Stenocarpella Maydis: Identification, Management, and Population Diversity Martha P

Total Page:16

File Type:pdf, Size:1020Kb

Stenocarpella Maydis: Identification, Management, and Population Diversity Martha P Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Stenocarpella Maydis: Identification, Management, and Population Diversity Martha P. Romero Luna Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Plant Pathology Commons Recommended Citation Romero Luna, Martha P., "Stenocarpella Maydis: Identification, Management, and Population Diversity" (2016). Open Access Dissertations. 699. https://docs.lib.purdue.edu/open_access_dissertations/699 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Martha Patricia Romero Luna Entitled STENOCARPELLA MAYDIS: IDENTIFICATION, MANAGEMENT, AND POPULATION DIVERSITY For the degree of Doctor of Philosophy Is approved by the final examining committee: Kiersten A. Wise Chair Charles Woloshuk Mary. C. Aime James J. Camberato To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Kiersten A. Wise Approved by: Peter B. Goldsbrough 4/11/2016 Head of the Departmental Graduate Program Date i STENOCARPELLA MAYDIS: IDENTIFICATION, MANAGEMENT, AND POPULATION DIVERSITY A Dissertation Submitted to the Faculty of Purdue University by Martha P. Romero Luna In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 Purdue University West Lafayette, Indiana ii Dedico esta tesis a mi familia. A mamá, mi calma y luz en la tempestad. Gracias por enseñarme a luchar por mis sueños y a no rendirme ante la adversidad. Sin tu amor, paciencia, apoyo incondicional y sobre todo fe en mí, yo no estaría terminando este capítulo en mi vida. A mis hermanos, Ana y Rafa. Por ser mis ejemplos y guías a seguir. Gracias por ser cómplices en cada aventura de mi vida. En sus consejos siempre encontré las palabras de aliento que necesitaba para continuar. A Zack, mi balance. Gracias por caminar esta etapa de mi vida junto a mí. Por compartir alegrías y tristezas, por hacerme saber q estabas a mi lado sin importar los miles de km que había de por medio. Y por seguir junto a mí en el siguiente capítulo que nos aguarda. "La felicidad no es cuestión de intensidad si no de balance, orden, ritmo y armonía. Thomas Merton, (1915-1968). iii ACKNOWLEDGEMENTS I would like to give special thanks to my advisor, Dr. Kiersten Wise. More than advisor, across these years she became a mentor and an example to look after. Thank you for your trust, support, and guidance across these years. I also would like to acknowledge and give thanks to my committee members, to Dr. Aime, Dr. Camberato and Dr. Woloshuk for providing perspective, advice and support through my degree. Special thanks to Dr. Latin for his valuable comments and suggestions on my manuscripts. It was a pleasure to work with you during my prelims. I would also like to thank all the members of the Wise lab. I feel so lucky that I had the opportunity to work with such extraordinary people who helped me with my research across the years. Special thanks to Nolan Anderson for his suggestions in all aspects of my research and to Jeffrey Ravellette for his field technical support over the years. Special thanks to Esther. Girl you are amazing! My time here would not have been the same without you. Thank you for keeping me sane, for those long talks, for many coffees and many shared laughs. Also, special thanks to Rachel, my roommate, friend and huge support over the years. I would also like to thank Anna and Nicolette, it was a pleasure to meet you both, I’m so glad that I was able to share with you two the bitter sweet of graduate school. iv To my aunts Hilda, Quily, Gaby and Bety, and my uncle Luis. I know that every Saturday morning my mom shared with you my adventures and her worries. Thank you for always been there with the most lovely and supportive words. I would also want to thank to all the members of the Botany and Plant Pathology department, including staff, technician, secretaries, professors and graduate students, for all their help through the years. v TABLE OF CONTENTS Page LIST OF TABLES ...................................................................................................... viii LIST OF FIGURES ...................................................................................................... xi ABSTRACT ............................................................................................................... xvii CHAPTER 1. INTRODUCTION ................................................................................. 1 1.1 The Origin of Corn and Corn Production ............................................................. 1 1.1.1 United States Corn Production ......................................................................2 1.2 Diseases of Corn ................................................................................................... 2 1.3 Stenocarpella spp. ................................................................................................ 3 1.3.1 Taxonomy of S. maydis and S. macrospora ..................................................4 1.3.2 Stenocarpella spp. as corn pathogens ............................................................5 1.3.3 Mycotoxin production ...................................................................................6 1.4 History of Diplodia ear rot in the United States ................................................... 7 1.5 Management of Diplodia ear rot ........................................................................... 8 1.5.1 Genetic resistance for Diplodia ear rot ..........................................................8 1.5.2 Chemical control for Diplodia ear rot ............................................................9 1.5.3 Cultural practices for Diplodia ear rot .........................................................10 1.6 Variability within S. maydis ............................................................................... 11 1.7 Study Objectives ................................................................................................. 12 1.8 List of References ............................................................................................... 14 CHAPTER 2. DEVELOPMENT OF MOLECULAR ASSAYS FOR DETECTION OF STENOCARPELLA MAYDIS AND STENOCARPELLA MACROSPORA IN CORN ... ............................................................................................................. 29 2.1 Abstract ............................................................................................................... 29 vi Page 2.2 Introduction ........................................................................................................ 30 2.3 Materials and Methods ....................................................................................... 33 2.3.1 Fungal isolates and growth conditions ........................................................33 2.3.2 DNA extraction ............................................................................................34 2.3.3 ITS PCR and sequencing ..............................................................................35 2.3.4 Conventional PCR for the diagnosis of Stenocarpella spp. ...........................36 2.4 Results ................................................................................................................ 38 2.5 Discussion ........................................................................................................... 40 2.6 Literature cited .................................................................................................... 45 CHAPTER 3. EFFECT OF CROP ROTATION AND TILLAGE SYSTEMS ON DIPLODIA EAR ROT SEVERITY ................................................................................. 64 3.1 Introduction ........................................................................................................ 64 3.2 Materials and Methods ....................................................................................... 66 3.2.1 Data analysis ................................................................................................68 3.3 Results ................................................................................................................ 69 3.3.1 Weather conditions ......................................................................................69 3.3.2 Experimental results ....................................................................................69 3.4 Discussion ........................................................................................................... 70 3.5 Literature cited .................................................................................................... 75 CHAPTER 4. SURVIVAL OF STENOCARPELLA MAYDIS ON CORN RESIDUE IN INDIANA ............................................................................................................. 87 4.1 Introduction .......................................................................................................
Recommended publications
  • Protection Against Fungi in the Marketing of Grains and Byproducts
    Protection against fungi in the marketing of grains and byproducts Ing. Agr. Juan M. Hernandez Vieyra ARGENT EXPORT S.A. May 2nd 2011 OBJECTIVE: To supply tools to eliminate fungus and bacteria contamination in maize and soybeans: Particularly: Stenocarpella maydis Cercospora sojina 2 • Powerfull Disinfectant of great efficacy in fungus, bacteria and virus • Produced by ICA Laboratories, South Africa. • aka SPOREKILL, VIRUKILL • Registered in more than 20 countries: USA, Australia, New Zeland, Brazil, Philipines, Israel • Product scientifically and field proven, with more than 15 years in the international market. • Registered at SENASA • Certifications: ISO 9001, GMP. 3 Properties of Sportek: – Based on a novel and patented quaternary amonio compound sintesis : didecil dimetil amonium chloride. – Excellent biodegradability thus, low environmental impact. – Really non corrosive and non oxidative. – Non toxic at recommended dosis . – Minimum inhibition concentration has a very low toxicity, LD 50>4000mg/Kg., lower than table salt. – High content of surfactants with excellent wetting capacity and penetration. – High efficacy in presence of organic matter, also with hard waters and heavy soils. – Non dependent of pH and is effective under a wide range of temperatures. 4 What is Sportek used for: To disinfect a wide spectrum of surfaces and feeds against: • Virus, • Bacteria, • Mycoplasma, • yeast, • Algae, • Fungus. 5 Where Sportek has been proven: VIRUKILL ES EFECTIVO CONTRA LOS VIRUS DE AVICULTURA, BACTERIAS HONGOS Y GRUPOS DE FAMILIA DE MICOPLASMA Hongos, levadura y EJEMPLOS DE VIRUS EJEMPLOS DE BACTERIAS ejemplos de Grupos de familia Ejemplos de Acinetobacter Ornithobacterium micoplasma patógenos anitratus rhinotracheale Birnaviridae Gumboro (IBD) Bacillus subtilis Pasteurella spores multocida Caliciviridae Feline calicivirus Bacilillus subtilis Pasteurella Aspergillus Níger vegetative volantium Coronaviridae Infectious bronchitis Bordatella spp.
    [Show full text]
  • Fusarium Graminearum ~4(Final)-1
    MARCH 2016 Fusarium graminearum (Fusarium Head Blight ) T. Kelly Turkington1, Andrew Petran2, Tania Yonow3,4, and Darren J. Kriticos3,4 1 Lacombe Research Centre and Beaverlodge Research Farm, Agriculture and Agri‐Food Canada, Lacombe, Alberta, Canada 2 Department of Horticultural Sciences, University of Minnesota, St. Paul, MN, USA 3 HarvestChoice, InSTePP, University of Minnesota, St. Paul, MN, USA 4 CSIRO, Biosecurity and Agriculture Flagships, Canberra, Australia Background Information Introduction Common Names: Fusarium graminearum Schwabe [teleomorph Gibberella Fusarium head blight; FHB, head blight of maize zeae (Schweinitz) Petch], is of world‐wide importance on small grain cereals and corn, occurring under a wide Scientiic Name: range of soil and environmental conditions (CAB Fusarium graminearum (anamorph = asexual stage), International 2003; Gilchrist and Dubin 2002; Parry et al. Gibberella zeae (teleomorph = sexual stage) 1995; Stack 2003). Since the early 1990s, fusarium head blight (FHB) caused primarily by F. graminearum has Synonyms: become one of the most signiicant cereal diseases faced Botryosphaeria saubinetii, Dichomera saubinetii, by producers in central Canada and the prairie region, Dothidea zeae, Fusarium roseum, Gibbera saubinetii, and the midwestern United States (e.g., Gilbert and Gibberella roseum, Gibberella saubinetii, Sphaeria Tekauz 2000; McMullen et al. 1997b; Tekauz et al. 2000). saubinetii, Sphaeria zeae Fusarium graminearum was identiied by CIMMYT to be a Taxonomy: major limiting factor to wheat production in many parts Kingdom: Animalia; Phylum: Ascomycota; of the world (Stack 1999). The fungus can produce Class: Sordariomycetes; Order: Hypocreales; several mycotoxins, including deoxynivalenol (DON) and Family: Nectriaceae zearalenone. In non‐ruminants, feed contaminated with DON can reduce growth rates, while zearalenone can Crop Hosts: cause reproductive problems (Charmley et al.
    [Show full text]
  • Maize Ear Rot and Associated Mycotoxins in Western
    MAIZE EAR ROT AND ASSOCIATED MYCOTOXINS IN WESTERN KENYA SAMMY AJANGA A thesis submitted in partial fulfilment of the requirements of the university of Greenwich for the Degree of Doctor of Philosophy December 1999 The research reported in this thesis was funded by the united Kingdom department forInternational development (DFID) forthe benefitof developing countries. The views expressed are not necessarily those ofDFID. [Cropprotection programme (R6582)] I certifythat this work has not been accepted in substance forany degree, and is not concurrently submitted for any degree other than of Doctor of Philosophy (PhD) of the university of Greenwich. I also declare that this work is the result of my own investigations except where otherwise stated. ll Dedicated to my family and parents Acknowledgements I would like to express my sincere gratitude to my supervisor, Dr. Rory Hillocks for his excellent supervision, guidance, kindness and encouragement through this study and preparation of this manuscript. I wish to thank Mr. Martin Nagler for his great support, supervision and guidance. His suggestions, comments and constructive criticism and assistance with the laboratory experimental know how is sincerely appreciated. I express my thanks to Dr. Angela Julian for her invaluable suggestions and contributions at the beginning of this study. I would like to register my thanks to the technical staff at KARI-Kakamega, Mr. G. Ambani and J. Awino for their tireless field visits and assistance in data collection. I am also grateful for the teamwork spirit, assistance, co-operation and friendliness accorded to me at all times by the KARI staff and the staff from the Ministry of Agriculture in Bungoma and Nandi Districts.
    [Show full text]
  • APP202274 S67A Amendment Proposal Sept 2018.Pdf
    PROPOSAL FORM AMENDMENT Proposal to amend a new organism approval under the Hazardous Substances and New Organisms Act 1996 Send by post to: Environmental Protection Authority, Private Bag 63002, Wellington 6140 OR email to: [email protected] Applicant Damien Fleetwood Key contact [email protected] www.epa.govt.nz 2 Proposal to amend a new organism approval Important This form is used to request amendment(s) to a new organism approval. This is not a formal application. The EPA is not under any statutory obligation to process this request. If you need help to complete this form, please look at our website (www.epa.govt.nz) or email us at [email protected]. This form may be made publicly available so any confidential information must be collated in a separate labelled appendix. The fee for this application can be found on our website at www.epa.govt.nz. This form was approved on 1 May 2012. May 2012 EPA0168 3 Proposal to amend a new organism approval 1. Which approval(s) do you wish to amend? APP202274 The organism that is the subject of this application is also the subject of: a. an innovative medicine application as defined in section 23A of the Medicines Act 1981. Yes ☒ No b. an innovative agricultural compound application as defined in Part 6 of the Agricultural Compounds and Veterinary Medicines Act 1997. Yes ☒ No 2. Which specific amendment(s) do you propose? Addition of following fungal species to those listed in APP202274: Aureobasidium pullulans, Fusarium verticillioides, Kluyveromyces species, Sarocladium zeae, Serendipita indica, Umbelopsis isabellina, Ustilago maydis Aureobasidium pullulans Domain: Fungi Phylum: Ascomycota Class: Dothideomycetes Order: Dothideales Family: Dothioraceae Genus: Aureobasidium Species: Aureobasidium pullulans (de Bary) G.
    [Show full text]
  • Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road
    pathogens Review Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road Michelle E. H. Thompson and Manish N. Raizada * Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-519-824-4120 (ext. 53396) Received: 19 August 2018; Accepted: 6 October 2018; Published: 11 October 2018 Abstract: Silks are the long threads at the tips of maize ears onto which pollen land and sperm nuclei travel long distances to fertilize egg cells, giving rise to embryos and seeds; however fungal pathogens also use this route to invade developing grain, causing damaging ear rots with dangerous mycotoxins. This review highlights the importance of silks as the direct highways by which globally important fungal pathogens enter maize kernels. First, the most important silk-entering fungal pathogens in maize are reviewed, including Fusarium graminearum, Fusarium verticillioides, and Aspergillus flavus, and their mycotoxins. Next, we compare the different modes used by each fungal pathogen to invade the silks, including susceptible time intervals and the effects of pollination. Innate silk defences and current strategies to protect silks from ear rot pathogens are reviewed, and future protective strategies and silk-based research are proposed. There is a particular gap in knowledge of how to improve silk health and defences around the time of pollination, and a need for protective silk sprays or other technologies. It is hoped that this review will stimulate innovations in breeding, inputs, and techniques to help growers protect silks, which are expected to become more vulnerable to pathogens due to climate change.
    [Show full text]
  • Colonization of Maize Seeds by Two Species of Stenocarpella Transformed with Fluorescent Proteins and Assessed Through Scanning Electron Microscopy1
    http://dx.doi.org/10.1590/2317-1545v32n2918 168 Colonization of maize seeds by two species of Stenocarpella transformed with fluorescent proteins and assessed through scanning electron microscopy1 Carolina da Silva Siqueira2*, José da Cruz Machado2, Carla Lima Corrêa2, Ellen Noly Barrocas3 ABSTRACT – Stenocarpella maydis and Stenocarpella macrospora species causing leaf spots and stem and ear rots, can be transported and disseminated between cultivating areas through seeds. The objective was to transform isolates of species of Stenocarpella with GFP and DsRed and to correlate different inoculum potentials with the effect caused by the presence of these pathogens in the tissues of maize seeds. The isolates were transformed with introduction of the genes in their nuclei, employing the technique of protoplast transformation. Seeds were inoculated by osmotic conditioning method with transformed and not transformed isolates, with different periods of exposition of seeds to those isolates, characterizing the inoculum potentials, P1 (24 h), P2 (48 h), P3 (72 h) and P4 (96 h). The seeds inoculated with isolates expressing GFP and DsRed in both species elucidated by means of the intensities of the emitted fluorescence, the ability of those organisms to cause infection and colonization in different inoculum potentials. The potentials P3 and P4 caused the highest levels of emitted fluorescence for the colonization by both pathogens. A comprehensive and abundant mycelial growth in the colonized seed structures were well visualized at potential P3 and P4 by means of SEM. Index terms: seed pathology, genetic transformation, GFP, DsRed protein, fungus. Colonização de sementes de milho por duas espécies de Stenocarpella transformados com proteínas fluorescentes e avaliadas por microscopia eletrônica de varredura RESUMO – Stenocarpella maydis e Stenocarpella macrospora, espécies causadoras de manchas foliares, podridões em plantas e grãos ardidos de milho, podem ser transportadas e dispersas para áreas produtoras através das sementes.
    [Show full text]
  • SOBREVIVÊNCIA DE Stenocarpella Maydis E Stenocarpella Macrospora EM RESTOS CULTURAIS DE MILHO
    RICARDO TREZZI CASA SOBREVIVÊNCIA DE Stenocarpella maydis E Stenocarpella macrospora EM RESTOS CULTURAIS DE MILHO Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-graduação em Fitopatologia, para obtenção do Título de “Doctor Scientiae”. VIÇOSA MINAS GERAIS - BRASIL 2000 RICARDO TREZZI CASA SOBREVIVÊNCIA DE Stenocarpella maydis E Stenocarpella macrospora EM RESTOS CULTURAIS DE MILHO Tese apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-graduação em Fitopatologia, para obtenção do Título de “Doctor Scientiae”. APROVADA: 13 de dezembro de 2000. Prof. Dr. Laércio Zambolim Prof. Dr. Erlei Melo Reis (Orientador) (Co-orientador) Prof. Dr. Kiyoshi Matsuoka Dr. Geraldo Martins Chaves Prof. Dr. Francisco Xavier Ribeiro do Vale Esta dissertação é dedicada a minha mãe Ignêz AGRADECIMENTO Ao professor Erlei, pela orientação, amizade e por grande parte de todo conhecimento profissional obtido até aqui. Ao professor Laércio, pela orientação, amizade e confiança em meu trabalho. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo apoio financeiro no período de estudo. À Universidade de Passo Fundo, pela colaboração e oportunidade de trabalho. Aos funcionários da UFV e UPF, em especial aos amigos Cinara, Naiara e Paulo, pelo apoio a mim dedicado. Ao corpo docente, funcionários e colegas do curso de pós-graduação, pela amizade, vivência e ensinamentos transmitidos. Aos participantes da banca examinadora, pela atenção dedicada. À Melissa, pelo seu carinho, amor e incentivo. Ao Rubens, Ulisses e Luciana, pela amizade, apoio e incentivo. À minha irmã Marta, colega e amiga, pelo auxílio e dedicação prestado. Aos amigos e familiares, pelo incentivo prestado.
    [Show full text]
  • Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
    MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores.
    [Show full text]
  • Crop Profile for Corn in Michigan
    Crop Profile for Corn in Michigan Prepared Feb, 2002 General Production Information ● Michigan ranked 11th nationally in 2000 for corn grain production (44). ● Michigan contributed 2.4% to the total US production of corn in 2000 (44). ● The total acreage planted in Michigan was 2,200,000 acres in 2000, down 100,000 acres from 1998 (44). ● Total grain corn production for Michigan in 2000 was 244,280,000 bushels, down 4% from 1999 (44). ● Grain corn harvested in 2000 for Michigan was 1,97,000 acres (44). ● Silage corn harvested in 2000 for Michigan was 225,000 acres with an average yield of 14 tons per acre (44). ● Corn grain production was valued at $612 million in 1997, $432.3 million in 1998, $451 million in 1999 and 464 million in 2000 (44). ● The average bushels/acre was 117 in 1997, 111 in 1998, 130 bushels in 1999, and 124 bushels in 2000 (43, 44). ● Corn continued to be Michigan's number one crop in value of production (44). PRODUCTION REGIONS: Corn is Michigan's number one crop in both acreage planted and value of production. The top five counties in corn production in 2000 were Huron, St Joseph, Lenawee, Sanilac and Saginaw. In 1998 they were Huron, Sanilac, Clinton, Ionia and Allegan counties and in 1999 Huron, Saginaw, Sanilac, Tuscola and Lenawee counties (43, 44). The Crop Profile/PMSP database, including this document, is supported by USDA NIFA. Cultural Practices Corn can be grown on most soils in Michigan but does best on well drained soils. Soils classified as poorly drained are also suitable for corn production if they are tile drained.
    [Show full text]
  • Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions
    toxins Review Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions Lakshmipriya Perincherry , Justyna Lalak-Ka ´nczugowska and Łukasz St˛epie´n* Plant-Pathogen Interaction Team, Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszy´nska34, 60-479 Pozna´n,Poland; [email protected] (L.P.); [email protected] (J.L.-K.) * Correspondence: [email protected] Received: 29 October 2019; Accepted: 12 November 2019; Published: 14 November 2019 Abstract: Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection. Keywords: fungal pathogens; Fusarium; pathogenicity; secondary metabolites Key Contribution: The review summarized the knowledge and recent reports on the involvement of Fusarium mycotoxins in plant infection processes, as well as the consequences for plant metabolism and physiological changes related to the pathogenesis.
    [Show full text]
  • A Genetic Map of Gibberella Zeae (Fusarium Graminearum)
    Copyright 2002 by the Genetics Society of America A Genetic Map of Gibberella zeae (Fusarium graminearum) J. E. Jurgenson,* R. L. Bowden,† K. A. Zeller,† J. F. Leslie,†,1 N. J. Alexander‡ and R. D. Plattner‡ *Department of Biology, University of Northern Iowa, Cedar Falls, Iowa 50614, †Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506-5502 and ‡Mycotoxin Research Unit, USDA/ARS National Center for Agricultural Utilization Research, Peoria, Illinois 61604 Manuscript received November 1, 2001 Accepted for publication December 26, 2001 ABSTRACT We constructed a genetic linkage map of Gibberella zeae (Fusarium graminearum) by crossing complemen- tary nitrate-nonutilizing (nit) mutants of G. zeae strains R-5470 (from Japan) and Z-3639 (from Kansas). We selected 99 nitrate-utilizing (recombinant) progeny and analyzed them for amplified fragment length polymorphisms (AFLPs). We used 34 pairs of two-base selective AFLP primers and identified 1048 polymor- cM 1300ف phic markers that mapped to 468 unique loci on nine linkage groups. The total map length is with an average interval of 2.8 map units between loci. Three of the nine linkage groups contain regions in which there are high levels of segregation distortion. Selection for the nitrate-utilizing recombinant progeny can explain two of the three skewed regions. Two linkage groups have recombination patterns that are consistent with the presence of intercalary inversions. Loci governing trichothecene toxin amount and type (deoxynivalenol or nivalenol) map on linkage groups IV and I, respectively. The locus governing the type of trichothecene produced (nivalenol or deoxynivalenol) cosegregated with the TRI5 gene (which encodes trichodiene synthase) and probably maps in the trichothecene gene cluster.
    [Show full text]
  • Fusarium Verticillioides Migration in Attached and Detached Sweet Corn Ears
    J. AMER. SOC. HORT. SCI. 131(1):157–163. 2006. Fusarium verticillioides Migration in Attached and Detached Sweet Corn Ears I.E. Yates1 Toxicology and Mycotoxin Research Unit, Richard B. Russell Agricultural Research Center, USDA/ARS, P.O. Box 6477, Athens, GA 30604 Darrell Sparks2 Department of Horticulture University of Georgia, Athens, GA 30501 ADDITIONAL INDEX WORDS. Zea mays, mycotoxins, selection gene, hygromycin resistance, reporter gene, ß-glucuronidase, bioassay ABSTRACT. Mycotoxins harmful to humans and other animals are produced in kernels of sweet corn (Zea mays L.) during colonization by the fungus Fusarium verticillioides (Sacc.) Nirenberg. Experimentation is limited under fi eld conditions, due to the seasonality of the organisms, to once each year in temperate climates and under greenhouse conditions by the number of plants that can be grown. The objective of this study was to examine grocer ears (pistillate infl orescence) from retail stores as an alternative source for experimental material to use in bioassays to study this important food safety problem. Fusarium verticillioides migration was compared in sweet corn ears from a local grocery store and from greenhouse and fi eld plants. Ears were inoculated with a F. verticillioides transformant tagged with a selection gene encoding resistance to hygromycin, a fungicidal antibiotic, and with a reporter gene encoding for ß-glucuronidase, an enzyme detectable by histochemical staining. Screening kernels for both genes ensures unequivocal identifi cation of the source of subsequent mycelia. Fusarium verticillioides colonized sweet corn ears towards the ear apex and base from the inoculation site regardless of ear source, incubation protocol, or attachment of the ear to the plant or to the shuck (spathe) and silks (styles) to the ear.
    [Show full text]