Pleurotus Species Basidiomycotina with Gills - Lignicolous Mushrooms

Total Page:16

File Type:pdf, Size:1020Kb

Pleurotus Species Basidiomycotina with Gills - Lignicolous Mushrooms Biobritte Agro Solutions Private Limited, Kolhapur, (India) Jaysingpur-416101, Taluka-Shirol, District-Kolhapur, Maharashtra, INDIA. [email protected] www.biobritte.co.in Whatsapp: +91-9923806933 Phone: +91-9923806933, +91-9673510343 Biobritte English name Scientific Name Price Lead time Code Pleurotus species Basidiomycotina with gills - lignicolous mushrooms B-2000 Type A 3 Weeks Winter Oyster Mushroom Pleurotus ostreatus B-2001 Type A 3 Weeks Florida Oyster Mushroom Pleurotus ostreatus var. florida B-2002 Type A 3 Weeks Summer Oyster Mushroom Pleurotus pulmonarius B-2003 Type A 4 Weeks Indian Oyster Mushroom Pleurotus sajor-caju B-2004 Type B 4 Weeks Golden Oyster Mushroom Pleurotus citrinopileatus B-2005 Type B 3 Weeks King Oyster Mushroom Pleurotus eryngii B-2006 Type B 4 Weeks Asafetida, White Elf Pleurotus ferulae B-2007 Type B 3 Weeks Pink Oyster Mushroom Pleurotus salmoneostramineus B-2008 Type B 3 Weeks King Tuber Mushroom Pleurotus tuberregium B-2009 Type B 3 Weeks Abalone Oyster Mushroom Pleurotus cystidiosus Lentinula B-3000 Shiitake Lentinula edodes Type B 5 Weeks other lignicoles B-4000 Black Poplar Mushr. Agrocybe aegerita Type-C 5 Weeks B-4001 Changeable Agaric Kuehneromyces mutabilis Type-C 5 Weeks B-4002 Nameko Mushroom Pholiota nameko Type-C 5 Weeks B-4003 Velvet Foot Collybia Flammulina velutipes Type-C 5 Weeks B-4003-1 yellow variety 5 Weeks B-4003-2 white variety 5 Weeks B-4004 Elm Oyster Mushroom Hypsizygus ulmarius Type-C 5 Weeks B-4005 Buna-Shimeji Hypsizygus tessulatus Type-C 5 Weeks B-4005-1 beige variety 5 Weeks B-4005-2 white variety 5 Weeks luminous mushrooms B-4300 Jack-O'-Lantern Mushroom Omphalotus japonicus Type-C 5 Weeks B-4301 Ghost Fungus Omphalotus nidiformis Type-C 5 Weeks B-4302 Jack-O'-Lantern Mushroom Omphalotus illudens Type-C 5 Weeks B-4303 Bitter Oyster Panellus stipticus Type-C 5 Weeks straw mushrooms B-5000 Paddy Straw Mushroom Volvariella volvacea Type-C 7 weeks B-5001 (Wine-red) Stropharia Stropharia rugoso-annulata Type-C 7 weeks brown variety yellow variety Basidiomycotina with gills - compost mushrooms B-6000 White Bud Mushroom Agaricus bisporus, var. bisporus TYPE-B 6 Weeks B-6001 Champignon de Paris, Agaricus bisporus, var. hortensis TYPE-B 6 Weeks Portabella, Portobello B-6002 Summer Mushroom Agaricus bitorquis TYPE-C 6 Weeks B-6003 Horse Mushroom Agaricus arvensis TYPE-C 6 Weeks B-6004 Almond Mushroom Agaricus brasiliensis “blazei” TYPE-C 6 Weeks other compost mushrooms B-7000 Horsetail Fungus Coprinus comatus TYPE-C 5 Weeks B-7001 Parasol Mushroom Macrolepiota procera TYPE-C 9 Weeks B-7002 Milky Mushroom Calocybe indica TYPE-C 6 Weeks B-7003 Blewitt Lepista nuda TYPE-C 6 Weeks Basidiomycotina without gills B-8000 Monkey Head, Lion’s Mane Hericium erinaceus TYPE-C 4 Weeks B-8001 Comb Tooth, Coral Fungus Hericium coralloides TYPE-C 4 Weeks B-8002 Juda’s Ear Auricularia auricula-judae TYPE-C 5 Weeks B-8003 Wood Ear Auricularia polytricha TYPE-C 5 Weeks B-8004 Reishi Ganoderma lucidum TYPE-C 5 Weeks B-8005 Reishi Ganoderma lingzhi TYPE-C 5 Weeks B-8006 Artist’s Fungus Ganoderma applatum TYPE-C 5 Weeks B-8007 Mesimakobu, Song Gen, Sang Phellinus linteus TYPE-C 7 Weeks B-8008 Hen-of-the-Woods, Maitake Grifola frondosa TYPE-C 5 Weeks B-8008-01 cream variety B-8008-02 grey variety B-8009 Umbrella polypore Grifola umbellata TYPE-C 5 Weeks (Polyporus umbellatus) B-8010 Orange Polypore Pycnoporus sanguineus TYPE-C 5 Weeks B-8011 Many Zoned Polypore, Turkey Coriolus versicolor TYPE-C 5 Weeks Tail B-8012 Split Gill Schizophyllum commune TYPE-C 5 Weeks Ascomycotina B-9000 Black Morel (N.-American Morchella angusticeps N.- TYPE-C 4 Weeks species) American B-9001 Yellow Morel, Common Morel Morchella esculenta TYPE-C 4 Weeks B-9002 Morel, Black Morel, Fire Morel Morchella elata TYPE-C 4 Weeks .
Recommended publications
  • Cultivation of the Oyster Mushroom (Pleurotus Sp.) on Wood Substrates in Hawaii
    CULTIVATION OF THE OYSTER MUSHROOM (PLEUROTUS SP.) ON WOOD SUBSTRATES IN HAWAII A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'IIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCE DECEMBER 2004 By Tracy E. Tisdale Thesis Committee: Susan C. Miyasaka, Chairperson Mitiku Habte Don Hemmes Acknowledgements I would first like to acknowledge Susan C. Miyasaka, my major advisor, for her generosity, thoughtfulness, patience and infinite support throughout this project. I'd like to thank Don Hemmes and Mitiku Habte for taking time out of their schedules to serve on my committee and offer valuable insight. Thanks to Jim Hollyer for the much needed advising he provided on the economic aspect of this project. Thanks also to J.B. Friday, Bernie Kratky and all the smiling faces at Beaumont, Komohana, Waiakea and Volcano Research Stations who provided constant encouragement and delight throughout my mushroom growing days in Hilo. 111 Table of Contents Acknowledgements , iii List of Tables ,,, , vi List of Figures vii Chapter 1: Introduction '" 1 Chapter 2: Literature Review , 3 Industry ,,.. ,,,,, , 3 Substrates 6 Oyster Mushroom " '" 19 Production Overview 24 Chapter 3: Research Objectives , '" 32 Chapter 4: Materials and Methods 33 Substrate Wood 33 Cultivation Methods 34 Crop Yield ,, 39 Nutrients 43 Taste 44 Fruiting Site Assessment. .46 Economic Analysis .46 Chapter 5: Results and Discussion ,, .48 Substrate Wood ,, 48 Preliminary Experiment. '" 52 IV Final Experiment.
    [Show full text]
  • A Forgotten Kingdom Ecologically Industrious and Alluringly Diverse, Australia’S Puffballs, Earthstars, Jellies, Agarics and Their Mycelial Kin Merit Your Attention
    THE OTHER 99% – NEGLECTED NATURE The delicate umbrellas of this Mycena species last only fleetingly, while its fungal mycelium persists, mostly obscured within the log it is rotting. Photo: Alison Pouliot A Forgotten Kingdom Ecologically industrious and alluringly diverse, Australia’s puffballs, earthstars, jellies, agarics and their mycelial kin merit your attention. Ecologist Alison Pouliot ponders our bonds with the mighty fungus kingdom. s the sun rises, I venture off-track Fungi have been dubbed the ‘forgotten into a dripping forest in the Otway kingdom’ – their ubiquity and diversity ARanges. Mountain ash tower contrast with the sparseness of knowledge overhead, their lower trunks carpeted about them, they are neglected in in mosses, lichens and liverworts. The conservation despite their ecological leeches are also up early and greet me significance, and their aesthetic and with enthusiasm. natural history fascination are largely A white scallop-shaped form at the unsung in popular culture. The term base of a manna gum catches my eye. ‘flora and fauna’ is usually unthinkingly Omphalotus nidiformis, the ghost fungus. A assumed to cover the spectrum of visible valuable marker. If it’s dark when I return, life. I am part of a growing movement of the eerie pale green glow of this luminous fungal enthusiasts dedicated to lifting fungal cairn will be a welcome beacon. the profile of the ‘third f’ in science, Descending deeper into the forest, a conservation and society. It is an damp funk hits my nostrils, signalling engrossing quest, not only because of the fungi. As my eyes adjust and the morning alluring organisms themselves but also for lightens, I make out diverse fungal forms the curiosities of their social and cultural in cryptic microcosms.
    [Show full text]
  • Oyster Mushrooms (Pleurotus) Are Useful for Utilizing Lignocellulosic Biomass
    Vol. 14(1), pp. 52-67, 7 January, 2015 DOI: 10.5897/AJB2014.14249 Article Number: AED32D349437 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass E. A. Adebayo1,2* and D. Martínez-Carrera2 1Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria. 2Biotechnology of Edible, Functional and Medicinal Mushrooms, Colegio de Postgraduados, Apartado Postal 129, Puela 72001, Puebla, Mexico. Received 16 October, 2014; Accepted 12 December, 2014 This review shows the biotechnological potential of oyster mushrooms with lignocellulosic biomass. The bioprocessing of plant byproducts using Pleurotus species provides numerous value-added products, such as basidiocarps, animal feed, enzymes, and other useful materials. The biodegradation and bioconversion of agro wastes (lignin, cellulose and hemicellulose) could have vital implication in cleaning our environment. The bioprocessing of lignin depends on the potent lignocellulolytic enzymes such as phenol oxidases (laccase) or heme peroxidases (lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase) produced by the organism. The cellulose-hydrolysing enzymes (that is, cellulases) basically divided into endo-β-1,4-glucanase , exo-β-1,4-glucanase I and II, and β-glucosidase, they attack cellulose to release glucose, a monomers units from the cellobiose, while several enzymes acted on hemicellulose to give D-xylose from xylobiose. These enzymes have been produced by species of Pleurotus from lignocellulose and can also be used in several biotechnological applications, including detoxification, bioconversion, and bioremediation of resistant pollutants.
    [Show full text]
  • The Diversity of Basidiomycota Fungi That Have the Potential As a Source of Nutraceutical to Be Developed in the Concept of Integrated Forest Management Poisons
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 The Diversity of Basidiomycota Fungi that Have the Potential as a Source of Nutraceutical to be Developed in the Concept of Integrated Forest Management Mustika Dewi, I Nyoman Pugeg Aryantha, Mamat Kandar straw mushrooms, oyster mushrooms, and shiitake Abstract: The fungus Basidiomycota found in Indonesia have mushrooms. very high diversity, but have not been explored so far. The development of local Basidiomycota mushrooms that Development of fungi Basidiomycota is an alternative as a are cultivated by utilizing space on the forest floor has not source of natural nutraceuticals, especially beta glucan and been done mostly in Indonesia. In several countries such as lovastatin compounds. This compound can be used in the pharmaceutical and food fields. This study aims to obtain Japan, people have long been cultivating shitake mushrooms Basidiomycota fungi isolates that have the potential as a by utilizing forest floors. Reported by (Savoie & Largeteau, nutraceutical source. As the first stage in this research, the 2011) that mushrooms from the Basidiomycota group are activities carried out were exploration, isolation on culture widely produced in forest areas through the utilization of media, and identification of fungi based on genotypic forest floors as a place to grow these fungi which have characters. The results showed that the fungi identified based on economic value quite high by applying the concept of their genotypic characters were Pleurotusostreatus, Ganodermacf, Resinaceum, Lentinulaedodes, micosilviculture. The concept of micosilviculture is a Vanderbyliafraxinea, Auricularia delicate, Pleurotusgiganteus, concept that is applied in the management of integrated Auricularia sp.
    [Show full text]
  • The Value of Fungi
    Land for Wildlife Queensland: Note S2 The Value of Fungi hey are neither plants nor animals, All fungi are vital to the health and mycorrhizal fungi that assist eucalypts Tand there are about 10,000 functioning of our world and yet so little and wattles to grow. different species of them in Australia. is known about them. Only about 25% Fungi that we see are fruiting bodies They are macrofungi - the fungi that of Australian macrofungal species have of the actual fungus below the surface. you can see with an unaided eye. even been documented. Macrofungi are The fungus itself consists of microscopic This Note describes various types of fungi that you will see in bushland or threads called hyphae. A network of macrofungi and the ecological roles that on your garden mulch and are classified and defined by their fruiting bodies - hyphae is called a mycelium which they play. the mushrooms and toadstools that we resembles a tangled mass of tiny white The Fungi Kingdom is roughly divided see above ground. threads that wrap in and around the into two categories: macrofungi and material on which the fungus is growing. Macrofungi do not have roots, leaves, microfungi. Microfungi tend to be The fungus would look like a loose mass flowers or chlorophyll for photosynthesis minute and are hard to see with the and therefore need to obtain their of cotton wool if it could be separated naked eye with common examples own food from other organisms. Some from its substrate. Fungi have cell walls including yeasts, penicillin, moulds, fungi are parasitic and eventually kill made of a type of chitin (related to plant rusts and mildew.
    [Show full text]
  • Table of Contents
    Table of Contents: Who is this for?... 3 Introduction... 3 Mechanic Overview... 4 Redesigned Herbalism Kit... 4 Herbalism Notebook... 5 5 Standard Recipes... 5 Deciphering & Copying a Recipe... 5 Replacing Your Notebook... 6 Foraging... 6 Crafting... 6 Learning New Recipes... 7 Obtaining a Recipe... 7 Deformulation of Existing Potions... 7 Discovery of Novel Potions... 8 Formulas... 9 33 Core Potions... 9 Example Homebrew Potions... 11 Appendix I: Biomes... 12 Appendix II: Damage Ingredients.... 15 Appendix III: Ingredient Descriptions... 16 Sample file 2 MEDICA PLANTARUM Enjoy the wonderful world of plants & fungi! Not for resale. For personal use only. Who is this for? Medica Plantarum was named after two ancient plant texts, Dioscorides’ De materia medica and Theophrastus’ Historia Plantarum, and is designed to expand on the role of herbalism in TTRPGs. It’s for players or GMs who think plants and fungi are cool, and are looking for an interesting way to bring some real botany into their games. On the surface, this is a mechanic to create new potions, fill party downtime, or inspire character agency. At its core, this is an educational guide for players or GMs who want to use real plant biology to inform their potion craft. Medica Plantarum presents biology, history, folklore, and mythology to give folks a unique lens in which to discover the wonder of plant diversity. The ultimate goal of this guide is to inspire players and GMs to create their own potions by learning about the plants around them. Introduction As a plant scientist and avid TTRPGer, I am always on the lookout for interesting ways to integrate plants into the campaigns I GM.
    [Show full text]
  • Bioluminescence in Mushroom and Its Application Potentials
    Nigerian Journal of Science and Environment, Vol. 14 (1) (2016) BIOLUMINESCENCE IN MUSHROOM AND ITS APPLICATION POTENTIALS Ilondu, E. M.* and Okiti, A. A. Department of Botany, Faculty of Science, Delta State University, Abraka, Nigeria. *Corresponding author. E-mail: [email protected]. Tel: 2348036758249. ABSTRACT Bioluminescence is a biological process through which light is produced and emitted by a living organism resulting from a chemical reaction within the body of the organism. The mechanism behind this phenomenon is an oxygen-dependent reaction involving substrates generally termed luciferin, which is catalyzed by one or more of an assortment of unrelated enzyme called luciferases. The history of bioluminescence in fungi can be traced far back to 382 B.C. when it was first noted by Aristotle in his early writings. It is the nature of bioluminescent mushrooms to emit a greenish light at certain stages in their life cycle and this light has a maximum wavelength range of 520-530 nm. Luminescence in mushroom has been hypothesized to attract invertebrates that aids in spore dispersal and testing for pollutants (ions of mercury) in water supply. The metabolites from luminescent mushrooms are effectively bioactive in anti-moulds, anti-bacteria, anti-virus, especially in inhibiting the growth of cancer cell and very useful in areas of biology, biotechnology and medicine as luminescent markers for developing new luminescent microanalysis methods. Luminescent mushroom is a novel area of research in the world which is beneficial to mankind especially with regards to environmental pollution monitoring and biomedical applications. Bioluminescence in fungi is a beautiful phenomenon to observe which should be of interest to Scientists of all endeavors.
    [Show full text]
  • (Pleurotus Eryngii) Based on 16S Rrna 16
    Korean Journal of Microbiology (2015) Vol. 51, No. 2, pp. 148-155 pISSN 0440-2413 DOI http://dx.doi.org/10.7845/kjm.2015.4086 eISSN 2383-9902 Copyright ⓒ 2015, The Microbiological Society of Korea 보 문 Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA 1 2 3 2 2 Choung Kyu Lee , Md. Azizul Haque , Byoung Rock Choi , Hee Yul Lee , Chung Eun Hwang , 2 2 Min Ju Ahn , and Kye Man Cho * 1 Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea 2 Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 660-758, Republic of Korea 3 Department of Future Farming, Sacheon Agricultural Development & Technology Center, Sacheon 664-951, Republic Korea 16S rRNA 기초 새송이 버섯(Pleurotus eryngii)의 식용가능 부위 내생세균 군집 다양성 이총규1 ・ 모하메드 아지줄 하크2 ・ 최병록3 ・ 이희율2 ・ 황정은2 ・ 안민주2 ・ 조계만2* 1 2 3 경남과학기술대학교 산림자원학과, 경남과학기술대학교 식품과학부, 사천시농업기술센터 미래농업과 (Received December 17, 2014; Accepted June 10, 2015) ABSTRACT: The diversity of endobacteria in the edible part (cap and stipe) king oyster mushroom (Pleurotus eryngii) was investigated using 16S rRNA sequence analysis. The bacterial 16S rRNA libraries were constructed from the body cap (BC) and the body stipe (BS) of the king oyster mushroom. The twenty sequenced BC clones were divided into four groups and the largest group was affiliated with the Firmicutes (40% of clones). While, the twenty sequenced BS clones could be divided into six groups and the largest group was affiliated with the Actinobacteria (40% of clones).
    [Show full text]
  • Pleurotus, and Tremella
    J, Pharmaceutics and Pharmacology Research Copy rights@ Waill A. Elkhateeb et.al. AUCTORES Journal of Pharmaceutics and Pharmacology Research Waill A. Elkhateeb * Globalize your Research Open Access Research Article Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella Waill A. Elkhateeb1* and Ghoson M. Daba1 1 Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. *Corresponding Author: Waill A. Elkhateeb, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. Received date: February 13, 2020; Accepted date: February 26, 2021; Published date: March 06, 2021 Citation: Waill A. Elkhateeb and Ghoson M. Daba (2021) Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella J. Pharmaceutics and Pharmacology Research. 4(2); DOI: 10.31579/2693-7247/29 Copyright: © 2021, Waill A. Elkhateeb, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Fungi generally and mushrooms secondary metabolites specifically represent future factories and potent biotechnological tools for the production of bioactive natural substances, which could extend the healthy life of humanity. The application of microbial secondary metabolites in general and mushrooms metabolites in particular in various fields of biotechnology has attracted the interests of many researchers. This review focused on Lentinus, Pleurotus, and Tremella as a model of edible mushrooms rich in therapeutic agents that have known medicinal applications. Keyword: lentinus; pleurotus; tremella; biological activities Introduction of several diseases such as cancer, hypertension, chronic bronchitis, asthma, and others [14, 15].
    [Show full text]
  • Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus Sp.)
    FOLIA HORTICULTURAE Folia Hort. 30(2), 2018, 191-201 Published by the Polish Society DOI: 10.2478/fhort-2018-0012 for Horticultural Science since 1989 REVIEW Open access www.foliahort.ogr.ur.krakow.pl Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.) Iwona Golak-Siwulska, Alina Kałużewicz*, Tomasz Spiżewski, Marek Siwulski, Krzysztof Sobieralski Department of Vegetable Crops Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences Dąbrowskiego 159, Poznań, Poland ABSTRACT There are about 40 species in the Pleurotus genus, including those with high economic significance, i.e. P. ostreatus and P. pulmonarius. The fruiting bodies of oyster mushrooms are of high nutritional and health- promoting value. In addition, many species belonging to the Pleurotus genus have been used as sources of substances with documented medicinal properties, such as high-molecular weight bioactive compounds (polysaccharides, peptides and proteins) and low-molecular weight compounds (terpenoids, fatty acid esters and polyphenols). The bioactive substances contained in the mycelium and fruiting bodies of Pleurotus species exhibit immunostimulatory, anti-neoplastic, anti-diabetic, anti-atherosclerotic, anti-inflammatory, antibacterial and anti-oxidative properties. Their multidirectional positive influence on the human organism is the result of interaction of bioactive substances. Extracts from individual Pleurotus species can be used for the production of dietary supplements increasing the organism’s immunity.
    [Show full text]
  • Antioxidant Activities of Methanolic Extracts from Ten Pleurotus Species
    Sanjit Debnath et al. Int. Res. J. Pharm. 2017, 8 (3) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM TEN PLEUROTUS SPECIES Sanjit Debnath 1*, Ramesh Chandra Upadhyay 2, Panna Das 3 and Ajay Krishna Saha 1 1Mycology and Plant Pathology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India 2Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India 3Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India *Corresponding Author Email: [email protected] Article Received on: 09/02/17 Approved for publication: 08/03/17 DOI: 10.7897/2230-8407.080335 ABSTRACT The antioxidant activities of methanolic extract from mycelia of ten Pleurotus species were investigated. The main aim of this study was to evaluate and compare the antioxidant activities of methanolic extracts of mushroom mycelium of ten Pleurotus species by three different methods. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, chelating effect on ferrous ion and phenolic content of mycelial extract of ten edible mushrooms were analyzed. P. sajor-caju showed highest free radical scavenging activity (92.05 %) and reducing power (1.082 %) at 8 mg/ml concentration. P. citrinopileatus showed highest percentage of chelating effect on ferrous ion (90.66 %). The lowest EC50 value of free radical scavenging activity was found in P. sapidus which indicated strongest ability of the mycelial extract to act as DPPH radical scavenger. The lowest chelating effect on ferrous ion was noticed in P. sajor-caju but EC50 of reducing power was much lower than the synthetic antioxidant (BHT).
    [Show full text]
  • Cultivation of Agaricus Blazei on Pleurotus Spp. Spent Substrate
    939 Vol.53, n. 4: pp. 939-944, July-August 2010 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Cultivation of Agaricus blazei on Pleurotus spp . Spent Substrate Regina Maria Miranda Gern 1*, Nelson Libardi Junior 2, Gabriela Nunes Patrício 3, Elisabeth Wisbeck 2, Mariane Bonatti Chaves 2 and Sandra Aparecida Furlan 2 1Departamento de Ciências Biológicas; Universidade da Região de Joinville; C. P.: 246; Campus Universitário s/n; 89201-972; Joinville - SC - Brasil. 2Departamento de Engenharia Ambiental; Universidade da Região de Joinville; 3Departamento de Química Industrial; Universidade da Região de Joinville; Joinville - SC - Brasil ABSTRACT The aim of this work was the use of Pleurotus ostreatus and Pleurotus sajor-caju for the previous lignocellulolytic decomposition of banana tree leaf straw and the further use of the degraded straw as substrate for the culture of Agaricus blazei. For optimising the production of A. blazei in terms of yield (Y%) and biological efficiency (BE%), adjustments to the composition of the substrate were evaluated in a 2 5 experimental design. The following components were tested in relation to % of substrate dry mass: urea (1 and 10%), rice bran (10 or 20%) or ammonium sulphate (0 or 10%), inoculum (10 or 20%) and the casing material (subsoil or burned rice husks). The best results (79.71 Y% and 6.73 BE%) were found when the substrate containing 10% of rice bran, without ammonium sulphate, inoculated with 20% and covered with subsoil was used. Key words : Agro-industrial Wastes, Basidiomycetes, Edible Mushrooms, Fungi, Lignocellulosic Degradation, Solid State Fermentation INTRODUCTION maize, sugar-cane bagasse, coffee pulp, banana leaves, agave wastes, soy pulp etc) (Patrabansh The culture of edible and medicinal mushrooms and Madan 1997; Obodai et al.
    [Show full text]