Isolation of Fungal Cellulase Gene Transcript from Penicillium Spinulosum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies
agronomy Review Ergot Alkaloids Mycotoxins in Cereals and Cereal-Derived Food Products: Characteristics, Toxicity, Prevalence, and Control Strategies Sofia Agriopoulou Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; [email protected]; Tel.: +30-27210-45271 Abstract: Ergot alkaloids (EAs) are a group of mycotoxins that are mainly produced from the plant pathogen Claviceps. Claviceps purpurea is one of the most important species, being a major producer of EAs that infect more than 400 species of monocotyledonous plants. Rye, barley, wheat, millet, oats, and triticale are the main crops affected by EAs, with rye having the highest rates of fungal infection. The 12 major EAs are ergometrine (Em), ergotamine (Et), ergocristine (Ecr), ergokryptine (Ekr), ergosine (Es), and ergocornine (Eco) and their epimers ergotaminine (Etn), egometrinine (Emn), egocristinine (Ecrn), ergokryptinine (Ekrn), ergocroninine (Econ), and ergosinine (Esn). Given that many food products are based on cereals (such as bread, pasta, cookies, baby food, and confectionery), the surveillance of these toxic substances is imperative. Although acute mycotoxicosis by EAs is rare, EAs remain a source of concern for human and animal health as food contamination by EAs has recently increased. Environmental conditions, such as low temperatures and humid weather before and during flowering, influence contamination agricultural products by EAs, contributing to the Citation: Agriopoulou, S. Ergot Alkaloids Mycotoxins in Cereals and appearance of outbreak after the consumption of contaminated products. The present work aims to Cereal-Derived Food Products: present the recent advances in the occurrence of EAs in some food products with emphasis mainly Characteristics, Toxicity, Prevalence, on grains and grain-based products, as well as their toxicity and control strategies. -
Penicillium on Stored Garlic (Blue Mold)
Penicillium on stored garlic (Blue mold) Cause Penicillium hirsutum Dierckx (syn. P.corymbiferum Westling) Occurrence P. hirsutum seems to be the most common and widespread species occurring in storage. This disease occurs at harvest and in storage. Symptoms In storage, initial symptoms are seen as water soaked areas on the outer surfaces of scales. This leads to development of the green-blue, powdery mold on the surface of the lesions. When the bulbs are cut, these lesions are seen as tan or grey colored areas. There may be total deterioration with a secondary watery rot. Penicillium sp. causing a blue-green rot of a garlic head Photo by Melodie Putnam Penicillium sp. on garlic clove Photo by Melodie Putnam Disease Cycle Penicillium survives in infected bulbs and cloves from one season to the next. Spores from infected heads are spread when they are cracked prior to planting. If slightly infected cloves are planted, they may rot before plants come up, or the seedlings may not survive. The fungus does not persist in the soil. Close-up of Penicillium sp. on garlic headad Air-borne spores often invade plants through Photo by Melodie Putnam wounds, bruises or uncured neck tissue. In storage, infection on contact is through surface wounds or through the basal plate; the fungus grows through the fleshy tissue and sporulation occurs on the surface of the lesions. Entire cloves may eventually be filled with spores. Susan B. Jepson, OSU Plant Clinic, 1089 Cordley Hall, Oregon State University, Corvallis, OR 97331-2903 10/23/2008 Management ● Cure bulbs rapidly at harvest ● Avoid wounds or injury to bulbs at harvest, and separate those with insect damage ● Plant cloves soon after cracking heads ● Eliminate infected seed prior to planting ● Store at low temperatures (40 F prevents growth and sporulation), with low humidity and good ventilation References Bertolini, P. -
Identification and Nomenclature of the Genus Penicillium
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. -
Penicillium Digitatum Metabolites on Synthetic Media and Citrus Fruits
J. Agric. Food Chem. 2002, 50, 6361−6365 6361 Penicillium digitatum Metabolites on Synthetic Media and Citrus Fruits MARTA R. ARIZA,† THOMAS O. LARSEN,‡ BENT O. PETERSEN,§ JENS Ø. DUUS,§ AND ALEJANDRO F. BARRERO*,† Department of Organic Chemistry, University of Granada, Avdn. Fuentenueva 18071, Spain; Mycology Group, BioCentrum-DTU, Søltofts Plads, Technical University of Denmark, 2800 Lyngby, Denmark; and Carlsberg Research Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark Penicillium digitatum has been cultured on citrus fruits and yeast extract sucrose agar media (YES). Cultivation of fungal cultures on solid medium allowed the isolation of two novel tryptoquivaline-like metabolites, tryptoquialanine A (1) and tryptoquialanine B (2), also biosynthesized on citrus fruits. Their structural elucidation is described on the basis of their spectroscopic data, including those from 2D NMR experiments. The analysis of the biomass sterols led to the identification of 8-12. Fungal infection on the natural substrates induced the release of citrus monoterpenes together with fungal volatiles. The host-pathogen interaction in nature and the possible biological role of citrus volatiles are also discussed. KEYWORDS: Citrus fruits; Penicillium digitatum; quivaline metabolites; tryptoquivaline; P. digitatum sterols; phenylacetic acid derivatives; volatile metabolites INTRODUCTION obtained from a Hewlett-Packard 5972A mass spectrometer using an ionizing voltage of 70 eV, coupled to a Hewlett-Packard 5890A gas P. digitatum grows on the surface of postharvested citrus fruits chromatograph. producing a characteristic powdery olive-colored conidia and Preparation of TMS Derivatives and Analysis by GC-MS. TMS is commonly known as green-mold. This pathogen is of main derivatives were obtained according to the procedure previously concern as it is responsible for 90% of citrus losses due to described (7). -
Lactic Acid Bacteria As Bioprotective Agents Against Foodborne Pathogens and Spoilage Microorganisms in Fresh Fruit and Vegetabl
LACTIC ACID BACTERIA AS BIOPROTECTIVE AGENTS AGAINST FOODBORNE PATHOGENS AND SPOILAGE MICROORGANISMS IN FRESH FRUITS AND VEGETABLES Rosalia TRIAS MANSILLA ISBN: 978-84-691-5683-4 Dipòsit legal: GI-1099-2008 Universitat de Girona Doctoral Thesis Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables Rosalia Trias Mansilla 2008 Departament d’Enginyeria Química, Agrària i Tecnologia Agroalimentària Institut de Tecnologia Agroalimentària Doctoral Thesis Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables Memòria presentada per Rosalia Trias Mansilla, inscrita al programa de doctorat de Ciències Experimentals i de la Salut, itinerari Biotecnologia, per optar al grau de Doctor per la Universitat de Girona Rosalia Trias Mansilla 2008 Lluís Bañeras Vives, professor titular de l’àrea de Microbiologia del Departament de Biologia, i Esther Badosa Romañó , professora de l’àrea de Producció Vegetal del Departament d’Enginyeria Química, Agrària i Tecnologia Agroalimentària, ambdós de la Universitat de Girona CERTIFIQUEN Que la llicenciada en Biologia Rosalia Trias Mansilla ha dut a terme, sota la seva direcció, el treball amb el títol “Lactic acid bacteria as bioprotective agents against foodborne pathogens and spoilage microorganisms in fresh fruits and vegetables”, que presenta en aquesta memòria la qual constitueix la seva Tesi per a optar al grau de Doctor per la Universitat de Girona. I per -
Fact-Sheet-Garlic-Post-Harvest-Final
EXTENSION AND ADVISORY TEAM FACT SHEET APRIL 2020 | ©Perennia 2020 GARLIC STORAGE, POST-HARVEST DISEASES, AND PLANTING STOCK CONSIDERATIONS By Rosalie Gillis-Madden1, Sajid Rehmen1, P.D. Hildebrand2 1Perennia Food and Agriculture, 2Hildebrand Disease Management Once post-harvest disease manifests in garlic, there is the drying process and creating ideal conditions for fungal little to be done, so it is best to avoid creating conditions infection. Optimal curing temperatures are 24-29ºC or that are conducive to disease development in the first 75-85ºF. Using forced ambient air (5 ft3/min/ft3 of garlic) place. Disease management starts in the field by ensuring will significantly reduce drying time. Curing can take 10-14 appropriate harvest timing and good harvest practices. days, longer if the relative humidity is high. Stems can be either cut before or after curing, whichever optimizes labour efficiency on your farm. If curing in containers, Harvest make sure that they are open enough to allow for good To avoid post-harvest disease in your garlic, harvest timing airflow. Garlic should not be stacked more than three feet is important. While garlic should be left in the ground long high in a container to avoid bruising. Curing is complete enough to maximize yield, it is important that the cloves when two outer skins (scales) are dry and crispy, the neck is do not start to separate from the stem, as this will reduce constricted, and the centre of the cut stem is hard. marketability and storability. A wetter year will cause the cloves to separate quicker than is typically expected so as harvest nears, be sure to check your crop regularly. -
Penicillium Expansum
Acknowledgements THÈSE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par Institut National Polytechnique De Toulouse Discipline ou spécialité : Ingénieries microbiennes et enzymatique Présentée et soutenue par Muhammad Hussnain SIDDIQUE Le 05/11/2012 Study of the biosynthesis pathway of the geosmin in Penicillium expansum JURY M. AZIZ Aziz Maître de Conférences, Université de Reims Champagne-Ardenne M. HAFIDI Mohamed Professeur, Université de Bordeaux Mme. MATHIEU Florence Professeur, Université de Toulouse M. LEBRIHI Ahmed Professeur, Université de Toulouse Ecole doctorale : École doctorale: Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries Unité de recherche : LGC UMR 5503 (CNRS/UPS/INPT) Directeur de Thèse : Pr. LEBRIHI Ahmed (INP-ENSAT) Co-Directeur de Thèse : Dr. LIBOZ Thierry (INP-ENSAT) 1 Acknowledgements Acknowledgements First of all I am thankful to the almighty ALLAH, whose blessings are always with me. I offer my humble thanks from the deepest core of my heart to Holy Prophet Muhammad (Peace be upon him) who is forever a torch of guidance and knowledge for humanity as a whole. I have the deepest sense of gratitude to my Saain Gee Soofi Nisar Ahmad Dogar Naqshbandi Khaliqi who has always been a source of elevation in my whole life. My sincere appreciation goes to my supervisor Professor Ahmed LEBRIHI and co- supervisor Doctor Thierry LIBOZ, whose scientific approach, careful reading and constructive comments were valuable. Their timely and efficient contributions helped me to shape my research work into its final form and I express my sincerest appreciation for their assistance in any way that I may have asked. -
Identification and Nomenclature of the Genus Penicillium
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. -
New Isolated Metschnikowia Pulcherrima Strains from Apples for Postharvest Biocontrol of Penicillium Expansum and Patulin Accumulation
toxins Article New Isolated Metschnikowia pulcherrima Strains from Apples for Postharvest Biocontrol of Penicillium expansum and Patulin Accumulation Laura Settier-Ramírez 1,2,*, Gracia López-Carballo 1, Pilar Hernández-Muñoz 1 , Angélique Fontana 2 , Caroline Strub 2,* and Sabine Schorr-Galindo 2 1 Packaging Lab., Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain; [email protected] (G.L.-C.); [email protected] (P.H.-M.) 2 Qualisud, University Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34095 Montpellier, France; [email protected] (A.F.); [email protected] (S.S.-G.) * Correspondence: [email protected] (L.S.-R.); [email protected] (C.S.); Tel.: +34-963-900-022 (L.S.-R.); +33-467-143-201 (C.S.) Abstract: Wild yeasts isolated from the surface of apples were screened for antagonistic activity against Penicillium expansum, the main producer of the mycotoxin patulin. Three antagonistic yeasts (Y33, Y29 and Y24) from a total of 90 were found to inhibit P. expansum growth. Identification by ITS region sequence and characterization showed that three selected isolates of yeast should be different strains of Metschnikowia pulcherrima. Several concentrations of the selected yeasts were used to study their in vitro antifungal effectivity against P. expansum on Petri dishes (plates with 63.6 cm2 surface) whereas their potential activity on patulin reduction was studied in liquid medium. Finally, the BCA that had the best in vitro antifungal capacity against P. and the best patulin degradation capacity was Citation: Settier-Ramírez, L.; selected to be assessed directly on apples. -
New Xerophilic Species of Penicillium from Soil
Journal of Fungi Article New Xerophilic Species of Penicillium from Soil Ernesto Rodríguez-Andrade, Alberto M. Stchigel * and José F. Cano-Lira Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili (URV), Sant Llorenç 21, Reus, 43201 Tarragona, Spain; [email protected] (E.R.-A.); [email protected] (J.F.C.-L.) * Correspondence: [email protected]; Tel.: +34-977-75-9341 Abstract: Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitol- erans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic. -
Blues of the Midwest
Blues of the Midwest CJ Bienert - The Cheese Shop of Des Moines, Des Moines Iowa Mark Johnson - Wisconsin Center for Dairy Research, Madison Wisconsin US Code of Federal Regulations 133.106 Blue ≤ 46% moisture ≥ 50 FDB (fat in solids portion) Must be aged at least 60 days No legal standard for -milk type used -color -flavor -body characteristics Milk Preparation • Blue cheese can be made from any milk • Roquefort is only made from sheep milk in France and aged in specific caves • Optional milk preparations: • Pasteurization of milk • Homogenization of milk or cream •Increases flavor development •Makes cheese whiter and smoother Make Procedure •Starter bacteria are added to produce acid •Rennet is added to clot the milk •Coagulum is cut into cubes Penicillium roquefortii •Added to milk or to curd after whey drainage •Different strains produce different flavor profiles and different colors PR1 PR4 PR3 PRG2 PR5 PRG1 Provided by: PRG3 Cooking/Curd Transfer/Hooping •Curd/whey is heated •From 94ºF to 100ºF •Whey is separated from curd •Salt and mold spores may be added to dry curd •Curd is placed in “hoops” and allowed to drain •Cheeses are brined or dry salted •Cheeses are pierced Brine System Ripening Process Mold Ripened Cheese Ripen all the way through, mold needs oxygen to grow Blue Ripening Room • Moderate air flow • ~95% humidity • 59º F • ~21-30 days to grow Penicillium roqueforti Cheese Ripening Full flavored, softer mature cheese Lactose Proteins Fat Fermentation Proteolysis Lipolysis Lactic acid Peptides Fatty acids Free amino-acids -
Strong Effect of Penicillium Roqueforti Populations on Volatile and Metabolic Compounds
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974352; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1/38 1 Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds 2 responsible for aromas, flavour and texture in blue cheeses 3 4 Authors: 5 Thibault CARON1,4, Mélanie LE PIVER4, Anne-Claire PÉRON3, Pascale LIEBEN3, René 6 LAVIGNE2, Sammy BRUNEL4, Daniel ROUEYRE4, Michel PLACE4, Pascal 7 BONNARME3, Tatiana GIRAUD1*, Antoine BRANCA1*, Sophie LANDAUD3*, Christophe 8 CHASSARD2* 9 1: Ecologie Systematique Evolution, Université Paris Saclay, CNRS, AgroParisTech, 91400 10 Orsay, France 11 2: Université Clermont Auvergne, INRAE, Vetagro Sup, UMRF, 20 Côte de Reyne, 15000 12 Aurillac, France 13 3: Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 78850 Thiverval- 14 Grignon, France 15 4: Laboratoire Interprofessionnel de Production – SAS L.I.P., 34 rue de Salers, 15 000 16 Aurillac, France 17 *These authors jointly supervised the study 18 19 Corresponding author: Antoine Branca [email protected] 20 Running title: Penicillium roqueforti population impact on cheeses 21 Keywords: Roquefort cheese, fungi, Penicillium, domestication, volatile compounds 22 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.02.974352; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.