Searching for Crystal-Ice Domains in Amorphous Ices

Total Page:16

File Type:pdf, Size:1020Kb

Searching for Crystal-Ice Domains in Amorphous Ices PHYSICAL REVIEW MATERIALS 2, 075601 (2018) Searching for crystal-ice domains in amorphous ices Fausto Martelli,1,2,* Nicolas Giovambattista,3,4 Salvatore Torquato,2 and Roberto Car2 1IBM Research, Hartree Centre, Daresbury WA4 4AD, United Kingdom 2Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA 3Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA 4The Graduate Center of the City University of New York, New York, New York 10016, USA (Received 7 May 2018; published 2 July 2018) Weemploy classical molecular dynamics simulations to investigate the molecular-level structure of water during the isothermal compression of hexagonal ice (Ih) and low-density amorphous (LDA) ice at low temperatures. In both cases, the system transforms to high-density amorphous ice (HDA) via a first-order-like phase transition. We employ a sensitive local order metric (LOM) [F. Martelli et al., Phys. Rev. B 97, 064105 (2018)] that can discriminate among different crystalline and noncrystalline ice structures and is based on the positions of the oxygen atoms in the first- and/or second-hydration shell. Our results confirm that LDA and HDA are indeed amorphous, i.e., they lack polydispersed ice domains. Interestingly, HDA contains a small number of domains that are reminiscent of the unit cell of ice IV,although the hydrogen-bond network (HBN) of these domains differs from the HBN of ice IV. The presence of ice-IV-like domains provides some support to the hypothesis that HDA could be the result of a detour on the HBN rearrangement along the Ih-to-ice-IV pressure-induced transformation. Both nonequilibrium LDA-to-HDA and Ih-to-HDA transformations are two-step processes where a small distortion of the HBN first occurs at low pressures and then, a sudden, extensive rearrangement of hydrogen bonds at the corresponding transformation pressure follows. Interestingly, the Ih-to-HDA and LDA-to-HDA transformations occur when LDA and Ih have similar local order, as quantified by the site-averaged LOMs. Since Ih has a perfect tetrahedral HBN while LDA does not, it follows that higher pressures are needed to transform Ih into HDA than that for the conversion of LDA to HDA. In correspondence with both first-order-like phase transitions, the samples are composed of a large HDA cluster that percolates within the Ih/LDA samples. Our results shed light on the debated structural properties of amorphous ices and indicate that the kinetics of the Ih-to-HDA and LDA-to-HDA transformations require an in-depth inspection of the underlying HBN. Such investigation is currently ongoing. DOI: 10.1103/PhysRevMaterials.2.075601 I. INTRODUCTION for the case of HDA [5,6,20,21]. However, this distinction is less clear in computer simulations and, therefore, we refer to At deeply supercooled conditions, water exhibits polyamor- glassy water as either LDA or HDA. phism, i.e., it exists in more than one amorphous solid state. At small length scales, LDA and HDA are structurally very The most common forms of glassy water are the low-density different. LDA has well-separated first- and second-hydration amorphous (LDA) and the high-density amorphous (HDA) shells, with nearest neighbors arranged in a tetrahedral-like ice [1–6]. LDA is likely the most abundant form of ice in local structure. In this regard, the structure of LDA is rem- the universe and can be produced, for example, by rapid iniscent of the local structure of Ih. By contrast, HDA has quenching of liquid water at atmospheric pressure [7]. The interstitial molecules populating the space between the first- LDA that is thought to exist in space forms by condensa- tion of water from the gas phase onto cold surfaces [8,9]. and the second-hydration shells, thus acquiring distorted local HDA can be produced, for example, by pressure-induced configurations similar to liquid-water configurations at ambi- amorphization (PIA) of hexagonal ice (Ih) or by isothermal ent conditions [16,22–26]. LDA and HDA also differ in terms compression of LDA [10–13]. Remarkably, LDA and HDA can of the hydrogen-bond network (HBN). The HBN of LDA is be interconverted by isothermal compression/decompression dominated by five-, six-, and sevenfold rings, in contrast to at T = 130 − 140 K [10,14,15] and by isobaric heating at HDA whose HBN includes a significant fraction of longer different pressures [14,16,17]. A third form of glassy water, a member rings to accommodate the larger density of the system ∼ − very high-density amorphous (VHDA) ice, has been identified ( 20 25% larger than LDA) [27]. Despite these local at very high pressures [18]. We note that experiments show structural differences, at large length scales the two glass forms that LDA and HDA can be separated into subfamilies of are nearly hyperuniform, i.e., they possess a similar degree of suppression of large-scale density fluctuations, indicating amorphous structures, e.g., LDAI and LDAII for LDA [19], and unannealed HDA (uHDA) and expanded HDA (eHDA) that they should possess similar large-scale structures and large-scale translational order [28]. LDA and HDA were discovered more than 30 years ago [1]. Yet, the nature of LDA and HDA, and the associated LDA-to- *Corresponding author: [email protected] HDA first-order-like phase transition, remain highly debated. It 2475-9953/2018/2(7)/075601(10) 075601-1 ©2018 American Physical Society MARTELLI, GIOVAMBATTISTA, TORQUATO, AND CAR PHYSICAL REVIEW MATERIALS 2, 075601 (2018) has been suggested that LDA and HDA are thermodynamically that both LDA-to-HDA and Ih-to-HDA transformations are connected with the liquid, e.g., by isobaric cooling/heating reminiscent of spinodal decompositions, without nucleation [10]. Elsewhere, HDA was interpreted to be a collapsed HBN and growth of HDA within LDA/Ih. of water molecules, unrelated to the liquid state [29–31]. It has The article is organized as follows. In Sec. II, we provide also been suggested that HDA may contain nanometer-scale a brief definition of the LOM employed in this work. In Secs. ice domains. After all, HDA transforms to ice IV at very high III A and III B, we discuss the short- and intermediate-range pressure [32,33] and it can be formed by compression of Ih. order, respectively, in both LDA and HDA. In Sec. III C,we Unfortunately, experimental studies that focus on the structure discuss the spatial aggregation (clusters) of LDA-, HDA-, and of LDA and HDA at intermediate length scales are challenging Ih-like molecules during the LDA-to-HDA and Ih-to-HDA [6]. Computer-simulation studies that describe the structure of transformations. Conclusions and final remarks are presented LDA and HDA, especially the search for the presence of icelike in Sec. IV. domains, are rare. In this article, we perform out-of-equilibrium classical II. THE LOCAL ORDER METRIC molecular dynamics (MD) simulations to study the structural order during the Ih-to-HDA and LDA-to-HDA transforma- In this section, we briefly describe the local order metric tions; in particular, we look for traces of crystalline domains employed in this work. The details of the numerical algorithm during these process. We will refer to the HDA produced upon can be found in Ref. [34]. The local environment of an atomic site j in a snapshot of a molecular dynamics or Monte Carlo compression of Ih as HDAIh, and to the HDA obtained upon simulation defines a local pattern formed by M neighboring compression of LDA as HDALDA. We probe the short- and intermediate-range order during these transformations using sites. Typically these include the first and/or second neighbors a recently developed local order metric (LOM). The LOM of the site j. There are N local patterns, one for each atomic measures the degree of order present in the neighborhood of site j in the system. The local reference structure is the set of an atomic or molecular site in a condensed medium [34]. The the same M neighboring sites in an ideal lattice of choice, the LOM is endowed with a high-resolving power [34–36] and spatial scale of which is fixed by setting its nearest-neighbor allows one to look for specific ordered domains defined by distance equal to d, the average equilibrium value in the system the location of selected atoms (e.g., water oxygens) in a given of interest. For a given orientation of the reference structure P reference structure. Typically, the reference structure is taken and a given permutation of the pattern indices, we define to be the local structure of a perfect crystalline phase. the LOM S(j) as the maximum overlap between pattern and We have looked for signatures of ices Ih, cubic (Ic), II, III, reference structure in the j neighborhood by ⎧ ⎛ ⎞⎫ IV,V,VI, and VII, in LDA and HDA. According to our analysis, ⎪ 2 ⎪ ⎨M j − j j ⎬ both amorphous ices lack polydispersed ordered crystalline ⎜ PiP A Ri ⎟ S(j) = max exp ⎝− ⎠ , (1) domains. However, we find that the oxygens of a few water θ,φ,ψ;P ⎩⎪ 2σ 2M ⎭⎪ molecules in HDA are arranged as in the unit cell of ice IV. i=1 This observation provides support to the picture proposed in j j Ref. [37], where the collapse of the HBN of Ih occurring upon where θ,φ, and ψ are Euler angles, PiP and Ri are the pattern and the reference position vectors in the laboratory frame of isothermal compression does not lead to ice IV, but to HDA, j and is hence considered a “derailed” state along the Ih-to- the M neighbors of site j, respectively, and A is an arbitrary ice-IV pathway.
Recommended publications
  • Proton Ordering and Reactivity of Ice
    1 Proton ordering and reactivity of ice Zamaan Raza Department of Chemistry University College London Thesis submitted for the degree of Doctor of Philosophy September 2012 2 I, Zamaan Raza, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 For Chryselle, without whom I would never have made it this far. 4 I would like to thank my supervisors, Dr Ben Slater and Prof Angelos Michaelides for their patient guidance and help, particularly in light of the fact that I was woefully unprepared when I started. I would also like to express my gratitude to Dr Florian Schiffmann for his indispens- able advice on CP2K and quantum chemistry, Dr Alexei Sokol for various discussions on quantum mechanics, Dr Dario Alfé for his incredibly expensive DMC calculations, Drs Jiri Klimeš and Erlend Davidson for advice on VASP, Matt Watkins for help with CP2K, Christoph Salzmann for discussions on ice, Dr Stefan Bromley for allowing me to work with him in Barcelona and Drs Aron Walsh, Stephen Shevlin, Matthew Farrow and David Scanlon for general help, advice and tolerance. Thanks and also apologies to Stephen Cox, with whom I have collaborated, but have been unable to contribute as much as I should have. Doing a PhD is an isolating experience (more so in the Kathleen Lonsdale building), so I would like to thank my fellow students and friends for making it tolerable: Richard, Tiffany, and Chryselle. Finally, I would like to acknowledge UCL for my funding via a DTA and computing time on Legion, the Materials Chemistry Consortium (MCC) for computing time on HECToR and HPC-Europa2 for the opportunity to work in Barcelona.
    [Show full text]
  • Ice Ic” Werner F
    Extent and relevance of stacking disorder in “ice Ic” Werner F. Kuhsa,1, Christian Sippela,b, Andrzej Falentya, and Thomas C. Hansenb aGeoZentrumGöttingen Abteilung Kristallographie (GZG Abt. Kristallographie), Universität Göttingen, 37077 Göttingen, Germany; and bInstitut Laue-Langevin, 38000 Grenoble, France Edited by Russell J. Hemley, Carnegie Institution of Washington, Washington, DC, and approved November 15, 2012 (received for review June 16, 2012) “ ” “ ” A solid water phase commonly known as cubic ice or ice Ic is perfectly cubic ice Ic, as manifested in the diffraction pattern, in frequently encountered in various transitions between the solid, terms of stacking faults. Other authors took up the idea and liquid, and gaseous phases of the water substance. It may form, attempted to quantify the stacking disorder (7, 8). The most e.g., by water freezing or vapor deposition in the Earth’s atmo- general approach to stacking disorder so far has been proposed by sphere or in extraterrestrial environments, and plays a central role Hansen et al. (9, 10), who defined hexagonal (H) and cubic in various cryopreservation techniques; its formation is observed stacking (K) and considered interactions beyond next-nearest over a wide temperature range from about 120 K up to the melt- H-orK sequences. We shall discuss which interaction range ing point of ice. There was multiple and compelling evidence in the needs to be considered for a proper description of the various past that this phase is not truly cubic but composed of disordered forms of “ice Ic” encountered. cubic and hexagonal stacking sequences. The complexity of the König identified what he called cubic ice 70 y ago (11) by stacking disorder, however, appears to have been largely over- condensing water vapor to a cold support in the electron mi- looked in most of the literature.
    [Show full text]
  • Indiana Glaciers.PM6
    How the Ice Age Shaped Indiana Jerry Wilson Published by Wilstar Media, www.wilstar.com Indianapolis, Indiana 1 Previiously published as The Topography of Indiana: Ice Age Legacy, © 1988 by Jerry Wilson. Second Edition Copyright © 2008 by Jerry Wilson ALL RIGHTS RESERVED 2 For Aaron and Shana and In Memory of Donna 3 Introduction During the time that I have been a science teacher I have tried to enlist in my students the desire to understand and the ability to reason. Logical reasoning is the surest way to overcome the unknown. The best aid to reasoning effectively is having the knowledge and an understanding of the things that have previ- ously been determined or discovered by others. Having an understanding of the reasons things are the way they are and how they got that way can help an individual to utilize his or her resources more effectively. I want my students to realize that changes that have taken place on the earth in the past have had an effect on them. Why are some towns in Indiana subject to flooding, whereas others are not? Why are cemeteries built on old beach fronts in Northwest Indiana? Why would it be easier to dig a basement in Valparaiso than in Bloomington? These things are a direct result of the glaciers that advanced southward over Indiana during the last Ice Age. The history of the land upon which we live is fascinating. Why are there large granite boulders nested in some of the fields of northern Indiana since Indiana has no granite bedrock? They are known as glacial erratics, or dropstones, and were formed in Canada or the upper Midwest hundreds of millions of years ago.
    [Show full text]
  • Genesis and Geographical Aspects of Glaciers - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Genesis and Geographical Aspects of Glaciers - Vladimir M. Kotlyakov GENESIS AND GEOGRAPHICAL ASPECTS OF GLACIERS Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, equilibrium line, firn line, glacial climate, glacier, glacierization, glaciosphere, ice, seasonal snow line, snow line, snow-patch Contents 1. Introduction 2. Properties of natural ice 3. Cryosphere, glaciosphere, chionosphere 4. Snow-patches and glaciers 5. Basic boundary levels of snow and ice 6. Measures of glacierization 7. Occurrence of glaciers 8. Present-day glacierization of the Arctic Glossary Bibliography Biographical Sketch Summary There exist ten crystal variants of ice and one amorphous form in Nature, however only one form ice-1 is distributed on the Earth. Ten other ice variants steadily exist only under a certain combinations of pressure, specific volume and temperature of medium, and those are not typical for our planet. The ice density is less than that of water by 9%, and owing to this water reservoirs are never totally frozen., Thus life is sustained in them during the winter time. As a rule, ice is much cleaner than water, and specific gas-ice compounds called as crystalline hydrates are found in ice. Among the different spheres surrounding our globe there are cryosphere (sphere of the cold), glaciosphere (sphere of snow and ice) and chionosphere (that part of the troposphere where the annual amount of solid precipitation exceeds their losses). The chionosphere envelopes the Earth with a shell 3 to 5 km in thickness. In the present epoch, snow and ice cover 14.2% of the planet’s surface and more than half of the land surface.
    [Show full text]
  • Glaciers and Their Significance for the Earth Nature - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface.
    [Show full text]
  • Case Fil Copy
    NASA TECHNICAL NASA TM X-3511 MEMORANDUM CO >< CASE FIL COPY REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 Compiled by Raymond Arvidson and Russell Wahmann Office of Space Science NASA Headquarters NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1977 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. TMX3511 4. Title and Subtitle 5. Report Date May 1977 6. Performing Organization Code REPORTS OF PLANETARY GEOLOGY PROGRAM, 1976-1977 SL 7. Author(s) 8. Performing Organization Report No. Compiled by Raymond Arvidson and Russell Wahmann 10. Work Unit No. 9. Performing Organization Name and Address Office of Space Science 11. Contract or Grant No. Lunar and Planetary Programs Planetary Geology Program 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Technical Memorandum National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 15. Supplementary Notes 16. Abstract A compilation of abstracts of reports which summarizes work conducted by Principal Investigators. Full reports of these abstracts were presented to the annual meeting of Planetary Geology Principal Investigators and their associates at Washington University, St. Louis, Missouri, May 23-26, 1977. 17. Key Words (Suggested by Author(s)) 18. Distribution Statement Planetary geology Solar system evolution Unclassified—Unlimited Planetary geological mapping Instrument development 19. Security Qassif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price* Unclassified Unclassified 294 $9.25 * For sale by the National Technical Information Service, Springfield, Virginia 22161 FOREWORD This is a compilation of abstracts of reports from Principal Investigators of NASA's Office of Space Science, Division of Lunar and Planetary Programs Planetary Geology Program.
    [Show full text]
  • Thermodynamic Stability of Hydrogen Hydrates of Ice Ic and II Structures
    PHYSICAL REVIEW B 82, 144105 ͑2010͒ Thermodynamic stability of hydrogen hydrates of ice Ic and II structures Lukman Hakim, Kenichiro Koga, and Hideki Tanaka Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima, Kitaku, Okayama 700-8530, Japan ͑Received 6 August 2010; published 13 October 2010͒ The occupancy of hydrogen inside the voids of ice Ic and ice II, which gives two stable hydrogen hydrate compounds at high pressure and temperature, has been examined using a hybrid grand-canonical Monte Carlo simulation in wide ranges of pressure and temperature. The simulation reproduces the maximum hydrogen-to- water molar ratio and gives a detailed description on the hydrogen influence toward the stability of ice structures. A simple theoretical model, which reproduces the simulation results, provides a global phase dia- gram of two-component system in which the phase transitions between various phases can be predicted as a function of pressure, temperature, and chemical composition. A relevant thermodynamic potential and statistical-mechanical ensemble to describe the filled-ice compounds are discussed, from which one can derive two important properties of hydrogen hydrate compounds: the isothermal compressibility and the quantification of thermodynamic stability in term of the chemical potential. DOI: 10.1103/PhysRevB.82.144105 PACS number͑s͒: 64.70.Ja I. INTRODUCTION relative to other water-hydrogen composite phases in a wide range of thermodynamic conditions has been scarcely ex- Storage of hydrogen has been actively investigated to plored. On the other hand, constructing a global phase dia- meet the demand on environmentally clean and efficient gram is a tedious task from experimental view point, consid- hydrogen-based fuel.1 A search for practical hydrogen- ering the number of thermodynamic states to be explored.
    [Show full text]
  • Modeling the Ice VI to VII Phase Transition
    Modeling the Ice VI to VII Phase Transition Dawn M. King 2009 NSF/REU PROJECT Physics Department University of Notre Dame Advisor: Dr. Kathie E. Newman July 31, 2009 Abstract Ice (solid water) is found in a number of different structures as a function of temperature and pressure. This project focuses on two forms: Ice VI (space group P 42=nmc) and Ice VII (space group Pn3m). An interesting feature of the structural phase transition from VI to VII is that both structures are \self clathrate," which means that each structure has two sublattices which interpenetrate each other but do not directly bond with each other. The goal is to understand the mechanism behind the phase transition; that is, is there a way these structures distort to become the other, or does the transition occur through the breaking of bonds followed by a migration of the water molecules to the new positions? In this project we model the transition first utilizing three dimensional visualization of each structure, then we mathematically develop a common coordinate system for the two structures. The last step will be to create a phenomenological Ising-like spin model of the system to capture the energetics of the transition. It is hoped the spin model can eventually be studied using either molecular dynamics or Monte Carlo simulations. 1 Overview of Ice The known existence of many solid states of water provides insight into the complexity of condensed matter in the universe. The familiarity of ice and the existence of many structures deem ice to be interesting in the development of techniques to understand phase transitions.
    [Show full text]
  • Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River
    water Article Estimation of the Dependence of Ice Phenomena Trends on Air and Water Temperature in River Renata Graf Department of Hydrology and Water Management, Institute of Physical Geography and Environmental Planning, Adam Mickiewicz University in Poznan, Bogumiła Krygowskiego 10 str., 61-680 Poznan, Poland; [email protected] Received: 6 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: The identification of changes in the ice phenomena (IP) in rivers is a significant element of analyses of hydrological regime features, of the risk of occurrence of ice jam floods, and of the ecological effects of river icing (RI). The research here conducted aimed to estimate the temporal and spatial changes in the IP in a lowland river in the temperate climate (the Note´cRiver, Poland, Central Europe), depending on air temperature (TA) and water temperature (TW) during the multi-annual period of 1987–2013. Analyses were performed of IP change trends in three RI phases: freezing, when there appears stranded ice (SI), frazil ice (FI), or stranded ice with frazil ice (SI–FI); the phase of stable ice cover (IC) and floating ice (FoI); and the phase of stranded ice with floating ice (SI–FoI), frazil ice with floating ice (FI–FoI), and ice jams (IJs). Estimation of changes in IP in connection with TA and TW made use of the regression model for count data with a negative binomial distribution and of the zero-inflated negative binomial model. The analysis of the multi-annual change tendency of TA and TW utilized a non-parametric Mann–Kendall test for detecting monotonic trends with Yue–Pilon correction (MK–YP).
    [Show full text]
  • 11Th International Conference on the Physics and Chemistry of Ice, PCI
    11th International Conference on the Physics and Chemistry of Ice (PCI-2006) Bremerhaven, Germany, 23-28 July 2006 Abstracts _______________________________________________ Edited by Frank Wilhelms and Werner F. Kuhs Ber. Polarforsch. Meeresforsch. 549 (2007) ISSN 1618-3193 Frank Wilhelms, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, D-27568 Bremerhaven, Germany Werner F. Kuhs, Universität Göttingen, GZG, Abt. Kristallographie Goldschmidtstr. 1, D-37077 Göttingen, Germany Preface The 11th International Conference on the Physics and Chemistry of Ice (PCI- 2006) took place in Bremerhaven, Germany, 23-28 July 2006. It was jointly organized by the University of Göttingen and the Alfred-Wegener-Institute (AWI), the main German institution for polar research. The attendance was higher than ever with 157 scientists from 20 nations highlighting the ever increasing interest in the various frozen forms of water. As the preceding conferences PCI-2006 was organized under the auspices of an International Scientific Committee. This committee was led for many years by John W. Glen and is chaired since 2002 by Stephen H. Kirby. Professor John W. Glen was honoured during PCI-2006 for his seminal contributions to the field of ice physics and his four decades of dedicated leadership of the International Conferences on the Physics and Chemistry of Ice. The members of the International Scientific Committee preparing PCI-2006 were J.Paul Devlin, John W. Glen, Takeo Hondoh, Stephen H. Kirby, Werner F. Kuhs, Norikazu Maeno, Victor F. Petrenko, Patricia L.M. Plummer, and John S. Tse; the final program was the responsibility of Werner F. Kuhs. The oral presentations were given in the premises of the Deutsches Schiffahrtsmuseum (DSM) a few meters away from the Alfred-Wegener-Institute.
    [Show full text]
  • Ice Ic Without Stacking Disorder by Evacuating Hydrogen from Hydrogen Hydrate
    ARTICLE https://doi.org/10.1038/s41467-020-14346-5 OPEN Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate Kazuki Komatsu 1*, Shinichi Machida2, Fumiya Noritake3,4, Takanori Hattori5, Asami Sano-Furukawa5, Ryo Yamane1, Keishiro Yamashita1 & Hiroyuki Kagi1 Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, 1234567890():,; but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih. 1 Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 2 Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan. 3 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
    [Show full text]
  • Ice Molecular Model Kit © Copyright 2015 Ryler Enterprises, Inc
    Super Models Ice Molecular Model Kit © Copyright 2015 Ryler Enterprises, Inc. Recommended for ages 10-adult ! Caution: Atom centers and vinyl tubing are a choking hazard. Do not eat or chew model parts. Kit Contents: 50 red 4-peg oxygen atom centers (2 spares) 100 white hydrogen 2-peg atom centers (2 spares) 74 clear, .87”hydrogen bonds (2 spares) 100 white, .87” covalent bonds (2 spares) Related Kits Available: Chemistry of Water Phone: 806-438-6865 E-mail: [email protected] Website: www.rylerenterprises.com Address: 5701 1st Street, Lubbock, TX 79416 The contents of this instruction manual may be reprinted for personal use only. Any and all of the material in this PDF is the sole property of Ryler Enterprises, Inc. Permission to reprint any or all of the contents of this manual for resale must be submitted to Ryler Enterprises, Inc. General Information Ice, of course, ordinarily refers to water in the solid phase. In the terminology of astronomy, an ice can be the solid form of any element or compound which is usually a liquid or gas. This kit is designed to investigate the structure of ice formed by water. Fig. 1 Two water molecules bonded by a hydrogen bond. Water ice is very common throughout the universe. According to NASA, within our solar system ice is The symbol δ means partial, so when a plus sign is found in comets, asteroids, and several moons of added, the combination means partial positive the outer planets, and it has been located in charge. The opposite obtains when a negative sign interstellar space as well.
    [Show full text]