Proton Ordering and Reactivity of Ice

Total Page:16

File Type:pdf, Size:1020Kb

Proton Ordering and Reactivity of Ice 1 Proton ordering and reactivity of ice Zamaan Raza Department of Chemistry University College London Thesis submitted for the degree of Doctor of Philosophy September 2012 2 I, Zamaan Raza, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 For Chryselle, without whom I would never have made it this far. 4 I would like to thank my supervisors, Dr Ben Slater and Prof Angelos Michaelides for their patient guidance and help, particularly in light of the fact that I was woefully unprepared when I started. I would also like to express my gratitude to Dr Florian Schiffmann for his indispens- able advice on CP2K and quantum chemistry, Dr Alexei Sokol for various discussions on quantum mechanics, Dr Dario Alfé for his incredibly expensive DMC calculations, Drs Jiri Klimeš and Erlend Davidson for advice on VASP, Matt Watkins for help with CP2K, Christoph Salzmann for discussions on ice, Dr Stefan Bromley for allowing me to work with him in Barcelona and Drs Aron Walsh, Stephen Shevlin, Matthew Farrow and David Scanlon for general help, advice and tolerance. Thanks and also apologies to Stephen Cox, with whom I have collaborated, but have been unable to contribute as much as I should have. Doing a PhD is an isolating experience (more so in the Kathleen Lonsdale building), so I would like to thank my fellow students and friends for making it tolerable: Richard, Tiffany, and Chryselle. Finally, I would like to acknowledge UCL for my funding via a DTA and computing time on Legion, the Materials Chemistry Consortium (MCC) for computing time on HECToR and HPC-Europa2 for the opportunity to work in Barcelona. Abstract Cubic ice Ic is a rarely-observed ambient pressure phase of water implicated in the catal- ysis of atmospheric reactions. It forms between 160 K1 and 243 K2, in droplets smaller than 5 µm3 in diameter. It is metastable with respect to hexagonal ice Ih and is poorly characterised both experimentally and theoretically. The proton ordered ground state 4 for cubic ice has I 41 md symmetry and is named ice XIc . We find that the ground state proton ordered configurations of hexagonal and cubic ice, XI and XIc are isoenergetic. The surface energy of ice is strongly dependent on proton ordering. The “striped” configuration5 has the lowest surface energy, and clustering of dangling OH bonds in- creases the surface energy. Cubic ice is has a surface energy approximately 10% higher than hexagonal, and is more reactive. Elementary steps on the ice surface reconstruct to lower the step formation energy; under-coordinated molecules on the step edge relax to form an additional hydrogen bond with the lower terrace. We examine five different steps: the low energy A-and B1-steps and the high energy B1∗-, B2 and B2∗-steps. Different growth rates for these steps combined with a proton disorder are in part responsible for the isotropic bilayer growth of ice observed by Sazaki et al 6. Glycolaldehyde, the simplest sugar, has been observed recently in the interstellar medium7;8 and in a solar-type protostar9. We evaluate two potential mechanisms for its formation on icy dust grains at 10 K, finding that activation barriers are greatly reduced by the ice surface, and that the most likely route is a reaction between H2COH and HCO radicals, which are formed by the sequential hydrogenation of carbon monoxide. 5 Contents Abstract 5 Contents 6 List of Figures 10 Nomenclature 19 1 Introduction 20 1.1 Why study ice? . 20 2 A review of water ice 25 2.1 The crystalline structure of ice . 25 2.2 Cubic ice . 28 2.2.1 Structure: a stacking disordered phase? . 28 2.2.2 Phase transition to hexagonal ice . 28 2.2.3 Cubic ice in nature . 29 2.2.4 Formation conditions . 31 2.2.5 Attempts to prepare pure cubic ice . 32 2.3 Proton ordering in bulk ice . 33 2.4 Modelling ice using empirical potentials . 36 2.5 Ice XI . 40 6 CONTENTS 7 2.6 Generating ice simulation cells . 42 2.7 Proton ordering in ices Ih and Ic . 44 2.8 Proton ordering in the ice surface . 50 3 Theoretical background 54 3.1 Introduction . 54 3.2 General polyelectronic systems . 55 3.3 Hartree-Fock theory (HF) . 57 3.4 Open shell systems: unrestricted Hartree-Fock (UHF) . 62 3.5 Electron correlation and post-Hartree-Fock methods . 65 3.5.1 Configuration interaction (CI) . 67 3.5.2 Møller-Plesset perturbation theory . 71 3.5.3 The coupled cluster method . 75 3.6 Density Functional Theory (DFT) . 78 3.7 Quantum Monte Carlo (QMC) . 86 3.7.1 Variational Monte Carlo . 87 3.7.2 Diffusion Monte Carlo . 87 3.7.3 Some QMC caveats . 88 3.8 A note on nomenclature . 89 3.9 Dispersion corrections in DFT . 89 3.9.1 DFT-D . 90 3.9.2 Van der Waals DFT (vdw-DFT) . 91 3.10 The Gaussian and plane waves (GPW) representation . 92 3.10.1 The Gaussian representation . 92 3.10.2 The plane wave representation . 94 3.10.3 The GPW representation . 95 3.11 Using DFT to model hydrogen bonding in water and ice . 97 CONTENTS 8 4 Proton ordering in bulk ice 100 4.1 Introduction . 100 4.2 Methodology and computational setup . 101 4.2.1 Constructing unit cells . 101 4.2.2 Setup for DFT calculations . 102 4.2.3 Setup for DMC calculations . 104 4.2.4 Setup for empirical forcefield calculations . 104 4.3 Results and discussion . 105 4.3.1 Hexagonal ice . 108 4.3.2 Cubic ice . 111 4.3.3 Estimating the Ic Ih transition energy . 111 ! 4.4 Summary and conclusions . 115 5 The ice surface 120 5.1 Introduction . 120 5.2 Model and methods . 124 5.2.1 Generating proton ordered cubic ice slabs . 124 5.2.2 Surface energy of ices Ih and Ic . 127 5.2.3 Step formation energies of ices Ih and Ic . 130 5.3 Results and discussion . 132 5.3.1 Surface energy of ices Ih and Ic . 132 5.3.2 Steps on striped surfaces . 134 5.3.2.1 A, B1 and B2 steps . 134 5.3.2.2 B1∗ and B2∗ steps.......................... 137 5.3.2.3 Formation energies of different step types . 142 5.3.3 Steps on disordered surfaces . 143 5.3.3.1 Vacancy energies for disordered steps . 146 5.3.3.2 Molecular dipoles of step edge molecules . 147 CONTENTS 9 5.4 Summary and conclusions . 152 6 Formation of interstellar glycolaldehyde 154 6.1 Introduction . 154 6.2 The nature of interstellar dust grains . 155 6.3 Reactions on icy mantles . 158 6.4 The effect of grain surface morphology . 159 6.5 Proposed glycolaldehyde formation mechanisms . 161 6.6 The characteristic (cross-over) temperature . 165 6.7 Gas phase reactions . 166 6.7.1 Choice of density functional for surface reactions . 168 6.7.2 Model and methods . 170 6.7.3 Results and discussion . 174 6.8 Reactions on hydroxylated silicate nanoclusters . 179 6.8.1 Introduction . 179 6.8.2 Model and methods . 180 6.8.3 The nudged elastic band (NEB) method . 182 6.8.4 Results and discussion . 185 6.9 Reactions on icy mantles . 188 6.9.1 Introduction . 188 6.9.2 Model and methods . 189 6.9.3 Results and discussion . 191 6.10 Summary and conclusions . 203 7 Conclusions and future work 204 7.1 Conclusions . 204 7.2 Future work . 206 Bibliography 208 List of Figures 1.1 Photographs of hexagonal ice Ih crystals10, and the crystalline structure of orientationally ordered hexagonal ice. 21 1.2 Stacking of bilayers in hexagonal and cubic ices. The vertical is normal to the (0001) basal surface of hexagonal ice, and the (111) surface of cubic ice. Only oxygen atoms are shown, connected by hydrogen bonds indi- cated by blue lines. The coloured boxes indicate the sequences that have translational symmetry in the z-direction (green: A, pink: B, orange: C). It can be seen that hexagonal ice is characterised by a mirror plane, whereas cubic ice contains straight “channels” that run diagonally from this perspective. 22 1.3 The phase diagram of water11. There is considerable uncertainty in the temperature bounds of the regime of interest for ice Ic, highlighted with aredbox.......................................... 23 2.1 (Taken from Hirsch et al.12) Hydrogen bond types in a tetrahedral ice lattice - h-cis (A), h-trans (B), c-cis (C) c-trans (D). 27 13 2.2 A 22◦ halo around the sun . These are caused by light refracted by large quantities of hexagonal ice crystals in the upper atmosphere. Scheiner’s halo appears at 28◦, has been observed very infrequently and is evidence of octahedral cubic ice crystals. 30 10 LIST OF FIGURES 11 2.3 The six canonical orientations of a water molecule in a tetrahedral ice lattice. ..
Recommended publications
  • Ice Ic” Werner F
    Extent and relevance of stacking disorder in “ice Ic” Werner F. Kuhsa,1, Christian Sippela,b, Andrzej Falentya, and Thomas C. Hansenb aGeoZentrumGöttingen Abteilung Kristallographie (GZG Abt. Kristallographie), Universität Göttingen, 37077 Göttingen, Germany; and bInstitut Laue-Langevin, 38000 Grenoble, France Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved November 15, 2012 (received for review June 16, 2012) “ ” “ ” A solid water phase commonly known as cubic ice or ice Ic is perfectly cubic ice Ic, as manifested in the diffraction pattern, in frequently encountered in various transitions between the solid, terms of stacking faults. Other authors took up the idea and liquid, and gaseous phases of the water substance. It may form, attempted to quantify the stacking disorder (7, 8). The most e.g., by water freezing or vapor deposition in the Earth’s atmo- general approach to stacking disorder so far has been proposed by sphere or in extraterrestrial environments, and plays a central role Hansen et al. (9, 10), who defined hexagonal (H) and cubic in various cryopreservation techniques; its formation is observed stacking (K) and considered interactions beyond next-nearest over a wide temperature range from about 120 K up to the melt- H-orK sequences. We shall discuss which interaction range ing point of ice. There was multiple and compelling evidence in the needs to be considered for a proper description of the various past that this phase is not truly cubic but composed of disordered forms of “ice Ic” encountered. cubic and hexagonal stacking sequences. The complexity of the König identified what he called cubic ice 70 y ago (11) by stacking disorder, however, appears to have been largely over- condensing water vapor to a cold support in the electron mi- looked in most of the literature.
    [Show full text]
  • Arxiv:2004.08465V2 [Cond-Mat.Stat-Mech] 11 May 2020
    Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations Pablo M. Piaggi1 and Roberto Car2 1)Department of Chemistry, Princeton University, Princeton, NJ 08544, USA a) 2)Department of Chemistry and Department of Physics, Princeton University, Princeton, NJ 08544, USA (Dated: 13 May 2020) We study the phase equilibrium between liquid water and ice Ih modeled by the TIP4P/Ice interatomic potential using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice Ih-liquid free energy differences from simulations that visit reversibly both phases. The reversible interconversion is achieved by introducing a static bias potential as a function of an order parameter. The order parameter was tailored to crystallize the hexagonal diamond structure of oxygen in ice Ih. We analyze the effect of the system size on the ice Ih-liquid free energy differences and we obtain a melting temperature of 270 K in the thermodynamic limit. This result is in agreement with estimates from thermodynamic integration (272 K) and coexistence simulations (270 K). Since the order parameter does not include information about the coordinates of the protons, the spontaneously formed solid configurations contain proton disorder as expected for ice Ih. I. INTRODUCTION ture forms in an orientation compatible with the simulation box9. The study of phase equilibria using computer simulations is of central importance to understand the behavior of a given model. However, finding the thermodynamic condition at II. CRYSTAL STRUCTURE OF ICE Ih which two or more phases coexist is particularly hard in the presence of first order phase transitions.
    [Show full text]
  • Glaciers and Their Significance for the Earth Nature - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface.
    [Show full text]
  • Thermodynamic Stability of Hydrogen Hydrates of Ice Ic and II Structures
    PHYSICAL REVIEW B 82, 144105 ͑2010͒ Thermodynamic stability of hydrogen hydrates of ice Ic and II structures Lukman Hakim, Kenichiro Koga, and Hideki Tanaka Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima, Kitaku, Okayama 700-8530, Japan ͑Received 6 August 2010; published 13 October 2010͒ The occupancy of hydrogen inside the voids of ice Ic and ice II, which gives two stable hydrogen hydrate compounds at high pressure and temperature, has been examined using a hybrid grand-canonical Monte Carlo simulation in wide ranges of pressure and temperature. The simulation reproduces the maximum hydrogen-to- water molar ratio and gives a detailed description on the hydrogen influence toward the stability of ice structures. A simple theoretical model, which reproduces the simulation results, provides a global phase dia- gram of two-component system in which the phase transitions between various phases can be predicted as a function of pressure, temperature, and chemical composition. A relevant thermodynamic potential and statistical-mechanical ensemble to describe the filled-ice compounds are discussed, from which one can derive two important properties of hydrogen hydrate compounds: the isothermal compressibility and the quantification of thermodynamic stability in term of the chemical potential. DOI: 10.1103/PhysRevB.82.144105 PACS number͑s͒: 64.70.Ja I. INTRODUCTION relative to other water-hydrogen composite phases in a wide range of thermodynamic conditions has been scarcely ex- Storage of hydrogen has been actively investigated to plored. On the other hand, constructing a global phase dia- meet the demand on environmentally clean and efficient gram is a tedious task from experimental view point, consid- hydrogen-based fuel.1 A search for practical hydrogen- ering the number of thermodynamic states to be explored.
    [Show full text]
  • Herbert Ponting; Picturing the Great White South
    City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2014 Herbert Ponting; Picturing the Great White South Maggie Downing CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/328 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] The City College of New York Herbert Ponting: Picturing the Great White South Submitted in partial fulfillment of the requirements for the degree of Master of Arts of the City College of the City University of New York. by Maggie Downing New York, New York May 2014 Dedicated to my Mother Acknowledgments I wish to thank, first and foremost my advisor and mentor, Prof. Ellen Handy. This thesis would never have been possible without her continuing support and guidance throughout my career at City College, and her patience and dedication during the writing process. I would also like to thank the rest of my thesis committee, Prof. Lise Kjaer and Prof. Craig Houser for their ongoing support and advice. This thesis was made possible with the assistance of everyone who was a part of the Connor Study Abroad Fellowship committee, which allowed me to travel abroad to the Scott Polar Research Institute in Cambridge, UK. Special thanks goes to Moe Liu- D'Albero, Director of Budget and Operations for the Division of the Humanities and the Arts, who worked the bureaucratic college award system to get the funds to me in time.
    [Show full text]
  • Searching for Crystal-Ice Domains in Amorphous Ices
    PHYSICAL REVIEW MATERIALS 2, 075601 (2018) Searching for crystal-ice domains in amorphous ices Fausto Martelli,1,2,* Nicolas Giovambattista,3,4 Salvatore Torquato,2 and Roberto Car2 1IBM Research, Hartree Centre, Daresbury WA4 4AD, United Kingdom 2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 3Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA 4The Graduate Center of the City University of New York, New York, New York 10016, USA (Received 7 May 2018; published 2 July 2018) Weemploy classical molecular dynamics simulations to investigate the molecular-level structure of water during the isothermal compression of hexagonal ice (Ih) and low-density amorphous (LDA) ice at low temperatures. In both cases, the system transforms to high-density amorphous ice (HDA) via a first-order-like phase transition. We employ a sensitive local order metric (LOM) [F. Martelli et al., Phys. Rev. B 97, 064105 (2018)] that can discriminate among different crystalline and noncrystalline ice structures and is based on the positions of the oxygen atoms in the first- and/or second-hydration shell. Our results confirm that LDA and HDA are indeed amorphous, i.e., they lack polydispersed ice domains. Interestingly, HDA contains a small number of domains that are reminiscent of the unit cell of ice IV,although the hydrogen-bond network (HBN) of these domains differs from the HBN of ice IV. The presence of ice-IV-like domains provides some support to the hypothesis that HDA could be the result of a detour on the HBN rearrangement along the Ih-to-ice-IV pressure-induced transformation.
    [Show full text]
  • Modeling the Ice VI to VII Phase Transition
    Modeling the Ice VI to VII Phase Transition Dawn M. King 2009 NSF/REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman July 31, 2009 Abstract Ice (solid water) is found in a number of different structures as a function of temperature and pressure. This project focuses on two forms: Ice VI (space group P 42=nmc) and Ice VII (space group Pn3m). An interesting feature of the structural phase transition from VI to VII is that both structures are \self clathrate," which means that each structure has two sublattices which interpenetrate each other but do not directly bond with each other. The goal is to understand the mechanism behind the phase transition; that is, is there a way these structures distort to become the other, or does the transition occur through the breaking of bonds followed by a migration of the water molecules to the new positions? In this project we model the transition first utilizing three dimensional visualization of each structure, then we mathematically develop a common coordinate system for the two structures. The last step will be to create a phenomenological Ising-like spin model of the system to capture the energetics of the transition. It is hoped the spin model can eventually be studied using either molecular dynamics or Monte Carlo simulations. 1 Overview of Ice The known existence of many solid states of water provides insight into the complexity of condensed matter in the universe. The familiarity of ice and the existence of many structures deem ice to be interesting in the development of techniques to understand phase transitions.
    [Show full text]
  • Evasive Ice X and Heavy Fermion Ice XII: Facts and Fiction About High
    Physica B 265 (1999) 113—120 Evasive ice X and heavy fermion ice XII: facts and fiction about high-pressure ices W.B. Holzapfel* Fachbereich Physik, Universita( t-GH Paderborn, D-33095 Paderborn, Germany Abstract Recent theoretical and experimental results on the structure and dynamics of ice in wide regions of pressure and temperature are compared with earlier models and predictions to illustrate the evasive nature of ice X, which was originally introduced as completely ordered form of ice with short single centred hydrogen bonds isostructural CuO. Due to the lack of experimental information on the proton ordering in the pressure and temperature region for the possible occurrence of ice X, effects of thermal and quantum delocalization are discussed with respect to the shape of the phase diagram and other structural models consistent with present optical and X-ray data for this region. Theoretical evidences for an additional orthorhombic modification (ice XI) at higher pressures are confronted with various reasons supporting a delocalization of the protons in the form of a heavy fermion system with very unique physical properties characterizing this fictitious new phase of ice XII. ( 1999 Elsevier Science B.V. All rights reserved. Keywords: Ices; Hydrogen bonds; Phase diagram; Equation of states 1. Introduction tunnelling [2]. Detailed Raman studies on HO and DO ice VIII to pressures in the range of The first in situ X-ray studies on HO and DO 50 GPa [3] revealed the expected softening in the ice VII under pressures up to 20 GPa [1] together molecular stretching modes and led to the deter- with a simple twin Morse potential (TMP) model mination of a critical O—H—O bond length of " for protons or deuterons in hydrogen bonds [2] R# 232 pm, where the central barrier of the effec- allowed almost 26 years ago first speculations tive double-well potential should disappear [4].
    [Show full text]
  • Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River
    water Article Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River Renata Graf Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University in Poznan, Bogumiła Krygowskiego 10 str., 61-680 Poznan, Poland; [email protected] Received: 6 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: The identification of changes in the ice phenomena (IP) in rivers is a significant element of analyses of hydrological regime features, of the risk of occurrence of ice jam floods, and of the ecological effects of river icing (RI). The research here conducted aimed to estimate the temporal and spatial changes in the IP in a lowland river in the temperate climate (the Note´cRiver, Poland, Central Europe), depending on air temperature (TA) and water temperature (TW) during the multi-annual period of 1987–2013. Analyses were performed of IP change trends in three RI phases: freezing, when there appears stranded ice (SI), frazil ice (FI), or stranded ice with frazil ice (SI–FI); the phase of stable ice cover (IC) and floating ice (FoI); and the phase of stranded ice with floating ice (SI–FoI), frazil ice with floating ice (FI–FoI), and ice jams (IJs). Estimation of changes in IP in connection with TA and TW made use of the regression model for count data with a negative binomial distribution and of the zero-inflated negative binomial model. The analysis of the multi-annual change tendency of TA and TW utilized a non-parametric Mann–Kendall test for detecting monotonic trends with Yue–Pilon correction (MK–YP).
    [Show full text]
  • Novel Hydraulic Structures and Water Management in Iran: a Historical Perspective
    Novel hydraulic structures and water management in Iran: A historical perspective Shahram Khora Sanizadeh Department of Water Resources Research, Water Research Institute������, Iran Summary. Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. This paper intends to acquaint the readers with some of the famous Iranian historical water monuments. Keywords. Historic – Water – Monuments – Iran – Qanat – Ab anbar – Dam. Structures hydrauliques et gestion de l’eau en Iran : une perspective historique Résumé. L’Iran est situé dans une région aride, semi-aride. La répartition défavorable des eaux de surface a conduit la population iranienne à créer de meilleures conditions d’utilisation d’une ressource aussi vitale que l’eau pour faire face à la demande et aux fluctuations des débits saisonniers annuels. Ce travail vise à faire connaître certains des monuments hydrauliques historiques parmi les plus fameux de l’Iran. Mots-clés. Historique – Eau – Monuments – Iran – Qanat – Ab anbar – Barrage. I - Introduction Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. Iran is located in the south of Asia between 44º 02´ and 63º 20´ eastern longitude and 25º 03´ to 39º 46´ northern latitude. The country covers an area of about 1.648 million km2.
    [Show full text]
  • 11Th International Conference on the Physics and Chemistry of Ice, PCI
    11th International Conference on the Physics and Chemistry of Ice (PCI-2006) Bremerhaven, Germany, 23-28 July 2006 Abstracts _______________________________________________ Edited by Frank Wilhelms and Werner F. Kuhs Ber. Polarforsch. Meeresforsch. 549 (2007) ISSN 1618-3193 Frank Wilhelms, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, D-27568 Bremerhaven, Germany Werner F. Kuhs, Universität Göttingen, GZG, Abt. Kristallographie Goldschmidtstr. 1, D-37077 Göttingen, Germany Preface The 11th International Conference on the Physics and Chemistry of Ice (PCI- 2006) took place in Bremerhaven, Germany, 23-28 July 2006. It was jointly organized by the University of Göttingen and the Alfred-Wegener-Institute (AWI), the main German institution for polar research. The attendance was higher than ever with 157 scientists from 20 nations highlighting the ever increasing interest in the various frozen forms of water. As the preceding conferences PCI-2006 was organized under the auspices of an International Scientific Committee. This committee was led for many years by John W. Glen and is chaired since 2002 by Stephen H. Kirby. Professor John W. Glen was honoured during PCI-2006 for his seminal contributions to the field of ice physics and his four decades of dedicated leadership of the International Conferences on the Physics and Chemistry of Ice. The members of the International Scientific Committee preparing PCI-2006 were J.Paul Devlin, John W. Glen, Takeo Hondoh, Stephen H. Kirby, Werner F. Kuhs, Norikazu Maeno, Victor F. Petrenko, Patricia L.M. Plummer, and John S. Tse; the final program was the responsibility of Werner F. Kuhs. The oral presentations were given in the premises of the Deutsches Schiffahrtsmuseum (DSM) a few meters away from the Alfred-Wegener-Institute.
    [Show full text]
  • Anomalous Pressure-Induced Transition(S) in Ice XI
    PHYSICAL REVIEW LETTERS week ending VOLUME 92, NUMBER 10 12 MARCH 2004 Anomalous Pressure-Induced Transition(s) in Ice XI Koichiro Umemoto,1,2 Renata M. Wentzcovitch,1,2 Stefano Baroni,1 and Stefano de Gironcoli1 1SISSA–Scuola Internazionale Superiore di Studi Avanzati and INFM-DEMOCRITOS National Simulation Center, I-34014 Trieste, Italy 2Department of Chemical Engineering and Material Science and Minnesota Supercomputer Institute for Digital Simulation and Advanced Computation, University of Minnesota, Minneapolis, Minnesota 55455, USA (Received 23 May 2003; published 12 March 2004) The effects of pressure on the structure of ice XI — an ordered form of the phase of ice Ih, which is known to amorphize under pressure — are investigated theoretically using density-functional theory. We find that pressure induces a mechanical instability, which is initiated by the softening of an acoustic phonon occurring at an incommensurate wavelength, followed by the collapse of the entire acoustic band and by the violation of the Born stability criteria. It is argued that phonon collapse may be a quite general feature of pressure-induced amorphization. The implications of our findings for the amorph- ization of ice Ih are also discussed. DOI: 10.1103/PhysRevLett.92.105502 PACS numbers: 63.20.Dj, 64.70.Rh, 83.80.Nb Ice Ih is the first system which was observed to effects of hydrogen disorder, and draw a parallel between amorphize under pressure [1]. It was soon argued that our results and those previously obtained in -quartz. this behavior was related with the negative Clapeyron The structure of ice Ih consists of a hexagonal diamond slope of the melting line of ice Ih and that amorphiza- lattice of oxygen atoms with one hydrogen atom placed at tion would occur at the metastable extension of this line random in one of the two energy minima existing in in the stability field of another high-pressure phase.
    [Show full text]