Ice Ic Without Stacking Disorder by Evacuating Hydrogen from Hydrogen Hydrate

Total Page:16

File Type:pdf, Size:1020Kb

Ice Ic Without Stacking Disorder by Evacuating Hydrogen from Hydrogen Hydrate ARTICLE https://doi.org/10.1038/s41467-020-14346-5 OPEN Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate Kazuki Komatsu 1*, Shinichi Machida2, Fumiya Noritake3,4, Takanori Hattori5, Asami Sano-Furukawa5, Ryo Yamane1, Keishiro Yamashita1 & Hiroyuki Kagi1 Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, 1234567890():,; but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih. 1 Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 2 Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan. 3 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan. 4 Computational Engineering Applications Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. 5 J- PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan. *email: [email protected] NATURE COMMUNICATIONS | (2020) 11:464 | https://doi.org/10.1038/s41467-020-14346-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14346-5 ater freezes below 0 °C at ambient pressure, ordinarily 400 b to ice Ih with a hexagonal stacking sequence. However, VII W ” “ it is also known to produce ice Ic nominally with a C sII 0 C2 cubic stacking sequence under certain conditions1, and its exis- – 300 a c d tence in Earth’s atmosphere2 4, or in comets5,6 is debated. “Ice g C ” fi fi 7 V 1 Ic , or called as cubic ice, was rst identi ed in 1943 by König , lh who used electron microscopy to study the condensation of ice III VI /K 200 VIII from water vapor to a cold substrate. Subsequently, many dif- T II ferent routes to “ice Ic” have been established, such as the dis- sociation of gas hydrates, warming amorphous ices or annealing high-pressure ices recovered at ambient pressure, freezing of μ-or 100 ƒ e nano-confined water (see ref. 1). Despite the numerous studies on “ice Ic”, its structure has not been fully verified, because the dif- “ ” 0 fraction patterns of ice Ic show signatures of stacking 1,8,9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 disorder , and ideal ice Ic without stacking disorder had not 10 “ ” p/GPa been formed until very recently . This is the reason why ice Ic is double-quoted1, and it is recently proposed that the stacking- 8 disordered ice should not be termed as ice Ic, but as ice Isd . “ ” “Amorphous-like” Ice Ic (ice Isd) is known as a metastable form of ice at atmospheric pressure. But, recent computer simulations suggest state that even ice Isd could be the stable phase for crystallites up to 11 sizes of at least 100,000 molecules . The stability of stacking- Ice I C disordered ices is extremely important because of the ubiquitous c 2 nature of ice. Stacking-disordered ice can be characterized by the Fig. 1 Phase diagram of hydrogen hydrate and ice with experimental degree of ice cubicity, χ, which is defined as the fraction of cubic paths in this study. Phase boundaries for hydrogen hydrates and ices are stacking1,8,9,12,13. Until very recently, the highest cubicity was drawn using thick blue lines and thin black lines, respectively. Experimental 8,14 limited to ~80% , but it has been reported that ideal ice Ic with p-T paths are shown as black arrows in alphabetical sequence from a to g. 10 100% cubicity has been obtained by annealing ice XVII . The structural models for a high-pressure form of hydrogen hydrate, C2, 15 16,17 Recently new ice polymorphs, ice XVI and ice XVII are and ice Ic are schematically drawn with a newly found amorphous-like state obtained by degassing gas molecules from neon and hydrogen as an intermediate transitional state from C2 to ice Ic. Red, white, and light hydrates, respectively. From these findings, we hypothesized that blue balls in the structure model depict oxygen, hydrogen in water ideal ice Ic could be obtained by degassing hydrogen from molecules, and hydrogen in guest molecules, respectively. Note that – hydrogen hydrate, C2. Five different phases in the H2 H2O sys- hydrogens in water molecules are disordered, so that two of four possible tem have been reported to date (see ref. 18): Among them, neu- sites surrounding one oxygen are actually occupied. tron diffraction experiments have never been conducted for the higher-pressure phases, C1 and C2, probably due to the technical difficulty in loading hydrogen into a pressure vessel, or com- 32e site (x, x, x)). The calculated diffraction pattern was in good pressing it to pressures in the giga-pascal range. To synthesize agreement with the observed one, as shown in Fig. 2a. The refined ideal ice Ic, decompression under low-temperature conditions for structural parameters are listed in Supplementary Table 1. degassing is necessary, which is also not straight-forward using The sample was then cooled from 300 K to 100 K at around conventional pressure-temperature controlling systems. We have 3 GPa (path d → e). In the diffraction pattern taken at e in Fig. 1, developed a Mito system19, and have overcome these technical peaks from solid deuterium (phase I) appeared at around 200 K difficulties (see details in Methods). (Supplementary Fig. 2), which is consistent with the known Here we present the neutron and X-ray diffraction results melting curve of hydrogen20. This observation indicates that fluid showing ice Ic without stacking disorder, obtained from degassing deuterium coexisted with C2 through the path from b to d. hydrogen hydrate C2. We also report an unexpected amorphous- The C2 phase persisted at pressures at least as low as 0.5 GPa → like state in the transformation from C2 to ice Ic, and the thermal on decompression at 100 K (path e f). However, surprisingly, stability of ice Ic. the Bragg peaks of C2 mostly disappeared at 0.2 GPa (Fig. 3). This phenomenon is totally unexpected, because the host structure of gas hydrates retains its framework in the previous cases with ice Results XVI15 and XVII16. The sample was further decompressed to The route to obtain ice Ic. We started by using a mixture of D2O 0 GPa and evacuated using a turbo-molecular-pump. The broad and MgD2, which is an internal deuterium source, to synthesize peaks corresponding to ice Ic appeared at this stage. The peak hydrogen hydrate, C2. After loading the mixture into a pressure- disappearance of C2 before the appearance of ice Ic was temperature controlling system, MgD2 was decomposed by reproducibly observed in at least two separate neutron runs and heating at 403 K and at ca. 0 GPa for 1 h through a nominal one X-ray diffraction run for a hydrogenated sample (Supple- + → + + reaction of MgD2 3D2O Mg(OD)2 2D2 D2O (at b in mentary Fig. 3). In the neutron diffraction pattern at 0.2 GPa, Fig. 1, the observed neutron diffraction patterns are shown in except for the Bragg peaks from Mg(OD)2, only a broad peak was Supplementary Fig. 1). Then, the samples were cooled to room observed at around d = 3.75 Å, which was between the peak temperature (at c in Fig. 1) and typically compressed up to positions of 111 of C2 and that of Ice Ic (Fig. 3). This fact implies ~3 GPa until a C2 phase was observed (at d in Fig. 1). that this state does not have long-range periodicity like a normal The neutron diffraction pattern for the C2 phase obtained at crystal, but has only local-ordering like an amorphous or nano- 3.3 GPa and 300 K (at d in Fig. 1) was analyzed by the Rietveld crystal. Considering the observed d-spacing, this amorphous-like method. We adopted a splitting site model for guest D atoms form would be an intermediate transition state from C2 to ice Ic, located at the 48f site (x, 1/8, 1/8), and the host structure was which forms while hydrogen molecules are partially degassed. It is 9 identical to ice Ic (Fd 3m, O at the 8b site (3/8, 3/8, 3/8), D at the highly likely that this apparent amorphization is derived from the 2 NATURE COMMUNICATIONS | (2020) 11:464 | https://doi.org/10.1038/s41467-020-14346-5 | www.nature.com/naturecommunications NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14346-5 ARTICLE Ice I a c Iobs Mg(OD)2 C2 Icalc Ice Ic Ih Ibkg Mg(OD)2 Ih I -I * obs calc 250 K Mg(OD)2 240 K 200 K C 2 160 K Intensity/a.u.
Recommended publications
  • Proton Ordering and Reactivity of Ice
    1 Proton ordering and reactivity of ice Zamaan Raza Department of Chemistry University College London Thesis submitted for the degree of Doctor of Philosophy September 2012 2 I, Zamaan Raza, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 For Chryselle, without whom I would never have made it this far. 4 I would like to thank my supervisors, Dr Ben Slater and Prof Angelos Michaelides for their patient guidance and help, particularly in light of the fact that I was woefully unprepared when I started. I would also like to express my gratitude to Dr Florian Schiffmann for his indispens- able advice on CP2K and quantum chemistry, Dr Alexei Sokol for various discussions on quantum mechanics, Dr Dario Alfé for his incredibly expensive DMC calculations, Drs Jiri Klimeš and Erlend Davidson for advice on VASP, Matt Watkins for help with CP2K, Christoph Salzmann for discussions on ice, Dr Stefan Bromley for allowing me to work with him in Barcelona and Drs Aron Walsh, Stephen Shevlin, Matthew Farrow and David Scanlon for general help, advice and tolerance. Thanks and also apologies to Stephen Cox, with whom I have collaborated, but have been unable to contribute as much as I should have. Doing a PhD is an isolating experience (more so in the Kathleen Lonsdale building), so I would like to thank my fellow students and friends for making it tolerable: Richard, Tiffany, and Chryselle. Finally, I would like to acknowledge UCL for my funding via a DTA and computing time on Legion, the Materials Chemistry Consortium (MCC) for computing time on HECToR and HPC-Europa2 for the opportunity to work in Barcelona.
    [Show full text]
  • Ice Ic” Werner F
    Extent and relevance of stacking disorder in “ice Ic” Werner F. Kuhsa,1, Christian Sippela,b, Andrzej Falentya, and Thomas C. Hansenb aGeoZentrumGöttingen Abteilung Kristallographie (GZG Abt. Kristallographie), Universität Göttingen, 37077 Göttingen, Germany; and bInstitut Laue-Langevin, 38000 Grenoble, France Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved November 15, 2012 (received for review June 16, 2012) “ ” “ ” A solid water phase commonly known as cubic ice or ice Ic is perfectly cubic ice Ic, as manifested in the diffraction pattern, in frequently encountered in various transitions between the solid, terms of stacking faults. Other authors took up the idea and liquid, and gaseous phases of the water substance. It may form, attempted to quantify the stacking disorder (7, 8). The most e.g., by water freezing or vapor deposition in the Earth’s atmo- general approach to stacking disorder so far has been proposed by sphere or in extraterrestrial environments, and plays a central role Hansen et al. (9, 10), who defined hexagonal (H) and cubic in various cryopreservation techniques; its formation is observed stacking (K) and considered interactions beyond next-nearest over a wide temperature range from about 120 K up to the melt- H-orK sequences. We shall discuss which interaction range ing point of ice. There was multiple and compelling evidence in the needs to be considered for a proper description of the various past that this phase is not truly cubic but composed of disordered forms of “ice Ic” encountered. cubic and hexagonal stacking sequences. The complexity of the König identified what he called cubic ice 70 y ago (11) by stacking disorder, however, appears to have been largely over- condensing water vapor to a cold support in the electron mi- looked in most of the literature.
    [Show full text]
  • Glaciers and Their Significance for the Earth Nature - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface.
    [Show full text]
  • Thermodynamic Stability of Hydrogen Hydrates of Ice Ic and II Structures
    PHYSICAL REVIEW B 82, 144105 ͑2010͒ Thermodynamic stability of hydrogen hydrates of ice Ic and II structures Lukman Hakim, Kenichiro Koga, and Hideki Tanaka Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima, Kitaku, Okayama 700-8530, Japan ͑Received 6 August 2010; published 13 October 2010͒ The occupancy of hydrogen inside the voids of ice Ic and ice II, which gives two stable hydrogen hydrate compounds at high pressure and temperature, has been examined using a hybrid grand-canonical Monte Carlo simulation in wide ranges of pressure and temperature. The simulation reproduces the maximum hydrogen-to- water molar ratio and gives a detailed description on the hydrogen influence toward the stability of ice structures. A simple theoretical model, which reproduces the simulation results, provides a global phase dia- gram of two-component system in which the phase transitions between various phases can be predicted as a function of pressure, temperature, and chemical composition. A relevant thermodynamic potential and statistical-mechanical ensemble to describe the filled-ice compounds are discussed, from which one can derive two important properties of hydrogen hydrate compounds: the isothermal compressibility and the quantification of thermodynamic stability in term of the chemical potential. DOI: 10.1103/PhysRevB.82.144105 PACS number͑s͒: 64.70.Ja I. INTRODUCTION relative to other water-hydrogen composite phases in a wide range of thermodynamic conditions has been scarcely ex- Storage of hydrogen has been actively investigated to plored. On the other hand, constructing a global phase dia- meet the demand on environmentally clean and efficient gram is a tedious task from experimental view point, consid- hydrogen-based fuel.1 A search for practical hydrogen- ering the number of thermodynamic states to be explored.
    [Show full text]
  • Searching for Crystal-Ice Domains in Amorphous Ices
    PHYSICAL REVIEW MATERIALS 2, 075601 (2018) Searching for crystal-ice domains in amorphous ices Fausto Martelli,1,2,* Nicolas Giovambattista,3,4 Salvatore Torquato,2 and Roberto Car2 1IBM Research, Hartree Centre, Daresbury WA4 4AD, United Kingdom 2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 3Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA 4The Graduate Center of the City University of New York, New York, New York 10016, USA (Received 7 May 2018; published 2 July 2018) Weemploy classical molecular dynamics simulations to investigate the molecular-level structure of water during the isothermal compression of hexagonal ice (Ih) and low-density amorphous (LDA) ice at low temperatures. In both cases, the system transforms to high-density amorphous ice (HDA) via a first-order-like phase transition. We employ a sensitive local order metric (LOM) [F. Martelli et al., Phys. Rev. B 97, 064105 (2018)] that can discriminate among different crystalline and noncrystalline ice structures and is based on the positions of the oxygen atoms in the first- and/or second-hydration shell. Our results confirm that LDA and HDA are indeed amorphous, i.e., they lack polydispersed ice domains. Interestingly, HDA contains a small number of domains that are reminiscent of the unit cell of ice IV,although the hydrogen-bond network (HBN) of these domains differs from the HBN of ice IV. The presence of ice-IV-like domains provides some support to the hypothesis that HDA could be the result of a detour on the HBN rearrangement along the Ih-to-ice-IV pressure-induced transformation.
    [Show full text]
  • Modeling the Ice VI to VII Phase Transition
    Modeling the Ice VI to VII Phase Transition Dawn M. King 2009 NSF/REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman July 31, 2009 Abstract Ice (solid water) is found in a number of different structures as a function of temperature and pressure. This project focuses on two forms: Ice VI (space group P 42=nmc) and Ice VII (space group Pn3m). An interesting feature of the structural phase transition from VI to VII is that both structures are \self clathrate," which means that each structure has two sublattices which interpenetrate each other but do not directly bond with each other. The goal is to understand the mechanism behind the phase transition; that is, is there a way these structures distort to become the other, or does the transition occur through the breaking of bonds followed by a migration of the water molecules to the new positions? In this project we model the transition first utilizing three dimensional visualization of each structure, then we mathematically develop a common coordinate system for the two structures. The last step will be to create a phenomenological Ising-like spin model of the system to capture the energetics of the transition. It is hoped the spin model can eventually be studied using either molecular dynamics or Monte Carlo simulations. 1 Overview of Ice The known existence of many solid states of water provides insight into the complexity of condensed matter in the universe. The familiarity of ice and the existence of many structures deem ice to be interesting in the development of techniques to understand phase transitions.
    [Show full text]
  • Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River
    water Article Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River Renata Graf Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University in Poznan, Bogumiła Krygowskiego 10 str., 61-680 Poznan, Poland; [email protected] Received: 6 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: The identification of changes in the ice phenomena (IP) in rivers is a significant element of analyses of hydrological regime features, of the risk of occurrence of ice jam floods, and of the ecological effects of river icing (RI). The research here conducted aimed to estimate the temporal and spatial changes in the IP in a lowland river in the temperate climate (the Note´cRiver, Poland, Central Europe), depending on air temperature (TA) and water temperature (TW) during the multi-annual period of 1987–2013. Analyses were performed of IP change trends in three RI phases: freezing, when there appears stranded ice (SI), frazil ice (FI), or stranded ice with frazil ice (SI–FI); the phase of stable ice cover (IC) and floating ice (FoI); and the phase of stranded ice with floating ice (SI–FoI), frazil ice with floating ice (FI–FoI), and ice jams (IJs). Estimation of changes in IP in connection with TA and TW made use of the regression model for count data with a negative binomial distribution and of the zero-inflated negative binomial model. The analysis of the multi-annual change tendency of TA and TW utilized a non-parametric Mann–Kendall test for detecting monotonic trends with Yue–Pilon correction (MK–YP).
    [Show full text]
  • Multi-Year Arctic Sea Ice Classification Using Quikscat
    Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science David G. Long, Chair Richard W. Christiansen Brian A. Mazzeo Department of Electrical and Computer Engineering Brigham Young University August 2011 Copyright © 2011 Aaron M. Swan All Rights Reserved ABSTRACT Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan Department of Electrical and Computer Engineering Master of Science Long term trends in Arctic sea ice are of particular interest with regard to global tem- perature, climate change, and industry. This thesis uses microwave scatterometer data from QuikSCAT and radiometer data to analyze intra- and interannual trends in first-year and multi-year Arctic sea ice. It develops a sea ice type classification method. The backscatter of first-year and multi-year sea ice are clearly identifiable and are observed to vary seasonally. Using an average of the annual backscatter trends obtained from QuikSCAT, a classification of multi-year ice is obtained which is dependent on the day of the year (DOY). Validation of the classification method is done using regional ice charts from the Canadian Ice Service. Differences in ice classification are found to be less than 6% during the winters of 06-07, 07-08, and the end of 2008. Anomalies in the distribution of sea ice backscatter from year to year suggest a reduction in multi-year ice cover between 2003 and 2009 and an approximately equivalent increase in first-year ice cover.
    [Show full text]
  • Interpolar Transnational Art Science States
    ART I N AN TA R C T I C A , A SE R I E S O F CO N F E R E N C E S … P. 4 @rt Outsiders September 2008 - 9th year www.art-outsiders.com Tel : +33 (0)1 44 78 75 00 Maison Européenne de la Photographie 5-7 rue de Fourcy – 75 004 Paris M° Saint-Paul ou Pont-Marie / Bus 67, 69, 96 ou 76 I N T E R P O L A R A RT 24 September 2008 - 12 October 2008 with Marko Peljhan and Annick Bureaud, Bureau d’études, Ewen Chardronnet, Andrea Polli, Catherine Rannou. The extreme in the centre by Annick Bure a u d rom the very first polar expeditions, artists have contributed to the imaginary surrounding the FEarth’s “extremities” and their work has fed a sense of the sublime and of romanticism. Such a romantic vision endures, fuelled by adventurers of the extreme, who set out crossing, alone, the antarctic continent, the touching (and a n t h ropomorphic) image of penguins, the deadly beauty of the environment conveyed by thousands of images of “icy white”, and by the fact that Antarctica is now threatened by global warming and our pollution, that this last huge, supposedly virg i n , territory is in danger. To create in or about Antarctica today is as much a political as an artistic act, just as it was in the 19th or early 20th century. Except today the continent faces quite a diff e r ent reality and our approaches are p r obably more varied, more contradictory, more complex; burdened with numerous clichés all the I-TASC - The Arctic Perspective more enduring for being mostly true.
    [Show full text]
  • Mechanical Characterization Via Full Atomistic Simulation: Applications to Nanocrystallized Ice
    Mechanical Characterization via Full Atomistic Simulation: Applications to Nanocrystallized Ice A thesis presented By Arvand M.H. Navabi to The Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science in the field of Civil Engineering Northeastern University Boston, Massachusetts August, 2016 Submitted to Prof. Steven W. Cranford Acknowledgements I acknowledge generous support from my thesis advisor Dr. Steven W. Cranford whose encouragement and availability was crucial to this thesis and also my parents for allowing me to realize my own potential. The simulations were made possible by LAMMPS open source program. Visualization has been carried out using the VMD visualization package. 3 Abstract This work employs molecular dynamic (MD) approaches to characterize the mechanical properties of nanocrystalline materials via a full atomistic simulation using the ab initio derived ReaxFF potential. Herein, we demonstrate methods to efficiently simulate key mechanical properties (ultimate strength, stiffness, etc.) in a timely and computationally inexpensive manner. As an illustrative example, the work implements the described methodology to perform full atomistic simulation on ice as a material platform, which — due to its complex behavior and phase transitions upon pressure, heat exchange, energy transfer etc. — has long been avoided or it has been unsuccessful to ascertain its mechanical properties from a molecular perspective. This study will in detail explain full atomistic MD methods and the particulars required to correctly simulate crystalline material systems. Tools such as the ReaxFF potential and open-source software package LAMMPS will be described alongside their fundamental theories and suggested input methods to simulate further materials, encompassing both periodic and finite crystalline models.
    [Show full text]
  • Structure of Ice VI Barclay Kamb
    KAMB-B 65-0860 Structure of Ice VI Barclay Kamb Repriated frent Science. Oct.her 8, IH.'). Vel. 150, Xe. 3693, ...." .i-", powder data, to search the capillaries for crystals suitable for single-crystal study, and to orient and collect com­ plete diffraction data from such crys­ tals. Ice VI, prepared and examined in this way, gives a powder pattern (Ta­ ble 2) in general agreement with data obtained at high pressure and also with data from other experiments on quenched samples (6). Single crystals are easily obtained and are found to be tetragonal with unit cell dimensions a = 6.27 ± 0.01 A, c = 5.79 ± 0.01 Structure of Ice VI A. The diffraction patterns show extinc­ tions for reflections of type hkO with Abstract. Ice VI, a high-pressure form of density 1.31 g cm-J , has a tetrag­ h + k odd and for hhl with I odd. The onal cell of dimensions a = 6.27 A, c = 5.79 A, space group P4jnmc, each space group is thus uniquely determined cell colltaining ten water lIlolecules. The structure' is built up of hydrogen-bonded as P4~ / nmc (7) . The foregoing cell c//{lins of water molecules that are analogs of the tectosilicate chains out of which accounts well for the observed powder the fibrous zeolites are constructed. The chains in ice VI are linked laterally' to spacings (Table 2). one another to form an 0 en; zeolite-like framework. The cavities in this r ne­ Recently single crystal data for ice war ' are filled with a second fralllewor I enflca Wit 1 t 7e rst.
    [Show full text]
  • © Cambridge University Press Cambridge
    Cambridge University Press 978-0-521-80620-6 - Creep and Fracture of Ice Erland M. Schulson and Paul Duval Index More information Index 100-year wave force, 336 friction and fracture, 289, 376 60° dislocations, 17, 82, 88 indentation failure, 345 microstructure, 45, 70, 237, 255, 273 abrasion, 337 multiscale fracture and frictional accommodation processes of basal slip, 165 sliding, 386 acoustic emission, 78, 90, 108 nested envelopes, 377 across-column cleavage cracks, 278 pressure–area relationship, 349, 352 across-column confinement, 282 S2 growth texture, 246, 273 across-column cracks, 282, 306, SHEBA faults, 371 across-column loading, 275 SHEBA stress states, 377 across-column strength, 246, 249, 275 Arctic Ocean, 1, 45, 190, 361 activation energy, 71, 84, 95, 111, 118, 131 aspect ratio, 344 activation volume, 114, 182 atmospheric ice, 219, 221, 241, 243 activity of pyramidal slip systems, 158 atmospheric icing, 31 activity of slip systems, 168 atmospheric impurities, 113 adiabatic heating, 291, 348 atomic packing factor, 9 adiabatic softening, 291 audible report, 240 affine self-consistent model, 160 avalanches, 206 air bubbles, 38 air-hydrate crystals, 37 bands, 89 albedo, 363 basal activity, 162 aligned first-year sea ice, 246 basal dislocations, 77 along-column confinement, 282 basal planes, 214, along-column confining stress, 282, basal screw dislocations, 77, 87 along-column strength, 244, 275 basal shear bands, 163 ammonia dihydrate, 181 basal slip, 18, 77, 127, 228 ammonia–water system, 186 basal slip lines, 77 amorphous forms
    [Show full text]