A New Phase Diagram of Water Under Negative Pressure: the Rise of the Lowest-Density Clathrate S- III Yingying Huang Dalian University of Technology

Total Page:16

File Type:pdf, Size:1020Kb

A New Phase Diagram of Water Under Negative Pressure: the Rise of the Lowest-Density Clathrate S- III Yingying Huang Dalian University of Technology University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 2-12-2016 A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s- III Yingying Huang Dalian University of Technology Chongqin Zhu University of Nebraska-Lincoln Lu Wang University of Science and Technology of China Xiaoxiao Cao Dalian University of Technology Yan Su Dalian University of Technology See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/chemzeng Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; and Zeng, Xiao Cheng, "A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III" (2016). Xiao Cheng Zeng Publications. 122. http://digitalcommons.unl.edu/chemzeng/122 This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Xiao Cheng Zeng Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Yingying Huang, Chongqin Zhu, Lu Wang, Xiaoxiao Cao, Yan Su, Xue Jiang, Sheng Meng, Jijun Zhao, and Xiao Cheng Zeng This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/chemzeng/122 RESEARCH ARTICLE WATER CHEMISTRY 2016 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed A new phase diagram of water under negative under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). pressure: The rise of the lowest-density 10.1126/sciadv.1501010 clathrate s-III Yingying Huang,1,2* Chongqin Zhu,2,3* Lu Wang,4 Xiaoxiao Cao,1 Yan Su,1 Xue Jiang,1 Sheng Meng,3 Jijun Zhao,1† Xiao Cheng Zeng2,4† Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal struc- ture T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8668412) and six small decahedral cavities (8248) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below −5834 bar at 0 K and below −3411 bar at 300 K. INTRODUCTION thegashydrateoriceclathrate(15–18). In the ice clathrates, water Water molecules are the third most abundant molecular species in molecules form loosely hydrogen-bonded framework connected by in- the universe (1). Ice, the form of water in condensed state, is the most terlinked cages whose inner cavities are either completely or partially common molecular solid on Earth and can be also detected in the occupied by guest molecules. So far, at least five types of ice clathrate giant planetary interior. The existence of water and ice has implication structures have been experimentally identified (11, 15, 19)ortheoret- to the diversity of nature and possible presence of life. Because of the ically proposed (20), namely, cubic structure I (s-I) with 2 512 cages flexible hydrogen bonds, water ice exhibits an exceptionally rich and and 6 51262 cages per unit cell; cubic structure II (s-II) with 16 512 complicated phase diagram (2–10). Under different conditions of cages and 8 51264 cages; hexagonal structure H (s-H) with 3 512 cages, pressure (P)andtemperature(T), there are 17 experimentally estab- 2435663 cages, and 1 51268 cage; tetragonal structure T (s-T) with 2 lished crystalline phases of ice so far (2, 3, 11). Among them, ice XI 425864 cages; and tetragonal structure K (s-K) with 6 512 cages, 4 51263 has the lowest mass density of 0.930 g/cm3 and forms a proton- cages, and 4 51262 cages per unit cell, respectively. Usually, the clathrate ordered phase at zero temperature and ambient pressure (12). At hydrates are considered as hypothetical phases of water (21, 22)and elevated temperature (72 K), ice XI transforms into a proton-disordered have to be stabilized by favorable van der Waals (vdW) interactions phase, that is, the well-known ice Ih (12). In addition, many hypo- between guest molecules and host water cages (16–18, 23). However, thetical ice phases are also predicted and wait experimental confir- Falenty and co-workers (11) recently synthesized guest-free s-II mation, for example, virtual ices i and i′ with low density (13), ice 0 clathrate (also named ice XVI) by leaching Ne atoms from the s-II as a precursor to ice nucleation (5), silica-like ice polymorphs (14), Ne clathrate. The guest-free s-II clathrate is mechanically stable at and partially ionic phase of water ice under extremely high pressure atmospheric pressure up to a temperature of 145 K and exhibits neg- (5 to 50 Mbar) (6–10). ative thermal expansion with good mechanical stability and larger Apart from pure water ices, water and various gas molecules (such lattice constants than the filled clathrate. The experimental realiza- as Ne, Ar, H2,CO2,CH4,C2H6, adamantane, and methylcyclohexane) tion of empty s-II lattice not only confirms that water molecules can form a class of nonstoichiometric inclusion compounds, namely, themselves can form loose crystalline phase with density lower than ice XI but also motivates us to further explore other possible low- 1Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian density polymorphs of water ice that are stable at low temperatures University of Technology, Ministry of Education, Dalian 116024, China. 2Department of and negative pressures. Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska, In contrast to the comprehensive knowledge of phase diagram of Lincoln, NE 68588, USA. 3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. 4Hefei water under positive pressures, the negative-pressure region of the National Laboratory for Physical Sciences at the Microscale and Collaborative diagram is much less explored (21, 22, 24, 25). Some efforts have Innovation Center of Chemistry for Energy Materials, Department of Materials Science been devoted to determining the limiting mechanical tension that and Engineering, University of Science and Technology of China, Hefei 230026, China. *These authors contribute equally to this work. the stretched liquid water can sustain before the event of nucleation †Corresponding author. E-mail: [email protected] (J.Z.); [email protected] (X.C.Z.) occurs, namely, the cavitation pressure (24–28). Classical nucleation Huang et al. Sci. Adv. 2016; 2 :e1501010 12 February 2016 1of6 RESEARCH ARTICLE theory predicted a cavitation pressure of about −1900 bar for water the guest-free s-III unit cell. The fractional coordinates of the s-III at room temperature (25, 26). A large negative pressure of about −1400 bar clathrate are given in table S1. Real-space force constants of the in the microscopic aqueous inclusions inside a quartz matrix was re- guest-free s-III clathrate were calculated by using the density function- ported (27). A negative pressure of −1600 bar in water capillary bridges al perturbation theory as implemented in Vienna Ab initio Simulation was also measured with an atomic force microscope (28). Package (VASP). The phonon dispersion was then computed from Besides the stretched liquid water, guest-free clathrates can be re- the real-space force constants using the Phonopy package (32) (see garded as low-density phases of water ice that exist in the negative- fig. S1). No imaginary frequency is found within the entire Brillouin pressure region of the phase diagram (21, 22, 29, 30) and have been zone, confirming its dynamic stability. investigated by classical molecular dynamics (MD) simulations. To investigate the competition of different low-density ice poly- Jacobson et al.(29) established a P-T phase diagram with inclusion morphs, here we took ice XI (12) as reference and considered a num- of liquid water, ice Ih, and s-I and s-II clathrates and concluded that ber of guest-free ice clathrates, that is, s-I, s-II, s-H (19), s-K (20), SGT guest-free s-II clathrate is the stable phase of water at P ≤−1320 bar (sigma-2) as a silica analog (33), s-T (15),ands-III,aswellasvirtual and T ≤ 275 K. Using TIP4P/2005 (four-point transferable intermolecular ice i (13) for comparison, which are displayed in fig. S2. Their equi- potential/2005) model (31), Conde et al.(21) found that the sequence librium volume of unit cell, average O-O distance, mass density, and of stable phases of water at negative pressure is ice XI, s-II, and s-H clath- lattice cohesive energy from DFT calculations are summarized in Table rates.
Recommended publications
  • Proton Ordering and Reactivity of Ice
    1 Proton ordering and reactivity of ice Zamaan Raza Department of Chemistry University College London Thesis submitted for the degree of Doctor of Philosophy September 2012 2 I, Zamaan Raza, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 3 For Chryselle, without whom I would never have made it this far. 4 I would like to thank my supervisors, Dr Ben Slater and Prof Angelos Michaelides for their patient guidance and help, particularly in light of the fact that I was woefully unprepared when I started. I would also like to express my gratitude to Dr Florian Schiffmann for his indispens- able advice on CP2K and quantum chemistry, Dr Alexei Sokol for various discussions on quantum mechanics, Dr Dario Alfé for his incredibly expensive DMC calculations, Drs Jiri Klimeš and Erlend Davidson for advice on VASP, Matt Watkins for help with CP2K, Christoph Salzmann for discussions on ice, Dr Stefan Bromley for allowing me to work with him in Barcelona and Drs Aron Walsh, Stephen Shevlin, Matthew Farrow and David Scanlon for general help, advice and tolerance. Thanks and also apologies to Stephen Cox, with whom I have collaborated, but have been unable to contribute as much as I should have. Doing a PhD is an isolating experience (more so in the Kathleen Lonsdale building), so I would like to thank my fellow students and friends for making it tolerable: Richard, Tiffany, and Chryselle. Finally, I would like to acknowledge UCL for my funding via a DTA and computing time on Legion, the Materials Chemistry Consortium (MCC) for computing time on HECToR and HPC-Europa2 for the opportunity to work in Barcelona.
    [Show full text]
  • Arxiv:2004.08465V2 [Cond-Mat.Stat-Mech] 11 May 2020
    Phase equilibrium of liquid water and hexagonal ice from enhanced sampling molecular dynamics simulations Pablo M. Piaggi1 and Roberto Car2 1)Department of Chemistry, Princeton University, Princeton, NJ 08544, USA a) 2)Department of Chemistry and Department of Physics, Princeton University, Princeton, NJ 08544, USA (Dated: 13 May 2020) We study the phase equilibrium between liquid water and ice Ih modeled by the TIP4P/Ice interatomic potential using enhanced sampling molecular dynamics simulations. Our approach is based on the calculation of ice Ih-liquid free energy differences from simulations that visit reversibly both phases. The reversible interconversion is achieved by introducing a static bias potential as a function of an order parameter. The order parameter was tailored to crystallize the hexagonal diamond structure of oxygen in ice Ih. We analyze the effect of the system size on the ice Ih-liquid free energy differences and we obtain a melting temperature of 270 K in the thermodynamic limit. This result is in agreement with estimates from thermodynamic integration (272 K) and coexistence simulations (270 K). Since the order parameter does not include information about the coordinates of the protons, the spontaneously formed solid configurations contain proton disorder as expected for ice Ih. I. INTRODUCTION ture forms in an orientation compatible with the simulation box9. The study of phase equilibria using computer simulations is of central importance to understand the behavior of a given model. However, finding the thermodynamic condition at II. CRYSTAL STRUCTURE OF ICE Ih which two or more phases coexist is particularly hard in the presence of first order phase transitions.
    [Show full text]
  • Herbert Ponting; Picturing the Great White South
    City University of New York (CUNY) CUNY Academic Works Dissertations and Theses City College of New York 2014 Herbert Ponting; Picturing the Great White South Maggie Downing CUNY City College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/cc_etds_theses/328 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] The City College of New York Herbert Ponting: Picturing the Great White South Submitted in partial fulfillment of the requirements for the degree of Master of Arts of the City College of the City University of New York. by Maggie Downing New York, New York May 2014 Dedicated to my Mother Acknowledgments I wish to thank, first and foremost my advisor and mentor, Prof. Ellen Handy. This thesis would never have been possible without her continuing support and guidance throughout my career at City College, and her patience and dedication during the writing process. I would also like to thank the rest of my thesis committee, Prof. Lise Kjaer and Prof. Craig Houser for their ongoing support and advice. This thesis was made possible with the assistance of everyone who was a part of the Connor Study Abroad Fellowship committee, which allowed me to travel abroad to the Scott Polar Research Institute in Cambridge, UK. Special thanks goes to Moe Liu- D'Albero, Director of Budget and Operations for the Division of the Humanities and the Arts, who worked the bureaucratic college award system to get the funds to me in time.
    [Show full text]
  • Evasive Ice X and Heavy Fermion Ice XII: Facts and Fiction About High
    Physica B 265 (1999) 113—120 Evasive ice X and heavy fermion ice XII: facts and fiction about high-pressure ices W.B. Holzapfel* Fachbereich Physik, Universita( t-GH Paderborn, D-33095 Paderborn, Germany Abstract Recent theoretical and experimental results on the structure and dynamics of ice in wide regions of pressure and temperature are compared with earlier models and predictions to illustrate the evasive nature of ice X, which was originally introduced as completely ordered form of ice with short single centred hydrogen bonds isostructural CuO. Due to the lack of experimental information on the proton ordering in the pressure and temperature region for the possible occurrence of ice X, effects of thermal and quantum delocalization are discussed with respect to the shape of the phase diagram and other structural models consistent with present optical and X-ray data for this region. Theoretical evidences for an additional orthorhombic modification (ice XI) at higher pressures are confronted with various reasons supporting a delocalization of the protons in the form of a heavy fermion system with very unique physical properties characterizing this fictitious new phase of ice XII. ( 1999 Elsevier Science B.V. All rights reserved. Keywords: Ices; Hydrogen bonds; Phase diagram; Equation of states 1. Introduction tunnelling [2]. Detailed Raman studies on HO and DO ice VIII to pressures in the range of The first in situ X-ray studies on HO and DO 50 GPa [3] revealed the expected softening in the ice VII under pressures up to 20 GPa [1] together molecular stretching modes and led to the deter- with a simple twin Morse potential (TMP) model mination of a critical O—H—O bond length of " for protons or deuterons in hydrogen bonds [2] R# 232 pm, where the central barrier of the effec- allowed almost 26 years ago first speculations tive double-well potential should disappear [4].
    [Show full text]
  • Novel Hydraulic Structures and Water Management in Iran: a Historical Perspective
    Novel hydraulic structures and water management in Iran: A historical perspective Shahram Khora Sanizadeh Department of Water Resources Research, Water Research Institute������, Iran Summary. Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. This paper intends to acquaint the readers with some of the famous Iranian historical water monuments. Keywords. Historic – Water – Monuments – Iran – Qanat – Ab anbar – Dam. Structures hydrauliques et gestion de l’eau en Iran : une perspective historique Résumé. L’Iran est situé dans une région aride, semi-aride. La répartition défavorable des eaux de surface a conduit la population iranienne à créer de meilleures conditions d’utilisation d’une ressource aussi vitale que l’eau pour faire face à la demande et aux fluctuations des débits saisonniers annuels. Ce travail vise à faire connaître certains des monuments hydrauliques historiques parmi les plus fameux de l’Iran. Mots-clés. Historique – Eau – Monuments – Iran – Qanat – Ab anbar – Barrage. I - Introduction Iran is located in an arid, semi-arid region. Due to the unfavorable distribution of surface water, to fulfill water demands and fluctuation of yearly seasonal streams, Iranian people have tried to provide a better condition for utilization of water as a vital matter. Iran is located in the south of Asia between 44º 02´ and 63º 20´ eastern longitude and 25º 03´ to 39º 46´ northern latitude. The country covers an area of about 1.648 million km2.
    [Show full text]
  • 11Th International Conference on the Physics and Chemistry of Ice, PCI
    11th International Conference on the Physics and Chemistry of Ice (PCI-2006) Bremerhaven, Germany, 23-28 July 2006 Abstracts _______________________________________________ Edited by Frank Wilhelms and Werner F. Kuhs Ber. Polarforsch. Meeresforsch. 549 (2007) ISSN 1618-3193 Frank Wilhelms, Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstrasse, D-27568 Bremerhaven, Germany Werner F. Kuhs, Universität Göttingen, GZG, Abt. Kristallographie Goldschmidtstr. 1, D-37077 Göttingen, Germany Preface The 11th International Conference on the Physics and Chemistry of Ice (PCI- 2006) took place in Bremerhaven, Germany, 23-28 July 2006. It was jointly organized by the University of Göttingen and the Alfred-Wegener-Institute (AWI), the main German institution for polar research. The attendance was higher than ever with 157 scientists from 20 nations highlighting the ever increasing interest in the various frozen forms of water. As the preceding conferences PCI-2006 was organized under the auspices of an International Scientific Committee. This committee was led for many years by John W. Glen and is chaired since 2002 by Stephen H. Kirby. Professor John W. Glen was honoured during PCI-2006 for his seminal contributions to the field of ice physics and his four decades of dedicated leadership of the International Conferences on the Physics and Chemistry of Ice. The members of the International Scientific Committee preparing PCI-2006 were J.Paul Devlin, John W. Glen, Takeo Hondoh, Stephen H. Kirby, Werner F. Kuhs, Norikazu Maeno, Victor F. Petrenko, Patricia L.M. Plummer, and John S. Tse; the final program was the responsibility of Werner F. Kuhs. The oral presentations were given in the premises of the Deutsches Schiffahrtsmuseum (DSM) a few meters away from the Alfred-Wegener-Institute.
    [Show full text]
  • Anomalous Pressure-Induced Transition(S) in Ice XI
    PHYSICAL REVIEW LETTERS week ending VOLUME 92, NUMBER 10 12 MARCH 2004 Anomalous Pressure-Induced Transition(s) in Ice XI Koichiro Umemoto,1,2 Renata M. Wentzcovitch,1,2 Stefano Baroni,1 and Stefano de Gironcoli1 1SISSA–Scuola Internazionale Superiore di Studi Avanzati and INFM-DEMOCRITOS National Simulation Center, I-34014 Trieste, Italy 2Department of Chemical Engineering and Material Science and Minnesota Supercomputer Institute for Digital Simulation and Advanced Computation, University of Minnesota, Minneapolis, Minnesota 55455, USA (Received 23 May 2003; published 12 March 2004) The effects of pressure on the structure of ice XI — an ordered form of the phase of ice Ih, which is known to amorphize under pressure — are investigated theoretically using density-functional theory. We find that pressure induces a mechanical instability, which is initiated by the softening of an acoustic phonon occurring at an incommensurate wavelength, followed by the collapse of the entire acoustic band and by the violation of the Born stability criteria. It is argued that phonon collapse may be a quite general feature of pressure-induced amorphization. The implications of our findings for the amorph- ization of ice Ih are also discussed. DOI: 10.1103/PhysRevLett.92.105502 PACS numbers: 63.20.Dj, 64.70.Rh, 83.80.Nb Ice Ih is the first system which was observed to effects of hydrogen disorder, and draw a parallel between amorphize under pressure [1]. It was soon argued that our results and those previously obtained in -quartz. this behavior was related with the negative Clapeyron The structure of ice Ih consists of a hexagonal diamond slope of the melting line of ice Ih and that amorphiza- lattice of oxygen atoms with one hydrogen atom placed at tion would occur at the metastable extension of this line random in one of the two energy minima existing in in the stability field of another high-pressure phase.
    [Show full text]
  • Multi-Year Arctic Sea Ice Classification Using Quikscat
    Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science David G. Long, Chair Richard W. Christiansen Brian A. Mazzeo Department of Electrical and Computer Engineering Brigham Young University August 2011 Copyright © 2011 Aaron M. Swan All Rights Reserved ABSTRACT Multi-year Arctic Sea Ice Classification Using QuikSCAT Aaron M. Swan Department of Electrical and Computer Engineering Master of Science Long term trends in Arctic sea ice are of particular interest with regard to global tem- perature, climate change, and industry. This thesis uses microwave scatterometer data from QuikSCAT and radiometer data to analyze intra- and interannual trends in first-year and multi-year Arctic sea ice. It develops a sea ice type classification method. The backscatter of first-year and multi-year sea ice are clearly identifiable and are observed to vary seasonally. Using an average of the annual backscatter trends obtained from QuikSCAT, a classification of multi-year ice is obtained which is dependent on the day of the year (DOY). Validation of the classification method is done using regional ice charts from the Canadian Ice Service. Differences in ice classification are found to be less than 6% during the winters of 06-07, 07-08, and the end of 2008. Anomalies in the distribution of sea ice backscatter from year to year suggest a reduction in multi-year ice cover between 2003 and 2009 and an approximately equivalent increase in first-year ice cover.
    [Show full text]
  • Ice Ic Without Stacking Disorder by Evacuating Hydrogen from Hydrogen Hydrate
    ARTICLE https://doi.org/10.1038/s41467-020-14346-5 OPEN Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate Kazuki Komatsu 1*, Shinichi Machida2, Fumiya Noritake3,4, Takanori Hattori5, Asami Sano-Furukawa5, Ryo Yamane1, Keishiro Yamashita1 & Hiroyuki Kagi1 Water freezes below 0 °C at ambient pressure ordinarily to ice Ih, with hexagonal stacking sequence. Under certain conditions, ice with a cubic stacking sequence can also be formed, 1234567890():,; but ideal ice Ic without stacking-disorder has never been formed until recently. Here we demonstrate a route to obtain ice Ic without stacking-disorder by degassing hydrogen from the high-pressure form of hydrogen hydrate, C2, which has a host framework isostructural with ice Ic. The stacking-disorder free ice Ic is formed from C2 via an intermediate amorphous or nano-crystalline form under decompression, unlike the direct transformations occurring in ice XVI from neon hydrate, or ice XVII from hydrogen hydrate. The obtained ice Ic shows remarkable thermal stability, until the phase transition to ice Ih at 250 K, originating from the lack of dislocations. This discovery of ideal ice Ic will promote understanding of the role of stacking-disorder on the physical properties of ice as a counter end-member of ice Ih. 1 Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. 2 Neutron Science and Technology Center, CROSS, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan. 3 Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
    [Show full text]
  • Ice Engineering and Avalanche Forecasting and Control Gold, L
    NRC Publications Archive Archives des publications du CNRC Ice engineering and avalanche forecasting and control Gold, L. W.; Williams, G. P. This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Publisher’s version / Version de l'éditeur: Technical Memorandum (National Research Council of Canada. Division of Building Research); no. DBR-TM-98, 1969-10-23 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb https://publications-cnrc.canada.ca/fra/voir/objet/?id=50c4a1f1-0608-4db2-9ccd-74b038ef41bb Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées.
    [Show full text]
  • Interpolar Transnational Art Science States
    ART I N AN TA R C T I C A , A SE R I E S O F CO N F E R E N C E S … P. 4 @rt Outsiders September 2008 - 9th year www.art-outsiders.com Tel : +33 (0)1 44 78 75 00 Maison Européenne de la Photographie 5-7 rue de Fourcy – 75 004 Paris M° Saint-Paul ou Pont-Marie / Bus 67, 69, 96 ou 76 I N T E R P O L A R A RT 24 September 2008 - 12 October 2008 with Marko Peljhan and Annick Bureaud, Bureau d’études, Ewen Chardronnet, Andrea Polli, Catherine Rannou. The extreme in the centre by Annick Bure a u d rom the very first polar expeditions, artists have contributed to the imaginary surrounding the FEarth’s “extremities” and their work has fed a sense of the sublime and of romanticism. Such a romantic vision endures, fuelled by adventurers of the extreme, who set out crossing, alone, the antarctic continent, the touching (and a n t h ropomorphic) image of penguins, the deadly beauty of the environment conveyed by thousands of images of “icy white”, and by the fact that Antarctica is now threatened by global warming and our pollution, that this last huge, supposedly virg i n , territory is in danger. To create in or about Antarctica today is as much a political as an artistic act, just as it was in the 19th or early 20th century. Except today the continent faces quite a diff e r ent reality and our approaches are p r obably more varied, more contradictory, more complex; burdened with numerous clichés all the I-TASC - The Arctic Perspective more enduring for being mostly true.
    [Show full text]
  • Evaluations of Cultural Properties
    WHC-04/28COM/INF.14A UNESCO WORLD HERITAGE CONVENTION WORLD HERITAGE COMMITTEE 28th ordinary session (28 June – 7 July 2004) Suzhou (China) EVALUATIONS OF CULTURAL PROPERTIES Prepared by the International Council on Monuments and Sites (ICOMOS) The IUCN and ICOMOS evaluations are made available to members of the World Heritage Committee. A small number of additional copies are also available from the secretariat. Thank you 2004 WORLD HERITAGE LIST Nominations 2004 I NOMINATIONS OF MIXED PROPERTIES TO THE WORLD HERITAGE LIST A Europe – North America Extensions of properties inscribed on the World Heritage List United Kingdom – [N/C 387 bis] - St Kilda (Hirta) 1 B Latin America and the Caribbean New nominations Ecuador – [N/C 1124] - Cajas Lakes and the Ruins of Paredones 5 II NOMINATIONS OF CULTURAL PROPERTIES TO THE WORLD HERITAGE LIST A Africa New nominations Mali – [C 1139] - Tomb of Askia 9 Togo – [C 1140] - Koutammakou, the Land of the Batammariba 13 B Arab States New nominations Jordan – [C 1093] - Um er-Rasas (Kastron Mefa'a) 17 Properties deferred or referred back by previous sessions of the World Heritage Committee Morocco – [C 1058 rev] See addendum: - Portuguese City of El Jadida (Mazagan) WHC-04/28.COM/INF.15A Add C Asia – Pacific New nominations Australia – [C 1131] - Royal Exhibition Building and Carlton Gardens 19 China – [C 1135] - Capital Cities and Tombs of the Ancient Koguryo Kingdom 24 India – [C 1101] - Champaner-Pavagadh Archaeological Park 26 Iran – [C 1106] - Pasargadae (Pasargad) 30 Japan – [C 1142] - Sacred Sites
    [Show full text]