on of grey leaf spots are small, growing season, followed by Symptoms of Turcicum blight tassels and ears (large smut dark, moist spots that are wet weather during the devel- include large, oval, grey, galls) of the maize plant. The encircled by a thin, yellow opment of the cob increases or light brown leaf spots, infected corn ear looks very radiance. Spots are initially the infection. Fusarium verti- sometimes with dark margins, small and tear-drop shaped, brownish and yellow and later cillioides is associated with and cover large parts of the and the cob looks empty. A on turn into grey color due to high levels of disease-causing leaves. Symptoms occur relatively low percentage of the production of grey fungal mycotoxins—fumonisins— first on the lower leaves. The infection in the fields (10%) spores. Phaeosphaeria maydis on infected kernels. These disease causes the leaves to can cause significant yield also causes small, pale green mycotoxins are harmful to dry out, wither and die. Heavy reduction (about 80%). Once lesions scattered over the humans and cattle. Diplodia dews, frequent light showers, the infection occurs, there are leaf surface. With maturation, maydis causes ear rot, stalk high humidity, and moderate no effective treatments for lesions dry and develop dark rot, and seedling blight of temperatures are favorable reducing or eliminating the brown margins. Lesions corn. Corn is the only host for the disease. This disease damage on affected plants. also coalesce and become for this pathogen. Ear rots causes loss of grain and Head smut spores can survive irregular in shape and blight overwinter on the diseased animal fodder. Resistant hybrid in the soil for several years. the entire leaf. Maize plants stalk and ear tissues that have varieties and crop rotation with Balanced soil fertility should be on the edges of the fields are not been buried. In the spring, a non-host crop (legumes) can maintained, with an emphasis more prone to this disease. the fungus reproduces on the reduce the disease severity. on sufficient nitrogen. Tolerant This disease is pronounced plant debris and produces hybrids are available and in cold conditions. Spores spores that are moved by rain Southern leaf blight of maize hybrids with fast emergence overwinter on crop debris and and wind to the new crop. [Helminthosporium maydis are less prone to head smut in favorable climatic conditions The fungal spores land on the (=Cochliobolus hetros- infection. (high rainfall and moderate plant and commonly infect at trophus, Bipolaris maydis) temperatures); spores get the base of the ear if sufficient (Pleosporaceae)] disseminated through rain Leaf spot [Cercospora water is available. Symptoms splash and wind. Crop rotation, of ear rot begin as tan spots zeae-maydis This disease is found around residual management, and (Mycosphaerellaceae), on the base of the husk and the globe and during the planting dates can manage this diseases and viruses Pestnet.org Photos (From left): • Downy mildew • Maize dwarf mosaic virus AgroAtlas DISEASES (continued) Banded leaf and sheath delay in flowering as well as a soil and seed transmission blight (Rhizoctonia solani) poor grain set and fill. play significant roles in devel- summer season it is (Ceratobasidiaceae) opment and spread of this considered the most Maize streak virus (MSV) disease. Best measures to important disease of maize. This disease is particularly (Geminiviridae) manage this disease still need Helminthosporium maydis destructive with the rice-maize further studies. infects leaves, sheaths, ear MSV occurs throughout Africa rotation. Usually, this disease husks, ears, cobs, shanks, and infects the pre-flowering stage and causes severe damage. stalks. Infected seedlings wilt (plants 40-50 days old). White It is transmitted by several and die within a few weeks of mycelium and irregularly leafhopper species. This the planting dates. Symptoms rounded sclerotia develop on also infects several species vary depending on the race of sheaths, husks, silks, cobs, of Poaceae. MSV causes leaf blight. Lesion color can be and kernels. Leaves and leaf continuous parallel chlorotic tan with brown, red borders or sheaths of infected plants streaks on leaves, with severe yellow-green or chlorotic halos. appear blighted with prominent stunting of the affected plant, The shape of lesions can be banding. Stripping the lower hence, failure to produce diamond, elliptical or spindle- two or three leaves and leaf complete cobs or seed. During shaped. Resistant/tolerant sheaths considerably
Recommended publications
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 3 0 0 North Z eeb Road. Ann Arbor. Ml 4 8106-1346 USA 313/761-4700 800/521-0600 Order Number 9130518 Studies of epidemiology of maize streak virus and itsCicadulina leafhopper vectors in Nigeria Mbey-yame, Asanzi Christopher, Ph.D.
    [Show full text]
  • Performance of Popcorn Introductions for Agronomic Characters, Grain Yield and Popping Qualities in the Forest and Derived Savannah Agro-Ecologies of Nigeria
    doi:10.14720/aas.2019.114.1.6 Original research article / izvirni znanstveni članek Performance of popcorn introductions for agronomic characters, grain yield and popping qualities in the forest and derived savannah agro-ecologies of Nigeria Oloruntoba OLAKOJO 1, 2, Gbadebo OLAOYE 1, Adewole AKINTUNDE 3 Received April 25, 2019; accepted August 14, 2019. Delo je prispelo 25. aprila 2019, sprejeto 14. avgusta 2019. Performance of popcorn introductions for agronomic char- Predstavitev uspešnosti uvajanja pokovke na osnovi njenih acters, grain yield and popping qualities in the forest and de- agronomskih lastnosti, pridelka zrnja in kakovosti nabreka- rived savannah agro-ecologies of Nigeria nja v gozdnih in prehodno-savanskih agroekosistemih Nige- Abstract: The study focus on the evaluation of popcorn rije lines for their yield and agronomic potentials. Genetic materi- Izvleček: Raziskava je bile osredotočena na ovredno- als were evaluated under irrigation in a three-replicate in a Ran- tenje linij pokovke glede na njen pridelek in agronomske domized Complete Block Design (RCBD) with a commercial lastnosti. Genetski material je bil ovrednoten ob namakanju variety as check. Two seeds were planted per hole using two- v naključnem bločnem poskusu s tremi ponovitvami v prim- row plots of 5 m long with inter and intra-row spacing of 0.75 m erjavi s komercialno sorto. Po dve semeni sta bili posejani v x 0.5 m, respectively in two locations viz: Ibadan and Ikenne vrstah na ploskvah dolžine 5 m, z medvrstno razdaljo 0,75 m representing the forest and savannah agro-ecologies of Nige- in znotrajvrstno razdaljo 0,5 m, na lokacijah Ibadan in Ikenne, ria respectively.
    [Show full text]
  • Diseases-Of-Maize
    MAIZE DISEASES Presented by Dr. S. Parthasarathy, Assistant Professor Department of Plant Pathology Downy mildew -Peronosclerospora sorghi (Sclerophthora macrospora ) Crazy top The most characteristic symptom is the proliferation of leafy structures from the ears and/or tassels, In many cases, leafy protrusions occur in only the ears resulting in a mass of strap-like leaves protruding from the ear zone. Affected plants may also have profuse tiller development. Management Seed treatment with Metalaxyl fungicide metalaxyl @ 6.0 g/kg (or) Apron 35 WP @ 2.5 g/kg Rogue out infected plants at early stage. Spray with Metalaxyl 1g/lit or Metalaxyl + Mancozeb @ 2.5 g/lit. Philippine downy mildew - Peronosclerospora philippinensis Java downy mildew – Peronosclerospora maydis Sorghum Downy mildew - Peronosclerospora sorghi Sugarcane Downy mildew – Peronosclerospora sacchari Brown stripe downy mildew- Scleropthora rayssiae var. zeae Symptoms Lesions start developing on lower leaves as narrow chlorosis or yellow stripes,3-7 mm wide, with well defined margin and are delimited by the veins. The stripes later become reddish to purple. Lateral development of lesions causes sever striping and blotching. Seed development may be suppressed, plant may die prematurely if blotching occurs prior to flowering. Sporangia on the leaves appear as a downy whitish to wooly growth on both surface of the lesions. Floral or vegetative parts are not malformed, and the leaves do not shred. Management Resistant varieties -Prabhat, Kohinoor, ICI-703, PAC-9401, PMZ-2, SEEDTEC-2331. Seed treatment with Acylalanine fungicide metalaxyl @ 6.0 g/kg. Rogue out infected plants at early stage. Control - Apron 35 WP, @ 2.5 g/kg as seed treatment.
    [Show full text]
  • Biology and Histopathology of Ustilago Filiformis (= U. Longissima), a Causal Agent of Leaf Stripe Smut of Glyceria Multiflora
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 4 (2015) DOI: 10.1515/jppr-2015-0059 Biology and histopathology of Ustilago filiformis (=U. longissima), a causal agent of leaf stripe smut of Glyceria multiflora Analía Perelló1*, Marta Mónica Astiz Gasso2, Marcelo Lovisolo3 1 Technologist Institute Santa Catalina (IFSC), 1836 Llavallol, Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 2 Faculty of Agricultural and Forestry Sciences, National University of La Plata, Street 60 and 119, Buenos Aires, Argentina 3 Chair of Botany, Faculty of Agricultural Sciences, National University of Lomas de Zamora, 1832 Lomas de Zamora, Buenos Aires, Argentina Received: March 16, 2015 Accepted: November 12, 2015 Abstract: The aims of this study were to clarify the reproductive biology of the Ustilago filiformis Schrank, as causal agent of the stripe smut of Glyceria multiflora, determine the infection process of the pathogen and analyze the histological changes associated host- Glyceria any fungus attack. Moreover, the life cycle of the fungus was elucidated for the first time. Both teliospores and basidiospores were found to be equally efficient in producing the infection in Glyceria plants after the plants had been inoculated. These results constitute an important contribution for the understanding of the epidemiology of the disease. Key words: basidiospores, infection cycle, stripe smut, teliospores Introduction dia, the USSR (Siberia); Europe – Austria, Bulgaria, Czech, Smut fungi are Basidiomycota fungi belonging to the Denmark, Finland, France, Germany, Hungary, Italy, Po- order Ustilaginales. They received this name due to the land, Romania, Spain, Sweden, Switzerland, the United very conspicuous symptoms of black teliospore masses Kingdom, the former Yugoslavia; and North and South resembling smut, which they often produce on the host America.
    [Show full text]
  • Protection Against Fungi in the Marketing of Grains and Byproducts
    Protection against fungi in the marketing of grains and byproducts Ing. Agr. Juan M. Hernandez Vieyra ARGENT EXPORT S.A. May 2nd 2011 OBJECTIVE: To supply tools to eliminate fungus and bacteria contamination in maize and soybeans: Particularly: Stenocarpella maydis Cercospora sojina 2 • Powerfull Disinfectant of great efficacy in fungus, bacteria and virus • Produced by ICA Laboratories, South Africa. • aka SPOREKILL, VIRUKILL • Registered in more than 20 countries: USA, Australia, New Zeland, Brazil, Philipines, Israel • Product scientifically and field proven, with more than 15 years in the international market. • Registered at SENASA • Certifications: ISO 9001, GMP. 3 Properties of Sportek: – Based on a novel and patented quaternary amonio compound sintesis : didecil dimetil amonium chloride. – Excellent biodegradability thus, low environmental impact. – Really non corrosive and non oxidative. – Non toxic at recommended dosis . – Minimum inhibition concentration has a very low toxicity, LD 50>4000mg/Kg., lower than table salt. – High content of surfactants with excellent wetting capacity and penetration. – High efficacy in presence of organic matter, also with hard waters and heavy soils. – Non dependent of pH and is effective under a wide range of temperatures. 4 What is Sportek used for: To disinfect a wide spectrum of surfaces and feeds against: • Virus, • Bacteria, • Mycoplasma, • yeast, • Algae, • Fungus. 5 Where Sportek has been proven: VIRUKILL ES EFECTIVO CONTRA LOS VIRUS DE AVICULTURA, BACTERIAS HONGOS Y GRUPOS DE FAMILIA DE MICOPLASMA Hongos, levadura y EJEMPLOS DE VIRUS EJEMPLOS DE BACTERIAS ejemplos de Grupos de familia Ejemplos de Acinetobacter Ornithobacterium micoplasma patógenos anitratus rhinotracheale Birnaviridae Gumboro (IBD) Bacillus subtilis Pasteurella spores multocida Caliciviridae Feline calicivirus Bacilillus subtilis Pasteurella Aspergillus Níger vegetative volantium Coronaviridae Infectious bronchitis Bordatella spp.
    [Show full text]
  • Diagnosing Maize Diseases in Latin America
    Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S.
    [Show full text]
  • Zea Mays Subsp
    Unclassified ENV/JM/MONO(2003)11 Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 23-Jul-2003 ___________________________________________________________________________________________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2003)11 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 02 July 2003 Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 27 CONSENSUS DOCUMENT ON THE BIOLOGY OF ZEA MAYS SUBSP. MAYS (MAIZE) English - Or. English JT00147699 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format ENV/JM/MONO(2003)11 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No. 5, Consensus Document on General Information concerning the Biosafety of Crop Plants Made Virus Resistant through Coat Protein Gene-Mediated Protection (1996) No. 6, Consensus Document on Information Used in the Assessment of Environmental Applications Involving Pseudomonas (1997) No. 7, Consensus Document on the Biology of Brassica napus L. (Oilseed Rape) (1997) No. 8, Consensus Document on the Biology of Solanum tuberosum subsp. tuberosum (Potato) (1997) No. 9, Consensus Document on the Biology of Triticum aestivum (Bread Wheat) (1999) No. 10, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Glyphosate Herbicide (1999) No. 11, Consensus Document on General Information Concerning the Genes and Their Enzymes that Confer Tolerance to Phosphinothricin Herbicide (1999) No.
    [Show full text]
  • Corn Smuts, RPD No
    report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent.
    [Show full text]
  • Physiologic Specialization Within Sphacelotheca Reiliana (Kühn) Clint
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1960 Physiologic specialization within Sphacelotheca reiliana (Kühn) Clint. on Sorghum and the Biology of its Chlamydospores in the Soil Ibrahim Aziz Al-Sohaily Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Al-Sohaily, Ibrahim Aziz, "Physiologic specialization within Sphacelotheca reiliana (Kühn) Clint. on Sorghum and the Biology of its Chlamydospores in the Soil" (1960). Electronic Theses and Dissertations. 2704. https://openprairie.sdstate.edu/etd/2704 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. '... PHYSIOLOGIC SPECIALIZATION WITHI.N SPHACELOTHECA REILIANA (KUHN) CLINT. ON SORGHUM AND THE BIOLOOY OF ITS CHLAMIDOSPORES I.N THE SOIL BY IBRAHIM AZIZ AL-SOHAILY A thesis suanitted in partial fulfillment of the requirements for the degree Ibctor of Philosophy, Department of Plant Pathology, South Dakota State College of Agriculture and Mechanic Arts December, 1960 '....1 A S ATE COLLEGE LIB 7 , PHYSIOLOOIC SPECIALIZATION WITHIN SPHACELOTHECA REILIANA (Kum�) CLINT. ON SORGHUM AND THE BIOLOGY OF ITS CHLAl1YOOSPORES Ill THE SOIL Abstract IBRAIIDl AZIZ AL-SO'rIAILY Under the �ervision of Professor George Saneniuk Corresponding to the title, the present study was concerned with two aspects. In the first of these, two chlamydosporous sori from corn were collected from California and Washington and 18 chlamydosporous sori from sorghum were collected from California, New Mexico, Texas and India.
    [Show full text]
  • Maize Ear Rot and Associated Mycotoxins in Western
    MAIZE EAR ROT AND ASSOCIATED MYCOTOXINS IN WESTERN KENYA SAMMY AJANGA A thesis submitted in partial fulfilment of the requirements of the university of Greenwich for the Degree of Doctor of Philosophy December 1999 The research reported in this thesis was funded by the united Kingdom department forInternational development (DFID) forthe benefitof developing countries. The views expressed are not necessarily those ofDFID. [Cropprotection programme (R6582)] I certifythat this work has not been accepted in substance forany degree, and is not concurrently submitted for any degree other than of Doctor of Philosophy (PhD) of the university of Greenwich. I also declare that this work is the result of my own investigations except where otherwise stated. ll Dedicated to my family and parents Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr. Rory Hillocks for his excellent supervision, guidance, kindness and encouragement through this study and preparation of this manuscript. I wish to thank Mr. Martin Nagler for his great support, supervision and guidance. His suggestions, comments and constructive criticism and assistance with the laboratory experimental know how is sincerely appreciated. I express my thanks to Dr. Angela Julian for her invaluable suggestions and contributions at the beginning of this study. I would like to register my thanks to the technical staff at KARI-Kakamega, Mr. G. Ambani and J. Awino for their tireless field visits and assistance in data collection. I am also grateful for the teamwork spirit, assistance, co-operation and friendliness accorded to me at all times by the KARI staff and the staff from the Ministry of Agriculture in Bungoma and Nandi Districts.
    [Show full text]
  • ANNOTATED CHECKLIST and KEY for SMUT FUNGI in COLOMBIA* Lista Anotada Y Clave Para Los Ustilaginales De Colombia
    Caldasia 24(1) 2002: 103-119 ANNOTATED CHECKLIST AND KEY FOR SMUT FUNGI IN COLOMBIA* Lista anotada y clave para los ustilaginales de Colombia M. PIEPENBRING Botanisches Institut, J. W. Goethe-Universität, 60054 Frankfurt, Germany. FAX: 0049 69 79824822. [email protected] ABSTRACT 71 species of smut fungi known for Colombia are cited in a checklist together with their host plants, collection data, and some comments. 20 species of smut fungi are reported for the first time for Colombia. The list includes the new species Aurantiosporium colombianum and the new combination Sporisorium concelatum. Ustilago garcesi is recognized as a synonym of Sporisorium panici-leucophaei. Four species of host plants were not yet known to be infected by the respective smut species. The smuts known for Colombia are presented in a key which contains distinctive characteristics of sori and spores. Key words. Aurantiosporium colombianum, Sporisorium concelatum, Sporisorium paspali-notati, Ustilaginales, Ustilago garcesi. RESUMEN 71 especies de carbón conocidas para Colombia se citan en una lista junto con sus plantas hospederas, datos de colección y algunos comentarios. Veinte especies de carbón se reportan por primera vez para Colombia. La lista incluye la especie nueva Aurantiosporium colombianum y la combinación nueva Sporisorium concelatum. Ustilago garcesi es un sinónimo de Sporisorium panici-leucophaei. Cuatro especies de plantas hospederas se citan por primera vez como hospedero de su respectivo carbón. Los carbones conocidos para Colombia se presentan en una clave que incluye las características distinctivas de los soros y de las esporas. Palabras clave. Aurantiosporium colombianum, Sporisorium concelatum, Ustilaginales, Ustilago garcesi. INTRODUCTION they develop usually dark, powdery masses After the rust fungi (Uredinales), the smut of teliospores (“spores”) in sori.
    [Show full text]
  • APP202274 S67A Amendment Proposal Sept 2018.Pdf
    PROPOSAL FORM AMENDMENT Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Applicant Damien Fleetwood Key contact [email protected] www.epa.govt.nz 2 Proposal to amend a new organism approval Important This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0168 3 Proposal to amend a new organism approval 1. Which approval(s) do you wish to amend? APP202274 The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No 2. Which specific amendment(s) do you propose? Addition of following fungal species to those listed in APP202274: Aureobasidium pullulans, Fusarium verticillioides, Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis Aureobasidium pullulans Domain: Fungi Phylum: Ascomycota Class: Dothideomycetes Order: Dothideales Family: Dothioraceae Genus: Aureobasidium Species: Aureobasidium pullulans (de Bary) G.
    [Show full text]