IDENTIFICATION and COMPARISION of FUNGI from DIFFERENT DEPTHS of ANCIENT GLACIAL ICE Angira Patel a Thesis Submitted to the Grad

Total Page:16

File Type:pdf, Size:1020Kb

IDENTIFICATION and COMPARISION of FUNGI from DIFFERENT DEPTHS of ANCIENT GLACIAL ICE Angira Patel a Thesis Submitted to the Grad IDENTIFICATION AND COMPARISION OF FUNGI FROM DIFFERENT DEPTHS OF ANCIENT GLACIAL ICE Angira Patel A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE MAY 2006 Committee: Dr. Scott Rogers, Advisor Dr. Stan Smith Dr. Dawn Hentges ii ABSTRACT Dr. Scott Rogers, Advisor Glacial ice serves as a unique preservation matrix for contemporary and ancient microorganisms. The main objective of this study was to evaluate and test the existence of the fungi encased in ancient glacial ice of Antarctica and Greenland. PCR (polymerase chain reaction) amplification was used to isolate the DNA followed by DNA sequencing to obtain the DNA sequences of the ancient microorganisms. Most of the sequences obtained from ancient microbes were similar to the contemporary fungi. Few fungi cultured were approximately 10,000 years old. Microorganisms isolated from ancient glacial ice have undergone repeated phases of evolutionary changes, such as irradiation, freezing and thawing, and in the process they have been archiving various biogenic materials over the period of time. These microorganisms entrapped in glacial ice provide valuable information about the evolutionary processes, as well as the rich biodiversity during ancient times. Hence, various species of microorganisms may appear to be extinct, but factually they might be dormant, entrapped in ice for millions of years and are capable to reappear amidst suitable conditions. The results of this study can be used in future to relate the biological, biogeochemical and genetic composition to a unique and well characterized geologic history of the fungi entrapped in ancient glacial ice. iii ACKNOWLEDGMENT I would like to express my deep gratitude to Dr. Scott Rogers for accepting me as a graduate student pursuing Master of Science in Biological Sciences, and guiding me through the research and thesis work. I would like to thank Dr. Stan Smith and Dr. Dawn Hentges for serving on my committee and providing me with valuable suggestions and guidelines to continue my research. My sincere appreciation to Dr.Vincent Theraisnathan for providing constant support and guidelines during my entire research. The development of this manuscript would not have been possible without him. I would also like to take this opportunity to thank Lorena Harris, a wonderful friend and companion, for helping me out in every way she could and sometimes going out of her way to get me through the difficult times. My heartfelt appreciation to my husband Jignesh Ladhawala for providing me constant motivation and encouragement which carried me through the hardest times I faced in the past two years. I also extend my warmest thanks to my parents and my darling younger sister for their support during my stay away from them. iv TABLE OF CONTENTS Page INTRODUCTION ................................................................................................................. 1 HYPOTHESES AND AIMS ................................................................................................. 16 MATERIALS AND METHODS........................................................................................... 18 RESULTS……………. ......................................................................................................... 25 DISCUSSION........................................................................................................................ 30 REFERENCES................................................................................................................................................. 33 APPENDIX ………………….............................................................................................. 38 A) The sequence alignment of fungal ITS regions. Fungal sequences from ice core samples are compared with contemporary fungal species from GENBANK v LIST OF TABLES TABLE Page 1 Fungal isolates and locations from Antarctic and Greenland ice cores.......... 19 2 Comparison of fungal sequences from BLAST searches of GENBANK ................. 26 LIST OF FIGURES FIGURE Page 1 Agarose gel depicting a PCR product compared with DNA ladder in a 1 % agarose gel………………………..…….... ...…………………………………………………………. 10 2 Schematic representation of polymerase chain reaction (PCR) amplification………. 13 3 Schematic diagram of eukaryotic ribosomal RNA gene.……………………….............. 15 4 Phylogenetic tree derived from rDNA sequence data from ice core cultures and contemporary taxa. .....…………………………………………………………. 29 1 INTRODUCTION Glacial ice as a reservoir of microorganism The close association between glaciers and microbial communities on Earth has been well documented (Ma et al. 1998, 2000; Rogers et al. 1999). Microorganisms in glaciers were reported as early as 1775 by a Russian scientist (Egorowa 1931). Studies have shown the presence of microbial communities on surface snow near the South Pole (Carpenter et al 2000). Bacterial isolates have been recovered from glaciers in Western China (Christner et al 2003). Considerable microbial communities are present in the unfrozen sub-glaciers of Southern Hemisphere in New Zealand (Foght et al 2004). Microorganisms entrapped in glaciers thousands of years ago yield valuable information about the diverse biological history on Earth. With the course of time, glaciers have entrapped numerous forms of life, including pathogenic microorganisms, forming successive layers of age-specific ancient glacial ice. The extreme temperature and lack of free water in glaciers are the chief factors which ensure the preservation of the trapped biological inclusions from degradation. A worldwide ice age on the Earth for about 10 million years or more, probably completely eradicated any possible source of life (Williams et al 1998) except microbes. The extreme environments of glaciers in polar regions arrests the biochemical and physiological processes that can deteriorate the preserved microorganisms. The viability of microbes in the frigid climactic conditions of glaciers has been possible because of “Cryopreservation”. It is because of this that the dormant microbes can become active and viable, thus, advancing our understanding of life processes on Earth. Cryogenic processes protect the microbial life from mechanical or physical damage. Upon melting, the microbes may resume their metabolic activity, which presents significant 2 implications on the study of past climates and microbial life. Not only the viable, but even the dead microbes from ancient glacial ice are of profound significance due to the preservation of their cellular structures and molecular components. The highly stable ecosystem within glaciers (due to long periods of constant low temperature) can aid in the studies of the evolution of life on Earth, longevity mechanisms of microbes, and possibly in the studies of microbes in the extraterrestrial environments. This is due to the preservation of living cells, tissues and perhaps even complex life forms for thousands to millions of years. Glaciers are dynamic in nature, and it is because of this characteristic they also hold the potential to record events of the Earth’s history. The oldest glacial ice known to hold viable microbes is over 750,000 years old, found in glaciers of Western China (Christner et al 2003). However, ice that is well over one million years old exists in Antarctica and now is being tested for the presence of viable microbes, and permafrost many millions of years old has been reported to contain viable microbes. The sensitivity of the glaciers in recording climactic changes is demonstrated in the form of an identifiable pattern in glaciers, in that each layer is distinct to a particular year or vintage. The inhospitable dry environment of the glaciers has harbored a rich population of microorganisms, dense and diverse in species. The glaciers thus, represent an outstanding example of ongoing geological phenomena representing stages of the Earth's annual changes. Microbial communities, preserved in glacial ice for centuries, provide evidence for the possibility that similar life forms may thrive in similar environments on Mars or on Jupiter’s moon Europa (Skidmore et al 2000). The low temperature of permafrost and glacial ice is analogous to the cryogenic environments found on many planets (Paerl and Priscu 1998). The 3 growing scientific evidence, which suggests the survival of microbes under extreme conditions (Abyzov 1993, Catranis and Starmer 1991, Ma et al 1997), opens up the possibility of life beyond Earth, as well as interplanetary transport of some microbes. Comparisons of different environmental periods can provide representations of the development of microbes during their evolutionary histories. Biogeoscientific studies on the glacial ice present a significant step in determining the remnant and existing microbial diversity and past climatic histories. Thus, glacial ice represents an ideal source for both contemporary and ancient microbial life. The preservation of microbial life forms (including prokaryotes and eukaryotes) provides clues to the potential for life in Earth’s harshest environments and on other planets. Additionally, this realization necessitates a novel perspective on different ecosystems on Earth and on other planets. Microbial life, one of the ancient life-forms on Earth, is diverse and adept in acclimatizing to hostile environments. Microbes are amazing since the adverse conditions of glaciers present environmental conditions that are extremely
Recommended publications
  • Diverse Ecological Roles Within Fungal Communities in Decomposing Logs
    FEMS Microbiology Ecology, 91, 2015, fiv012 doi: 10.1093/femsec/fiv012 Advance Access Publication Date: 6 February 2015 Research Article RESEARCH ARTICLE Diverse ecological roles within fungal communities Downloaded from https://academic.oup.com/femsec/article-abstract/91/3/fiv012/436629 by guest on 06 August 2020 in decomposing logs of Picea abies Elisabet Ottosson1, Ariana Kubartova´ 1, Mattias Edman2,MariJonsson¨ 3, Anders Lindhe4, Jan Stenlid1 and Anders Dahlberg1,∗ 1Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden, 2Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 3Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden and 4Armfeltsgatan 16, SE-115 34 Stockholm, Sweden ∗ Corresponding author: Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden. Tel: +46-70-3502745; E-mail: [email protected] One sentence summary: A Swedish DNA-barcoding study revealed 1910 fungal species in 38 logs of Norway spruce and not only wood decayers but also many mycorrhizal, parasitic other saprotrophic species. Editor: Ian C Anderson ABSTRACT Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level.
    [Show full text]
  • Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
    mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Isolation of Fungal Cellulase Gene Transcript from Penicillium Spinulosum
    Isolation of fungal cellulase gene transcript from Penicillium spinulosum A Master’s Thesis Presented to the faculty of The College of Science and Mathematics Colorado State University – Pueblo In Partial Fulfillment of the requirements for the degree of Master of Science in Biochemistry By Srivatsan Parthasarathy Colorado State University – Pueblo May, 2018 ACKNOWLEDGEMENTS I would like to thank my research mentor Dr. Sandra Bonetti for guiding me through my research thesis and helping me in difficult times during my Master’s degree. I would like to thank Dr. Dan Caprioglio for helping me plan my experiments and providing the lab space and equipment. I would like to thank the department of Biology and Chemistry for supporting me through assistantships and scholarships. I would like to thank my wife Vaishnavi Nagarajan for the emotional support that helped me complete my degree at Colorado State University – Pueblo. III TABLE OF CONTENTS 1) ACKNOWLEDGEMENTS …………………………………………………….III 2) TABLE OF CONTENTS …………………………………………………….....IV 3) ABSTRACT……………………………………………………………………..V 4) LIST OF FIGURES……………………………………………………………..VI 5) LIST OF TABLES………………………………………………………………VII 6) INTRODUCTION………………………………………………………………1 7) MATERIALS AND METHODS………………………………………………..24 8) RESULTS………………………………………………………………………..50 9) DISCUSSION…………………………………………………………………….77 10) REFERENCES…………………………………………………………………...99 11) THESIS PRESENTATION SLIDES……………………………………………...113 IV ABSTRACT Cellulose and cellulosic materials constitute over 85% of polysaccharides in landfills. Cellulose is also the most abundant organic polymer on earth. Cellulose digestion yields simple sugars that can be used to produce biofuels. Cellulose breaks down to form compounds like hemicelluloses and lignins that are useful in energy production. Industrial cellulolysis is a process that involves multiple acidic and thermal treatments that are harsh and intensive.
    [Show full text]
  • APP202274 S67A Amendment Proposal Sept 2018.Pdf
    PROPOSAL FORM AMENDMENT Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Applicant Damien Fleetwood Key contact [email protected] www.epa.govt.nz 2 Proposal to amend a new organism approval Important This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0168 3 Proposal to amend a new organism approval 1. Which approval(s) do you wish to amend? APP202274 The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No 2. Which specific amendment(s) do you propose? Addition of following fungal species to those listed in APP202274: Aureobasidium pullulans, Fusarium verticillioides, Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis Aureobasidium pullulans Domain: Fungi Phylum: Ascomycota Class: Dothideomycetes Order: Dothideales Family: Dothioraceae Genus: Aureobasidium Species: Aureobasidium pullulans (de Bary) G.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Lactic Acid Bacteria As Bioprotective Agents Against Foodborne Pathogens and Spoilage Microorganisms in Fresh Fruit and Vegetabl
    LACTIC ACID BACTERIA AS BIOPROTECTIVE AGENTS AGAINST FOODBORNE PATHOGENS AND SPOILAGE MICROORGANISMS IN FRESH FRUITS AND VEGETABLES Rosalia TRIAS MANSILLA ISBN: 978-84-691-5683-4 Dipòsit legal: GI-1099-2008 Universitat de Girona Doctoral Thesis Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables Rosalia Trias Mansilla 2008 Departament d’Enginyeria Química, Agrària i Tecnologia Agroalimentària Institut de Tecnologia Agroalimentària Doctoral Thesis Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables Memòria presentada per Rosalia Trias Mansilla, inscrita al programa de doctorat de Ciències Experimentals i de la Salut, itinerari Biotecnologia, per optar al grau de Doctor per la Universitat de Girona Rosalia Trias Mansilla 2008 Lluís Bañeras Vives, professor titular de l’àrea de Microbiologia del Departament de Biologia, i Esther Badosa Romañó , professora de l’àrea de Producció Vegetal del Departament d’Enginyeria Química, Agrària i Tecnologia Agroalimentària, ambdós de la Universitat de Girona CERTIFIQUEN Que la llicenciada en Biologia Rosalia Trias Mansilla ha dut a terme, sota la seva direcció, el treball amb el títol “Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables”, que presenta en aquesta memòria la qual constitueix la seva Tesi per a optar al grau de Doctor per la Universitat de Girona. I per
    [Show full text]
  • Penicillium Expansum
    Acknowledgements THÈSE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par Institut National Polytechnique De Toulouse Discipline ou spécialité : Ingénieries microbiennes et enzymatique Présentée et soutenue par Muhammad Hussnain SIDDIQUE Le 05/11/2012 Study of the biosynthesis pathway of the geosmin in Penicillium expansum JURY M. AZIZ Aziz Maître de Conférences, Université de Reims Champagne-Ardenne M. HAFIDI Mohamed Professeur, Université de Bordeaux Mme. MATHIEU Florence Professeur, Université de Toulouse M. LEBRIHI Ahmed Professeur, Université de Toulouse Ecole doctorale : École doctorale: Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries Unité de recherche : LGC UMR 5503 (CNRS/UPS/INPT) Directeur de Thèse : Pr. LEBRIHI Ahmed (INP-ENSAT) Co-Directeur de Thèse : Dr. LIBOZ Thierry (INP-ENSAT) 1 Acknowledgements Acknowledgements First of all I am thankful to the almighty ALLAH, whose blessings are always with me. I offer my humble thanks from the deepest core of my heart to Holy Prophet Muhammad (Peace be upon him) who is forever a torch of guidance and knowledge for humanity as a whole. I have the deepest sense of gratitude to my Saain Gee Soofi Nisar Ahmad Dogar Naqshbandi Khaliqi who has always been a source of elevation in my whole life. My sincere appreciation goes to my supervisor Professor Ahmed LEBRIHI and co- supervisor Doctor Thierry LIBOZ, whose scientific approach, careful reading and constructive comments were valuable. Their timely and efficient contributions helped me to shape my research work into its final form and I express my sincerest appreciation for their assistance in any way that I may have asked.
    [Show full text]
  • Characterisation of Fungal Contamination Sources for Use in Quality Management of Cheese Production Farms in Korea
    Open Access Asian-Australas J Anim Sci Vol. 33, No. 6:1002-1011 June 2020 https://doi.org/10.5713/ajas.19.0553 pISSN 1011-2367 eISSN 1976-5517 Characterisation of fungal contamination sources for use in quality management of cheese production farms in Korea Sujatha Kandasamy1,a, Won Seo Park1,a, Jayeon Yoo1, Jeonghee Yun1, Han Byul Kang1, Kuk-Hwan Seol1, Mi-Hwa Oh1, and Jun Sang Ham1,* * Corresponding Author: Jun Sang Ham Objective: This study was conducted to determine the composition and diversity of the fungal Tel: +82-63-238-7366, Fax: +82-63-238-7397, E-mail: [email protected] flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. 1 Animal Products Research and Development Methods: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically a Both the authors contributed equally to this work. distinct isolates were identified using sequencing of internal transcribed spacer region. ORCID Results: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per Sujatha Kandasamy hazard analysis critical control point regulation. A total of 986 fungal isolates identified https://orcid.org/0000-0003-1460-449X and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Won Seo Park https://orcid.org/0000-0003-2229-3169 Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant.
    [Show full text]
  • Culture Inventory
    For queries, contact the SFA leader: John Dunbar - [email protected] Fungal collection Putative ID Count Ascomycota Incertae sedis 4 Ascomycota Incertae sedis 3 Pseudogymnoascus 1 Basidiomycota Incertae sedis 1 Basidiomycota Incertae sedis 1 Capnodiales 29 Cladosporium 27 Mycosphaerella 1 Penidiella 1 Chaetothyriales 2 Exophiala 2 Coniochaetales 75 Coniochaeta 56 Lecythophora 19 Diaporthales 1 Prosthecium sp 1 Dothideales 16 Aureobasidium 16 Dothideomycetes incertae sedis 3 Dothideomycetes incertae sedis 3 Entylomatales 1 Entyloma 1 Eurotiales 393 Arthrinium 2 Aspergillus 172 Eladia 2 Emericella 5 Eurotiales 2 Neosartorya 1 Paecilomyces 13 Penicillium 176 Talaromyces 16 Thermomyces 4 Exobasidiomycetes incertae sedis 7 Tilletiopsis 7 Filobasidiales 53 Cryptococcus 53 Fungi incertae sedis 13 Fungi incertae sedis 12 Veroneae 1 Glomerellales 1 Glomerella 1 Helotiales 34 Geomyces 32 Helotiales 1 Phialocephala 1 Hypocreales 338 Acremonium 20 Bionectria 15 Cosmospora 1 Cylindrocarpon 2 Fusarium 45 Gibberella 1 Hypocrea 12 Ilyonectria 13 Lecanicillium 5 Myrothecium 9 Nectria 1 Pochonia 29 Purpureocillium 3 Sporothrix 1 Stachybotrys 3 Stanjemonium 2 Tolypocladium 1 Tolypocladium 2 Trichocladium 2 Trichoderma 171 Incertae sedis 20 Oidiodendron 20 Mortierellales 97 Massarineae 2 Mortierella 92 Mortierellales 3 Mortiererallales 2 Mortierella 2 Mucorales 109 Absidia 4 Backusella 1 Gongronella 1 Mucor 25 RhiZopus 13 Umbelopsis 60 Zygorhynchus 5 Myrmecridium 2 Myrmecridium 2 Onygenales 4 Auxarthron 3 Myceliophthora 1 Pezizales 2 PeZiZales 1 TerfeZia 1
    [Show full text]
  • Diversity and Bioprospection of Fungal Community Present in Oligotrophic Soil of Continental Antarctica
    Extremophiles (2015) 19:585–596 DOI 10.1007/s00792-015-0741-6 ORIGINAL PAPER Diversity and bioprospection of fungal community present in oligotrophic soil of continental Antarctica Valéria M. Godinho · Vívian N. Gonçalves · Iara F. Santiago · Hebert M. Figueredo · Gislaine A. Vitoreli · Carlos E. G. R. Schaefer · Emerson C. Barbosa · Jaquelline G. Oliveira · Tânia M. A. Alves · Carlos L. Zani · Policarpo A. S. Junior · Silvane M. F. Murta · Alvaro J. Romanha · Erna Geessien Kroon · Charles L. Cantrell · David E. Wedge · Stephen O. Duke · Abbas Ali · Carlos A. Rosa · Luiz H. Rosa Received: 20 November 2014 / Accepted: 16 February 2015 / Published online: 26 March 2015 © Springer Japan 2015 Abstract We surveyed the diversity and capability of understanding eukaryotic survival in cold-arid oligotrophic producing bioactive compounds from a cultivable fungal soils. We hypothesize that detailed further investigations community isolated from oligotrophic soil of continen- may provide a greater understanding of the evolution of tal Antarctica. A total of 115 fungal isolates were obtained Antarctic fungi and their relationships with other organisms and identified in 11 taxa of Aspergillus, Debaryomyces, described in that region. Additionally, different wild pristine Cladosporium, Pseudogymnoascus, Penicillium and Hypo- bioactive fungal isolates found in continental Antarctic soil creales. The fungal community showed low diversity and may represent a unique source to discover prototype mol- richness, and high dominance indices. The extracts of ecules for use in drug and biopesticide discovery studies. Aspergillus sydowii, Penicillium allii-sativi, Penicillium brevicompactum, Penicillium chrysogenum and Penicil- Keywords Antarctica · Drug discovery · Ecology · lium rubens possess antiviral, antibacterial, antifungal, Fungi · Taxonomy antitumoral, herbicidal and antiprotozoal activities.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]