<<

PROPOSAL FORM AMENDMENT

Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996

Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected]

Applicant

Damien Fleetwood

Key contact

[email protected]

www.epa.govt.nz 2

Proposal to amend a new organism approval

Important

This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012.

May 2012 EPA0168 3

Proposal to amend a new organism approval

1. Which approval(s) do you wish to amend?

APP202274

The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No

2. Which specific amendment(s) do you propose?

Addition of following fungal species to those listed in APP202274: pullulans, , Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis

Aureobasidium pullulans Domain: Fungi Phylum: Class: Order: Family: Genus: Aureobasidium Species: (de Bary) G. Arnaud, Annales de l'École Nationale d'Agriculture de Montpellier 16 (1-4): 39 (1918)

Category 2 (spore forming)

Description: The “” Aureobasidium pullulans is an oligotrophic found worldwide. It has been reported growing in a range of habitats from the phyllosphere (Andrews and Kenerley, 1978) to rocks and monuments (Urzì et al., 1999) to hypersaline waters in salterns (Gunde-Cimerman et al., 2000). It holds potential biotechnological importance due to its ability to produce the biodegradable extracellular polysaccharide pullulan (poly-α-1,6-maltotriose) (Zalar et al., 2008), which has been considered a promising biological packaging material (Rekha, M.R. and Sharma, C.P., n.d.; Singh et al., 2008), and also due to its ability to produce a variety of enzymes (Li et al., 2007; Liu et al., 2008; Ma et al., 2007). Genetic modification of A. pullulans is proposed with the goal of producing bioactive compounds of interest at an industrial scale.

Fusarium verticillioides Domain: Fungi

May 2012 EPA0168 4

Proposal to amend a new organism approval

Phylum: Ascomycota Class: Order: Hypocreales Family: Nectriaceae Genus: Fusarium Species: Fusarium verticillioides (Sacc.) Nirenberg, Mitteilungen der Biologischen Bundesanstalt für Land- und Forstwirtschaft 169: 26 (1976)

Category 2 (spore forming)

Description: Fusarium verticillioides (synonym F. moniliforme), “one of the most common -associated fungi”, plays a dual role as a pathogen and an of its host (Brown et al., 2012; Yates et al., 2005). As an important pathogen of the major cereal food crop maize (Zea mays) worldwide, it causes Fusarium seedling disease, stalk rot, and ear rot (Ridenour and Bluhm, 2017), and contaminates infected kernels with a range of such as fumonisins, fusaric acid, and fusarins (Brown et al., 2012; Desjardins, 2006; Munkvold, 2003). However, as a frequent endophyte of maize (Pamphile and Azevedo, 2002; Ridenour and Bluhm, 2017; Wicklow, 1988), F. verticillioides has been reported to deter a number of pathogenic fungi including Fusarium graminearum (Rheeder, 1990; Wyk et al., 1988) and Stenocarpella maydis (Rheeder, 1990), and reduce the disease severity of corn smut caused by Ustilago maydis (Lee et al., 2009; Rodriguez Estrada et al., 2012). We seek to genetically modify F. verticillioides to eliminate pathogenic features, including toxin production, with the ultimate aim of generating a non-pathogenic bioprotective endophyte of maize via gene editing.

Kluyveromyces spp. Domain: Fungi Phylum: Ascomycota Class: Saccharomycetes Order: Saccharomycetales Family: Saccharomycetaceae Genus: Kluyveromyces Species: Kluyveromyces marxianus, Kluyveromyces lactis, Kluyveromyces aestuarii, Kluyveromyces nonfermentans, Kluyveromyces dobzhanskii, Kluyveromyces wickerhamii

Category 2 (spore forming)

Description: Kluyveromyces, part of the Saccharomyces complex, is a yeast genus with 6 species (Kurtzman, 2003). Best known members of this genus are Kluyveromyces marxianus (type species of Kluyveromyces) and K. lactis, both of which have the ability to assimilate and use lactose as a carbon source, and are considered GRAS (Generally Regarded As Safe) in the United States, and QPS (Qualified Presumption of Safety) in the European Union (Lane and Morrissey, 2010). Both species are used for the production of an array of enzymes (Fonseca et al., 2008; van Ooyen et al., 2006) and have been used in molecular genetic research (Dujon et al., 2004; Lane and Morrissey,

May 2012 EPA0168 5

Proposal to amend a new organism approval

2010). Two other Kluyveromyces members, K. aestuarii and K. nonfermentans, have been isolated associated with marine environments (Araujo et al., 1995; Nagahama et al., 1999). K. dobzhanskii is found in diverse substrates globally (Sukhotina et al., 2006), with no reported animal or plant pathogenicity. K. wickerhamii has been suggested as a bio-preservative in the wine industry due to its ability to produce compounds that counteract undesired spoilage yeasts during the wine aging process (Comitini et al., 2004). Our experimentation will focus primarily on K. marxianus and K. lactis, with the objective of assessing their use in large scale heterologous production of a selected bioactive compound.

Sarocladium zeae Domain: Fungi Phylum: Ascomycota Class: Sordariomycetes Order: Hypocreales Family: N/A Genus: Sarocladium Species: Sarocladium zeae (W. Gams & D.R. Sumner) Summerbell, Studies in Mycology 68: 158 (2011)

Category 2 (spore forming)

Description: Sarocladium zeae, previously known as Acremonium zeae (Summerbell, 2005) has been characterized as a protective endophyte of maize (Zea mays). There are no reports of S. zeae causing any mycotoxicosis in cultivated cereals. It is capable of producing the antibiotics pyrrocidines A and B, which inhibit the growth of and Fusarium verticillioides that may produce the mycotoxins aflatoxin and fumonisin respectively, thus gaining recognition as a potential biocontrol agent in maize (Wicklow et al., 2005). The proposed research seeks to enhance and exploit the positive attributes of S. zeae by genetic modification.

Serendipita indica Domain: Fungi Phylum: Basidiomycota Class: Agaricomycetes / Hymenomycetes Order: Sebacinales Family: Serendipitaceae Genus: Serendipita Species: Serendipita indica (Sav. Verma, Aj. Varma, Rexer, G. Kost & P. Franken) M. Weiß, Waller, A. Zuccaro & Selosse (2016)

Category 2 (spore forming)

Description: Serendipita indica (synonym Piriformospora indica), although discovered only a decade ago (Verma et al., 1998; Weiß et al., 2016), is already considered a model to study symbiotic root interactions of fungi due to being an axenically-culturable root endophyte (Varma et al., 1999; Ye et al., 2014). It has a growth-promoting effect

May 2012 EPA0168 6

Proposal to amend a new organism approval on a number of plants, including the commercially valuable crops maize (Zea mays L.) and tobacco (Nicotiana tabaccum L.) (Varma et al., 1999). In barley (Hordeum vulgare), S. indica has been shown to improve yield, induce systemic resistance to pathogens, and abolish the detrimental effect of moderate salt stress (Waller et al., 2005). The proposed research seeks to genetically manipulate this fungus, which has been recommended as a good candidate for growth and yield enhancement of commercial plants.

Umbelopsis isabellina Domain: Fungi Phylum: Mucoromycota Class: Incertae sedis Order: Mucorales Family: Mucoraceae Genus: Umbelopsis Species: Umbelopsis isabellina (Oudem.) W. Gams, Mycological Research 107 (3): 349 (2003)

Category 2 (spore forming)

Description: Umbelopsis isabellina (synonym Mortierella isabellina) belongs to a clade of fungi that are rhizosphere inhabitants commonly associated with woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) (Hoff et al., 2004; Spatafora et al., 2016). In addition to being a root endophyte (Hoff et al., 2004; Terhonen et al., 2014), U. isabellina is an oleaginous fungus, holding industrial importance as a producer of ɣ-linolenic acid (Fakas et al., 2009; Takeda et al., 2014; Zhang et al., 2007). We propose to genetically manipulate standard strains for heterologous production of bioactive compounds.

Ustilago maydis Domain: Fungi Phylum: Basidiomycota Class: Ustilaginomycetes Order: Ustilaginales Family: Ustilaginaceae Genus: Ustilago Species: Ustilago maydis (DC.) Corda, Icones fungorum hucusque cognitorum 5: 3 (1842)

Category 2 (spore forming)

Description: Ustilago maydis is the causative agent of corn smut (Kämper et al., 2006), a disease that is arguably economically unimportant to maize (Zea mays) (Brefort et al., 2009; Dean Ralph et al., 2012). However, the Ustilago- maize system has become a model for biotrophic, plant-pathogenic basidiomycetes due to a variety of characteristics, including, but not limited to that: U. maydis can be grown in axenic culture in defined medium; plant infection can be done under standard laboratory conditions and produces clear disease symptoms (tumours); the infection cycle is completed within a short time period (2 weeks); homologous recombination is efficient; dominant selectable markers

May 2012 EPA0168 7

Proposal to amend a new organism approval are available; a manually annotated and curated genome sequence is available; and transcriptional profiles for the most important developmental fungal stages are available (Basse Christoph W. and Steinberg Gero, 2004; Dean Ralph et al., 2012; Kämper et al., 2006). Gene clusters and genes that encode effectors that influence virulence in U. maydis has also been identified (Kämper et al., 2006; Lanver et al., 2017). We seek to genetically modify U. maydis to eliminate pathogenic features, including toxin production, with the ultimate aim of generating a non- pathogenic bioprotective endophyte of maize via gene editing.

3. Why do you want the approval(s) amended?

To be able to do molecular manipulation of additional fungal taxa for secondary metabolite and endophyte research and development, as for other taxa approved in APP202274.

4. Describe why you believe the proposed amendment(s) are minor in effect, or are needed to correct a minor or technical error

The proposed amendments are only to add taxa with similar biological profile to those previously approved. No changes will be made to modifications performed or proven containment procedures used. The species to be added are RG-2 and share the containment risk profile of other taxa on the existing approval. All experimentation and containment procedures will be identical to other fungi approved in APP202274.

5. Appendices(s) and referenced material (if any) and glossary (if required)

Andrews, J.H., Kenerley, C.M., 1978. The effects of a pesticide program on non-target epiphytic microbial populations of leaves. Can. J. Microbiol. 24, 1058–1072. https://doi.org/10.1139/m78-175

Araujo, F.V. de, Soares, C. a. G., Hagler, A.N., Mendonça-Hagler, L.C., 1995. Ascomycetous yeast communities of marine invertebrates in a Southeast Brazilian mangrove ecosystem. Antonie Van Leeuwenhoek 68, 91–99. https://doi.org/10.1007/BF00873096

Basse Christoph W., Steinberg Gero, 2004. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Mol. Plant Pathol. 5, 83–92. https://doi.org/10.1111/j.1364-3703.2004.00210.x

Brefort, T., Doehlemann, G., Mendoza-Mendoza, A., Reissmann, S., Djamei, A., Kahmann, R., 2009. Ustilago maydis as a Pathogen. Annu. Rev. Phytopathol. 47, 423–445. https://doi.org/10.1146/annurev-phyto-080508- 081923

Brown, D.W., Butchko, R.A.E., Busman, M., Proctor, R.H., 2012. Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides. Fungal Genet. Biol. 49, 521– 532. https://doi.org/10.1016/j.fgb.2012.05.010

May 2012 EPA0168 8

Proposal to amend a new organism approval

Comitini, F., Ingeniis De, J., Pepe, L., Mannazzu, I., Ciani, M., 2004. Pichia anomala and Kluyveromyces wickerhamii killer toxins as new tools against Dekkera/Brettanomyces spoilage yeasts. FEMS Microbiol. Lett. 238, 235–240. https://doi.org/10.1111/j.1574-6968.2004.tb09761.x

Dean Ralph, Van Kan Jan a. L., Pretorius Zacharias A., Hammond‐Kosack Kim E., Di Pietro Antonio, Spanu Pietro D., Rudd Jason J., Dickman Marty, Kahmann Regine, Ellis Jeff, Foster Gary D., 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

Desjardins, A.E., 2006. Fusarium mycotoxins: chemistry, genetics, and biology. Fusarium Mycotoxins Chem. Genet. Biol.

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., de Montigny, J., Marck, C., Neuvéglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J.-M., Beyne, E., Bleykasten, C., Boisramé, A., Boyer, J., Cattolico, L., Confanioleri, F., de Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J.-M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G.-F., Straub, M.-L., Suleau, A., Swennen, D., Tekaia, F., Wésolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin- Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., Souciet, J.-L., 2004. Genome evolution in yeasts. Nature 430, 35–44. https://doi.org/10.1038/nature02579

Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., Aggelis, G., 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33, 573–580. https://doi.org/10.1016/j.biombioe.2008.09.006

Fonseca, G.G., Heinzle, E., Wittmann, C., Gombert, A.K., 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl. Microbiol. Biotechnol. 79, 339–354. https://doi.org/10.1007/s00253-008-1458-6

Gunde-Cimerman, N., Zalar, P., de Hoog, S., Plemenitaš, A., 2000. Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32, 235–240. https://doi.org/10.1111/j.1574- 6941.2000.tb00716.x

Hoff, J.A., Klopfenstein, N.B., McDonald, G.I., Tonn, J.R., Kim, M.S., Zambino, P.J., Hessburg, P.F., Rogers, J.D., Peever, T.L., Carris, L.M., 2004. Fungal in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). For. Pathol. 34, 255–271. https://doi.org/10.1111/j.1439-0329.2004.00367.x

Kämper, J., Kahmann, R., Bölker, M., Ma, L.-J., Brefort, T., Saville, B.J., Banuett, F., Kronstad, J.W., Gold, S.E., Müller, O., Perlin, M.H., Wösten, H.A.B., de Vries, R., Ruiz-Herrera, J., Reynaga-Peña, C.G., Snetselaar, K., McCann, M., Pérez-Martín, J., Feldbrügge, M., Basse, C.W., Steinberg, G., Ibeas, J.I., Holloman, W., Guzman, P., Farman, M., Stajich, J.E., Sentandreu, R., González-Prieto, J.M., Kennell, J.C., Molina, L., Schirawski, J., Mendoza-Mendoza, A., Greilinger, D., Münch, K., Rössel, N., Scherer, M., Vraneš, M., Ladendorf, O., Vincon, V., Fuchs, U., Sandrock, B., Meng, S., Ho, E.C.H., Cahill, M.J., Boyce, K.J., Klose, J., Klosterman, S.J., Deelstra, H.J., Ortiz-Castellanos, L., Li, W., Sanchez-Alonso, P., Schreier, P.H., Häuser-Hahn, I., Vaupel, M., Koopmann, E., Friedrich, G., Voss, H., Schlüter, T., Margolis, J., Platt, D., Swimmer, C., Gnirke, A., Chen, F., Vysotskaia, V., Mannhaupt, G., Güldener, U., Münsterkötter, M., Haase, D., Oesterheld, M., Mewes, H.-W., Mauceli, E.W., DeCaprio, D., Wade, C.M., Butler, J., Young, S., Jaffe, D.B., Calvo, S., Nusbaum, C., Galagan, J., Birren, B.W., 2006. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101. https://doi.org/10.1038/nature05248

May 2012 EPA0168 9

Proposal to amend a new organism approval

Kurtzman, C.P., 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. Fems Yeast Res. 4, 233–245. https://doi.org/10.1016/S1567- 1356(03)00175-2

Lane, M.M., Morrissey, J.P., 2010. Kluyveromyces marxianus: A yeast emerging from its sister’s shadow. Fungal Biol. Rev. 24, 17–26. https://doi.org/10.1016/j.fbr.2010.01.001

Lanver, D., Tollot, M., Schweizer, G., Presti, L.L., Reissmann, S., Ma, L.-S., Schuster, M., Tanaka, S., Liang, L., Ludwig, N., Kahmann, R., 2017. Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol. 15, 409–421. https://doi.org/10.1038/nrmicro.2017.33

Lee, K., Pan, J.J., May, G., 2009. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize. FEMS Microbiol. Lett. 299, 31–37. https://doi.org/10.1111/j.1574-6968.2009.01719.x

Li, H., Chi, Z., Wang, X., Duan, X., Ma, L., Gao, L., 2007. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw starch digestion. Enzyme Microb. Technol. 40, 1006–1012. https://doi.org/10.1016/j.enzmictec.2006.07.036

Liu, Z., Li, X., Chi, Z., Wang, L., Li, J., Wang, X., 2008. Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie Van Leeuwenhoek 94, 245– 255. https://doi.org/10.1007/s10482-008-9237-z

Ma, C., Ni, X., Chi, Z., Ma, L., Gao, L., 2007. Purification and Characterization of an Alkaline Protease from the Marine Yeast Aureobasidium pullulans for Bioactive Peptide Production from Different Sources. Mar. Biotechnol. 9, 343–351. https://doi.org/10.1007/s10126-006-6105-6

Munkvold, G.P., 2003. Epidemiology of Fusarium Diseases and their Mycotoxins in Maize Ears. Eur. J. Plant Pathol. Dordr. 109, 705–713. http://dx.doi.org/10.1023/A:1026078324268

Nagahama, T., Hamamoto, M., Nakase, T., Horikoshi, K., 1999. Kluyveromyces nonfermentans sp nov., a new yeast species isolated from the deep sea. Int. J. Syst. Bacteriol. 49, 1899–1905. https://doi.org/10.1099/00207713-49-4-1899

Pamphile, J.A., Azevedo, J.L., 2002. Molecular characterization of endophytic strains of Fusarium verticillioides (=Fusarium moniliforme) from maize (Zea mays L). World J. Microbiol. Biotechnol. 18, 391–396. https://doi.org/10.1023/A:1015507008786

Rekha, M.R., Sharma, C.P., n.d. Pullulan as a promising biomaterial for biomedical applications: a perspective. [WWW Document]. URL http://www.biomedsearch.com/article/Pullulan-as-promising-biomaterial- biomedical/165363930.html (accessed 3.28.18).

Rheeder, J.P., 1990. Fungal Associations in Corn Kernels and Effects on Germination. Phytopathology 80, 131. https://doi.org/10.1094/Phyto-80-131

Ridenour, J.B., Bluhm, B.H., 2017. The novel fungal‐specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. Mol. Plant Pathol. 18, 513–528. https://doi.org/10.1111/mpp.12414

Rodriguez Estrada, A.E., Jonkers, W., Corby Kistler, H., May, G., 2012. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: An endophyte, a pathogen, and their shared plant host. Fungal Genet. Biol. 49, 578–587. https://doi.org/10.1016/j.fgb.2012.05.001

May 2012 EPA0168 10

Proposal to amend a new organism approval

Singh, R.S., Saini, G.K., Kennedy, J.F., 2008. Pullulan: Microbial sources, production and applications. Carbohydr. Polym. 73, 515–531. https://doi.org/10.1016/j.carbpol.2008.01.003

Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev, I., Gryganskyi, A., James, T.Y., O’Donnell, K., Roberson, R.W., Taylor, T.N., Uehling, J., Vilgalys, R., White, M.M., Stajich, J.E., 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108, 1028–1046. https://doi.org/10.3852/16-042

Sukhotina, N.N., Naumova, E.S., Naumov, G.I., 2006. Molecular polymorphism of the yeast Kluyveromyces dobzhanskii: Geographic populations. Dokl. Biochem. Biophys. 409, 236–240. https://doi.org/10.1134/S1607672906040120

Summerbell, R.C., 2005. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud. Mycol., The Missing Lineages: Phylogeny and ecology of endophytic and other enigmatic root-associated fungi 53, 121–145. https://doi.org/10.3114/sim.53.1.121

Takeda, I., Tamano, K., Yamane, N., Ishii, T., Miura, A., Umemura, M., Terai, G., Baker, S.E., Koike, H., Machida, M., 2014. Genome Sequence of the Mucoromycotina Fungus Umbelopsis isabellina, an Effective Producer of Lipids. Genome Announc. 2, e00071-14. https://doi.org/10.1128/genomeA.00071-14

Terhonen, E., Keriö, S., Sun, H., Asiegbu, F.O., 2014. Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. Fungal Ecol. 9, 17–26. https://doi.org/10.1016/j.funeco.2014.01.003

Urzì, C., De Leo, F., Lo Passo, C., Criseo, G., 1999. Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). J. Microbiol. Methods 36, 95–105. https://doi.org/10.1016/S0167-7012(99)00014-7 van Ooyen, A.J.J., Dekker, P., Huang, M., Olsthoorn, M.M.A., Jacobs, D.I., Colussi, P.A., Taron, C.H., 2006. Heterologous protein production in the yeast Kluyveromyces lactis. Fems Yeast Res. 6, 381–392. https://doi.org/10.1111/j.1567-1364.2006.00049.x

Varma, A., Savita Verma, Sudha, Sahay, N., Bütehorn, B., Franken, P., 1999. Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte. Appl. Environ. Microbiol. 65, 2741–2744.

Verma, S., Varma, A., Rexer, K.H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Butehorn, B., Franken, P., 1998. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90, 896–903. https://doi.org/10.2307/3761331

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., von Wettstein, D., Franken, P., Kogel, K.H., 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U. S. A. 102, 13386–13391. https://doi.org/10.1073/pnas.0504423102

Weiß, M., Waller, F., Zuccaro, A., Selosse, M.-A., 2016. Sebacinales – one thousand and one interactions with land plants. New Phytol. 211, 20–40. https://doi.org/10.1111/nph.13977

Wicklow, D.T., 1988. Patterns of Fungal Association Within Maize Kernels Harvested in North Carolina. Plant Dis. 72, 113. https://doi.org/10.1094/PD-72-0113

May 2012 EPA0168 11

Proposal to amend a new organism approval

Wicklow, D.T., Roth, S., Deyrup, S.T., Gloer, J.B., 2005. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol. Res. 109, 610–618. https://doi.org/10.1017/S0953756205002820

Wyk, P.S.V., Scholtz, D.J., Marasas, W.F.O., 1988. Protection of maize seedlings by Fusarium moniliforme against infection by Fusarium graminearum in the soil. Plant Soil 107, 251–257. https://doi.org/10.1007/BF02370554

Yates, I.E., Widstrom, N.W., Bacon, C.W., Glenn, A., Hinton, D.M., Sparks, D., Jaworski, A.J., 2005. Field performance of maize grown from Fusarium verticillioides-inoculated seed. Mycopathol. Dordr. 159, 65–73. http://dx.doi.org/10.1007/s11046-004-8402-9

Ye, W., Shen, C.-H., Lin, Y., Chen, P.-J., Xu, X., Oelmüller, R., Yeh, K.-W., Lai, Z., 2014. Growth Promotion-Related miRNAs in Oncidium Orchid Roots Colonized by the Endophytic Fungus Piriformospora indica. PLOS ONE 9, e84920. https://doi.org/10.1371/journal.pone.0084920

Zalar, P., Gostinčar, C., de Hoog, G.S., Uršič, V., Sudhadham, M., Gunde-Cimerman, N., 2008. Redefinition of Aureobasidium pullulans and its varieties. Stud. Mycol., Black fungal extremes 61, 21–38. https://doi.org/10.3114/sim.2008.61.02

Zhang, X., Li, M., Wei, D., Wang, X., Chen, X., Xing, L., 2007. Disruption of the Fatty Acid Δ6-Desaturase Gene in the Oil-Producing Fungus Mortierella isabellina by Homologous Recombination. Curr. Microbiol. 55, 128. https://doi.org/10.1007/s00284-006-0641-1

6. Signature of applicant or person authorised to sign on behalf of applicant

I request the Authority to waive any legislative information requirements (i.e. concerning the information that shall be supplied in my application) that my application does not meet (tick if applicable).

I have completed this application to the best of my ability and, as far as I am aware, the information I have provided in this application form is correct.

25 June 2018

Signature Date

May 2012 EPA0168