Metastable State of Gas Hydrate During Decomposition: a Novel Phenomenon

Total Page:16

File Type:pdf, Size:1020Kb

Metastable State of Gas Hydrate During Decomposition: a Novel Phenomenon View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Enlighten Chinese Journal of Chemical Engineering 28 (2020) 949–954 Contents lists available at ScienceDirect Chinese Journal of Chemical Engineering journal homepage: www.elsevier.com/locate/CJChE Review Metastable state of gas hydrate during decomposition: A novel phenomenon Ronghui Sun 1,ZhenFan2,LeiYang1,⁎, Yuanping Li 3, Xin Lü 4, Yang Miao 5 1 Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116023, China 2 School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom 3 Institute of Science and Technology, Shenzhen Branch, China National Offshore Oil Corporation, Guangzhou 510420, China 4 CNOOC Research Institute Co. Ltd, Beijing 100028, China 5 Xingang Shipbuilding Heavy Industry Co., Ltd., Tianjin 300452, China article info abstract Article history: Natural gas hydrates are solid compounds with cage-like structures formed by gas and water. An intriguing phenom- Received 6 December 2018 enonthatgashydratescandissociateatalowratebelowtheicefreezingpointhasbeenviewedasthemetastability Received in revised form 26 September 2019 of hydrate. The mechanisms of hydrate metastability have been widely studied, and many mechanisms were pro- Accepted 7 February 2020 posed involving the self-preservation effect, supercooled water-gas-hydrate metastable equilibrium, and supersatu- Available online 19 February 2020 rated liquid–gas-hydrate system etc. The metastable state of hydrate could be of crucial significance in the kinetics of hydrate formation and decomposition, heat and mass transfer during gas production processes, and the application Keywords: Hydrates of hydrate-based technique involving desalination, energy storage and transportation, and gas separation and se- Dissociation questration. Few researches have systematically considered this phenomenon, and its mechanism remains unclear. Metastability In this work, various mechanisms and hypothesis explaining the metastable state of gas hydrates were introduced Self-preservation and discussed. Further studies are still required to reveal the intrinsic nature of this metastable state of gas hydrate, Supersaturation and this work could give some implications on the existing theory and current status of relevant efforts. © 2020 The Authors. The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/). 1. Introduction can produce 164 volumes of natural gas [12]. Many countries have pro- posed national strategies on gas production from NGH as well as their sig- Natural gas hydrates (NGHs) are non-stoichiometry compounds with nificant environmental aspects. The U.S. have been a leading country in hydrogen-bonded water cages acting as host and gas molecules as guest the development of gas hydrate and have taken legislative approach to se- [1–3]. The guest gas molecules involve methane, ethane, propane, and cure NGH as a crucial energy resource [13]. Japan is one of the countries carbon dioxide, etc., among which methane attracts much attention due that approved a national program on NGH firstly and a three-phase- to its potential in energy source and gas storage [4–6].Therearethreedif- program the “Research Consortium for Methane Hydrate Resources in ferent clathrate structures of gas hydrates, namely two cubic structures s I Japan” was conducted [14]. China started programs on NGH in 2002; and s II, and one hexagonal structure s H. The clathrate structure was the first field test in China was conducted in 2017, producing natural found to be dependent upon the size of the guest molecule [7]. Gas hy- gas for 60 successive days [15]. drates were first observed by Priestley in 1778 and documented by Hydrate has also been widely used in various industry-related tech- Davy in 1811 [8]. Since the year of 1934, the existence of natural gas hy- niques, involving storage and transportation of natural gas, sea water drates was found to be the trigger of blockages in pipelines during the desalination, cold energy storage, gas separation etc. [16–20]. The up- transportation of natural gas [9].Thediscoveryoflargeamountofhydrate scale and commercial application of these techniques suffer from the reservoirs in the permafrost and under the continental shelf during the sluggish formation process, insufficient transformation and limited ca- period from the mid-1960 till present made NGH one of the most impor- pacity. These make the thermodynamics and kinetics of hydrate forma- tant energy resources; to develop methods for commercial production of tion and dissociation of great significance [21]. Three main processes for natural gas from hydrate reservoirs is thus attracting considerable atten- hydrate dissociation (thermal stimulation, depressurization and inhibi- tion worldwide [10,11]. Natural gas hydrates are considered to contain al- tor injection) have been proposed [22–24]. The thermodynamic equilib- most 1/3 of world's mobile organic carbon and each volume of hydrate rium conditions of the hydrates govern the formation and dissociation process of hydrates [4,25,26]; thus, the determination and regulation fi ⁎ Corresponding author. of hydrate phase equilibria have always been a signi cant issue in hy- E-mail address: [email protected] (L. Yang). drate related study [27]. https://doi.org/10.1016/j.cjche.2020.02.003 1004-9541/© 2020 The Authors. The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 950 R. Sun et al. / Chinese Journal of Chemical Engineering 28 (2020) 949–954 In the phase diagram of hydrate, the equilibrium curve can be di- understandings of the role of ice [41]. Then, models were introduced vided into stable zone and unstable zone. Hydrates can only remain a to explain the self-preservation [41,42]. The effect of different factors thermodynamic equilibrated state when the pressure and temperature on self-preservation was investigated [43,44]. locate within the stable zone; otherwise the pressure and temperature • conditions in the unstable zone will trigger hydrate decomposition. The second stage (studies on the intermediate metastable phase However, an intriguing phenomenon has been observed during hydrate of ice): formation and dissociation; hydrate may not be generated even after a long period of time (induction period) in the stable zone [28]; hydrate This stage was from around 1990 till present, during which more at- may also decompose at an anomalously low rate in the unstable zone tentions were placed on the effect of metastable water/ice phase on the [29]. These phenomena are identified as a performance of metastability presence of self-preservation phenomenon. Re-crystallization was con- of hydrate. The metastable state was defined as “adefine equilibrium sidered to take place at the ice-hydrate interface, accompany mutual which is, nevertheless, not the most stable equilibrium at the given tem- hydrate-ice transformation. This phenomenon was described as a meta- perature” [30]. Jan Lubas proposed the “area of hydrate metastability; he stable two-phase hydrate-ice equilibrium [45]. However, queries still considered that the hydrate formation and dissociation curve may not exist on the dominant shielding effect of ice on the gas diffusion from coincide and the area between these curves is “the area of hydrate hydrates [46,47]. The annealing of stacking faults of the ice was not metastability” [31]. According to Skripov, a metastable state corre- well understood until the neutron diffraction and cryo-SEM studies sponds to a local minimum of the system free energy at given external were carried out [48,49]. conditions and the depth of the minimum determines the stability • and lifetime of the metastable state [32]. The third stage (more mechanisms of hydrate metastability): Hydrates may persist in a metastable state for millions of years under the seafloor or in the permafrost [33]. This indicates the signifi- This stage started from 2011 when a systematic and detailed classi- cant geological importance of hydrate stability as the metastable hy- fication of hydrate metastability was introduced by Istomin [50]. The drates may likely decompose upon a slight fluctuation of the ambient formation of supercooled liquid water during dissociation of hydrate conditions, which would possibly trigger a strata failure along the con- was for the first time detected [51–53]. A metastable superheated tinental margins thereby contributing to the greenhouse effect [34,35]. solid phase of methane hydrate was presented when studying the effect On the other hand, the metastability can also be applied in the gas stor- of bubbles on the kinetics of hydrate decomposition [54]. The enrich- age and transportation using hydrates and pressure regulation during ments of guest molecules in the water were not easily observed until gas production from hydrates [16,36–38]. the synchrotron micro-tomography with a sub-micron resolution was The development of researches on hydrate metastability during dis- used [55]. These enrichments provide evidences of the existence of sociation can be classified into three stages, as shown in Table. 1. gas in the form of nanobubbles [57]. • fi The rst stage
Recommended publications
  • Multi-Year Arctic Sea Ice Classification Using Quikscat
    Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science David G. Long, Chair Richard W. Christiansen Brian A. Mazzeo Department of Electrical and Computer Engineering Brigham Young University August 2011 Copyright © 2011 Aaron M. Swan All Rights Reserved ABSTRACT Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan Department of Electrical and Computer Engineering Master of Science Long term trends in Arctic sea ice are of particular interest with regard to global tem- perature, climate change, and industry. This thesis uses microwave scatterometer data from QuikSCAT and radiometer data to analyze intra- and interannual trends in first-year and multi-year Arctic sea ice. It develops a sea ice type classification method. The backscatter of first-year and multi-year sea ice are clearly identifiable and are observed to vary seasonally. Using an average of the annual backscatter trends obtained from QuikSCAT, a classification of multi-year ice is obtained which is dependent on the day of the year (DOY). Validation of the classification method is done using regional ice charts from the Canadian Ice Service. Differences in ice classification are found to be less than 6% during the winters of 06-07, 07-08, and the end of 2008. Anomalies in the distribution of sea ice backscatter from year to year suggest a reduction in multi-year ice cover between 2003 and 2009 and an approximately equivalent increase in first-year ice cover.
    [Show full text]
  • Ice Ic Without Stacking Disorder by Evacuating Hydrogen from Hydrogen Hydrate
    ARTICLE https://doi.org/10.1038/s41467-020-14346-5 OPEN Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate Kazuki Komatsu 1*, Shinichi Machida2, Fumiya Noritake3,4, Takanori Hattori5, Asami Sano-Furukawa5, Ryo Yamane1, Keishiro Yamashita1 & Hiroyuki Kagi1 Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, 1234567890():,; but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih. 1 Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 2 Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan. 3 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
    [Show full text]
  • Interpolar Transnational Art Science States
    ART I N AN TA R C T I C A , A SE R I E S O F CO N F E R E N C E S … P. 4 @rt Outsiders September 2008 - 9th year www.art-outsiders.com Tel : +33 (0)1 44 78 75 00 Maison Européenne de la Photographie 5-7 rue de Fourcy – 75 004 Paris M° Saint-Paul ou Pont-Marie / Bus 67, 69, 96 ou 76 I N T E R P O L A R A RT 24 September 2008 - 12 October 2008 with Marko Peljhan and Annick Bureaud, Bureau d’études, Ewen Chardronnet, Andrea Polli, Catherine Rannou. The extreme in the centre by Annick Bure a u d rom the very first polar expeditions, artists have contributed to the imaginary surrounding the FEarth’s “extremities” and their work has fed a sense of the sublime and of romanticism. Such a romantic vision endures, fuelled by adventurers of the extreme, who set out crossing, alone, the antarctic continent, the touching (and a n t h ropomorphic) image of penguins, the deadly beauty of the environment conveyed by thousands of images of “icy white”, and by the fact that Antarctica is now threatened by global warming and our pollution, that this last huge, supposedly virg i n , territory is in danger. To create in or about Antarctica today is as much a political as an artistic act, just as it was in the 19th or early 20th century. Except today the continent faces quite a diff e r ent reality and our approaches are p r obably more varied, more contradictory, more complex; burdened with numerous clichés all the I-TASC - The Arctic Perspective more enduring for being mostly true.
    [Show full text]
  • The Everlasting Hunt for New Ice Phases ✉ Thomas C
    COMMENT https://doi.org/10.1038/s41467-021-23403-6 OPEN The everlasting hunt for new ice phases ✉ Thomas C. Hansen 1 Water ice exists in hugely different environments, artificially or naturally occurring ones across the universe. The phase diagram of crystalline phases of ice is still under construction: a high-pressure phase, ice XIX, has just been 1234567890():,; reported but its structure remains ambiguous. Water is the molecule that makes our planet so special and gives it its nickname, the blue planet. Liquid water is the medium for any form of life on Earth and is considered to be a sine qua non- condition for life on any place in our universe. Ice, the solid phase of water, has always been in the focus of science. It was maybe even ice, that was a necessary substrate for first life on Earth to emerge1; Therefore, it is normal to be very curious about all possible structures of water ices under different conditions—twenty crystalline and further amorphous forms are now known to exist (Fig. 1). ’ Ice Ih, hexagonal ice, is the only form relevant to the Earth s environmental conditions, as even the thickest ice slabs do not provide the necessary pressure to pass it into high-pressure poly- 2 3,4 morphs. However, so-called cubic ice, ice Ic, only very recently isolated in pure form , plays a role at very low temperatures in the higher atmosphere in the nucleation of ice5; ice VI, the lowest high-pressure ice phase at room temperature has been spectroscopically found in dia- mond inclusions6, and ice VII has been speculated to be present on Earth in cold subduction zones7.
    [Show full text]
  • IDENTIFICATION and COMPARISION of FUNGI from DIFFERENT DEPTHS of ANCIENT GLACIAL ICE Angira Patel a Thesis Submitted to the Grad
    IDENTIFICATION AND COMPARISION OF FUNGI FROM DIFFERENT DEPTHS OF ANCIENT GLACIAL ICE Angira Patel A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the Requirements for the degree of MASTER OF SCIENCE MAY 2006 Committee: Dr. Scott Rogers, Advisor Dr. Stan Smith Dr. Dawn Hentges ii ABSTRACT Dr. Scott Rogers, Advisor Glacial ice serves as a unique preservation matrix for contemporary and ancient microorganisms. The main objective of this study was to evaluate and test the existence of the fungi encased in ancient glacial ice of Antarctica and Greenland. PCR (polymerase chain reaction) amplification was used to isolate the DNA followed by DNA sequencing to obtain the DNA sequences of the ancient microorganisms. Most of the sequences obtained from ancient microbes were similar to the contemporary fungi. Few fungi cultured were approximately 10,000 years old. Microorganisms isolated from ancient glacial ice have undergone repeated phases of evolutionary changes, such as irradiation, freezing and thawing, and in the process they have been archiving various biogenic materials over the period of time. These microorganisms entrapped in glacial ice provide valuable information about the evolutionary processes, as well as the rich biodiversity during ancient times. Hence, various species of microorganisms may appear to be extinct, but factually they might be dormant, entrapped in ice for millions of years and are capable to reappear amidst suitable conditions. The results of this study can be used in future to relate the biological, biogeochemical and genetic composition to a unique and well characterized geologic history of the fungi entrapped in ancient glacial ice.
    [Show full text]
  • First Synthesis of an Ordered Form of Ice Ic the University of Tokyo, Kazuki KOMATSU
    First synthesis of an ordered form of ice Ic The University of Tokyo, Kazuki KOMATSU 1. Introduction Ice has a tremendous number of crystal forms; there are at least 18 polymorphs (Ih, Ic, II ~ XVII). In the long history of ice polymorph study, the most important and widely be influential problem could be ‘the undiscovered pure ice Ic’. Ice Ic is the ‘c’ubic form of ice with ABCABC… stacking sequence, which can be comparable to the normal ice Ih, having the ‘h’exagonal form with ABAB… sequence. Ice Ic may be commonly found in upper atmosphere in the Earth, in nano-porous materials, or in icy planet (like Pluto) or dust in universe. In spite of that many studies have carried out for ice Ic because of its distinguished importance, all studies, without any exception, have dealt with ice Ic having stacking disorder more or less. This fact could be the reason why the ordered form of ice Ic (called ice XIc) has never found so far (Salzmann et al., PCCP, 2011). The recent discovery of ice XVI (Falenty et al., Nature, 2014) gave us a hint to discover the ice XIc. The ice XVI was formed through Ne-hydrate, which has a clathrate structure – guest Ne and host ice, and evacuate Ne from the system under vacuum by using turbo-molecular pump (TMP). It is naturally considered that the similar phenomena happen for other clathrate hydrate, if the guest molecules are enough to be small. Then, we realize the hydrogen (H2) has quite small Van der Waals radius (120 pm), which is comparable to that of Ne (154 pm).
    [Show full text]
  • 730603 FULLTEXT01.Pdf (3.362Mb)
    Ice ridge keel size distributions Analysis of ice ridge keel thickness from Upward Looking Sonar data from the Fram Strait using extreme value theory. Synnøve Kvadsheim Physics Submission date: May 2014 Supervisor: Patrick Joseph Espy, IFY Co-supervisor: Knut Høyland, BAT, NTNU Norwegian University of Science and Technology Department of Physics Summary The present thesis explored sea ice ridges in the Fram Strait from data collected at 79◦ N, 65◦ W in 2006/2007 by an Upward Looking Sonar instrument, IPS4, and used extreme value analysis to provide an estimate of how deep sea ice ridges could be in this area, and its return period. Ice in the Fram Strait originate from different regions in the Arctic Ocean and is therefore representative of the ice ridge distribution in the Arctic. Ice ridges were identified using the Rayleigh method, choosing a threshold value of 2:5 m and a minimum draft value of 5 m. The mean keel draft value was found to be 7:7 m. The shallowest keel observed had a draft of 5:0 m, while the deepest keel was 24:97 m deep. Extreme value analysis was performed on the data collected to find estimates of extreme values of ice ridge keel draft, and its 100-year return level. The shape parameter in the Generalized Pareto distribution was estimated to be close to zero, which qualified for a reduction to the Exponential dis- tribution. The 100-year return level was estimated to be in the range of 37{45 m with the Generalized Pareto distribution and the Exponential distribution.
    [Show full text]
  • Gas Hydrates in Sustainable Chemistry
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Gas hydrates in sustainable chemistry abc ad Cite this: Chem. Soc. Rev., 2020, Aliakbar Hassanpouryouzband, * Edris Joonaki,† a e f 49, 5225 Mehrdad Vasheghani Farahani,† Satoshi Takeya, Carolyn Ruppel, Jinhai Yang, *a Niall J. English, g Judith M. Schicks,h Katriona Edlmann,b Hadi Mehrabian,c Zachary M. Aman i and Bahman Tohidia Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination. Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates. This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring Creative Commons Attribution-NonCommercial 3.0 Unported Licence. hydrates within the Earth, and for developing green technologies. This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast- Received 12th February 2020 growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on DOI: 10.1039/c8cs00989a advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly discussed.
    [Show full text]
  • Hidden Force Floating Ice
    Hidden force floating ice Chang Q Sun, [email protected] Nanyang Technological University, Singapore Because of the segmental specific-heat disparity of the hydrogen bond (O:H-O) and the Coulomb repulsion between oxygen ions, cooling elongates the O:H-O bond at freezing by stretching its containing angle and shortening the H-O bond with an association of larger O:H elongation, which makes ice less dense than water, allowing it to float. Ref: [1] Mpemba effect, http://arxiv.org/abs/1501.00765 [2] Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord. Chem. Rev., 2015. 285: 109-165. 1.1 Anomaly: floating of ice Observations shown in Figure 1 confirmed the following: 1) Ice cube is less dense than water so it floats in water [1]. 2) The mass density (T) profile oscillates over the full temperature range [2]. 3) Cooling densification proceeds in the liquid (I) and the solid (III) phase and cooling expansion occurs to the quasi-solid phase (II) and ice in the very-low temperature regime (IV) at different rates. Density transits at 277 K (for bulk), 202 K and 50 K (for droplet of 1.4 nm size). 1 b a 1.00 0.98 ) 3 IV III II I 0.96 (g/cm 0.94 0.92 0 50 100 150 200 250 300 350 400 T (K) Figure 1. (a) Low density ice cubes float in a cup of water [1] and (b) the density (T) profile of water oscillates over the full temperature range for 1.4 nm droplet obtained using Raman and FTIR [2].
    [Show full text]
  • Low Temperature Materials and Mechanisms Solids and Fluids At
    This article was downloaded by: 10.3.98.104 On: 26 Sep 2021 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK Low Temperature Materials and Mechanisms Yoseph Bar-Cohen Solids and Fluids at Low Temperatures Publication details https://www.routledgehandbooks.com/doi/10.1201/9781315371962-4 Yoseph Bar-Cohen Published online on: 13 Jul 2016 How to cite :- Yoseph Bar-Cohen. 13 Jul 2016, Solids and Fluids at Low Temperatures from: Low Temperature Materials and Mechanisms CRC Press Accessed on: 26 Sep 2021 https://www.routledgehandbooks.com/doi/10.1201/9781315371962-4 PLEASE SCROLL DOWN FOR DOCUMENT Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. 3 Solids and Fluids at Low Temperatures Steve Vance, Thomas Loerting, Josef Stern, Matt Kropf, Baptiste
    [Show full text]
  • Room Temperature Electrofreezing of Water Yields a Missing Dense Ice Phase in the Phase Diagram
    ARTICLE https://doi.org/10.1038/s41467-019-09950-z OPEN Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram Weiduo Zhu1,2,6, Yingying Huang2,3,4,6, Chongqin Zhu2,6, Hong-Hui Wu 2, Lu Wang1, Jaeil Bai2, Jinlong Yang 1, Joseph S. Francisco2, Jijun Zhao3, Lan-Feng Yuan1 & Xiao Cheng Zeng 1,2,5 Water can freeze into diverse ice polymorphs depending on the external conditions such as temperature (T) and pressure (P). Herein, molecular dynamics simulations show evidence of 1234567890():,; a high-density orthorhombic phase, termed ice χ, forming spontaneously from liquid water at room temperature under high-pressure and high external electric field. Using free-energy computations based on the Einstein molecule approach, we show that ice χ is an additional phase introduced to the state-of-the-art T–P phase diagram. The χ phase is the most stable structure in the high-pressure/low-temperature region, located between ice II and ice VI, and next to ice V exhibiting two triple points at 6.06 kbar/131.23 K and 9.45 kbar/144.24 K, respectively. A possible explanation for the missing ice phase in the T–P phase diagram is that ice χ is a rare polarized ferroelectric phase, whose nucleation/growth occurs only under very high electric fields. 1 Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. 2 Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA. 3 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China.
    [Show full text]
  • Book of Abstracts 14Th International Conference on the Physics And
    14 th International Conference on the Physics and Chemistry of Ice © Zürich Tourismus January 8–12, 2018 | Paul Scherrer Institut | Switzerland Book of Abstracts PCI 2018 January 8 – 12, 2018 ETH Zürich, Switzerland http://indico.psi.ch/event/PCI2018 Steering Committee John S. Wettlaufer, USA (chair) Masahiko Arakawa, Japan Ian Baker, USA Thorsten Bartels-Rausch, Switzerland Yoshi Furukawa, Japan Robert Gagnon, Canada Werner F. Kuhs, Germany John LoVeday, UK Valeria Molinero, USA Maurine Montagnat, France Jan Pettersson, Sweden NAP-XPS Solutions NEAR AMBIENT PRESSURE IN-SITU SURFACE ANALYSIS SYSTEMS KEY FEATURES • In-Situ Chemical Analysis up to 100 mbar • PHOIBOS 150 NAP Electron Analyser • For Use with NAP Laboratory X-ray and UV Sources or Synchrotron Beam • Cooling Stage to Investigate Ice SPECS Surface Nano Analysis GmbH T +49 30 46 78 24-0 E [email protected] H www.specs.com Swiss snow, ice and permafrost society The Swiss Snow, Ice and Permafrost Society (SIP) is a learned society with the aim of facilitating the dialog between science, the practice and the general public. The society is dedicated to the following aims: • improvement and spreading of glaciological knowledge, • facilitates contacts between glaciological experts, practitioners and society, • takes position in glaciological questions of general interest, • supports knowledge exchange and collaboration between its members, • keeps contacts to national and international societies, and supports the next generation of scientists. The Swiss Society for Snow, Ice and Permafrost is open to all persons interested in glaciology, and is a scientific society of the Swiss Academy of Sciences (SCNAT). https://naturalsciences.ch/organisations/snow_ice_permafrost Table of contents Amorphous ices and liquid states (93) .............................................................................................
    [Show full text]