FUNGAL CONTAMINANTS THREAT OYSTER MUSHROOM (Pleurotus Ostreatus (Jacq

Total Page:16

File Type:pdf, Size:1020Kb

FUNGAL CONTAMINANTS THREAT OYSTER MUSHROOM (Pleurotus Ostreatus (Jacq FUNGAL CONTAMINANTS THREAT OYSTER MUSHROOM (Pleurotus ostreatus (Jacq. Ex Fr) Kummer) CULTIVATION I Made Sudarma*, Ni Made Puspawati dan Gede Wijana* *Department of Agroetechnology, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman Denpasar-Bali. E-mail: [email protected]. HP. 08123639103 ABSTRACT One of the causes of failure of the cultivation of oyster mushroom (Pleurotus ostreatus (Jacq. Ex Fr) Kummer) is still much contamination baglog inhibit growth and cause failure of oyster mushroom production. For that study was conducted to determine fungal contaminants in the baglog media and inhibiting ability against oyster mushrooms in vitro. Research carried out by the observation methods, sampling randomly contaminated baglog 10-20% of the amount of contaminated baglog, repeated 3 times. Study to be implemented in venture oyster mushroom address: Jl. Siulan gang Zella no. 7 Denpasar, from April to August 2014. The results showed that air-borne fungus could potentially cause failure of oyster mushroom cultivation. The highest prevalence was found in Fusarium spp. (25.6%), while the highest inhibition was found in Mucor spp.(94.7±8.5). Fungal contaminants originating from baglog, the most dominant with the highest prevalence was Trichoderma spp (35.71%). This fungus was very dangerous for the survival of oyster mushroom cultivation. Keywords: Oyster mushroom (Pleurotus ostreatus (Jacq. ex Fr) Kummer), inhibiting ability, and the prevalence of fungal contaminants. INTRODUCTION Development of oyster mushroom cultivation particularly in Bali received threats by a number of fungal contaminants. Fungal contaminants can originate from the air and sawdust media. Green mold caused by Trichoderma spp. is a major disease that is found in oyster mushroom (Kredic et al., 2010). Fungus isolated and characterized from compost include such as Aspergillus, Trichoderma, Mucor, Penicillium, Alternaria, Cladosporium, Monilia, Helminthosporium, Coccidioides, and Scedosporium (Ashraf et al., 2007). In Chiapas, Mexico, the most common contaminants during spwan phase were: Streptomyces sp., Penicillium sp. Aspergillus ochraceus, A. flavus, Cunninghamella sp., and Trichoderma viride. During the incubation phase Monilia sp. and T. viride were found. During fructification phase the most abundant contaminants were: Poronia sp. and Coprinus sp. (Lopez-Arevalo et al., 1996). In Indonesia, fungal contaminants were found 1 to inhibited the growth of oyster mushroom was Neurospora spp., Trichoderma spp., Mucor spp., and Penicillium spp. (Anggrianto, 2012). The quality of the growing media (compost), the number of spores in the air, and the phase of growth of oyster mushrooms determine the severity of contamination on baglog (Anastasi et al., 2005). The density of spores in the air , accompanied by a lot of opportunities for contamination causing the failure of oyster mushroom cultivation. Fungi contaminants that have been known to cause fungal growth failure of oyster mushroom was: Neorospora spp., Trichoderma spp., Mucor spp., and Penicillium spp (Anggrianto, 2012). Fungal contaminants on the media type and inhibiting ability to the growth of oyster mushroom in vitro until now unknown, it is necessary for in-depth studies to answer the problems mentioned above. MATERIALS AND METHOD The place and time study The study was conducted in Breeding and Development Company Oyster Mushrooms with address Siulan street, Zella alley No. 7 Denpasar. The application time at April 2014 until November , 2014. Making media baglog The composition of the media used were wood dust : bran : corn : limestone (CaCO3 ) : NPK at a ratio of 100 : 10 : 5 : 2.5 : 1. The process of making was, (1) All the ingredients are mixed while adding water. The amount of water that was adapted to medium compact when clenched does not decompose and when it does not remove the water squeezed . (2) A total of 0.5 kg of medium then fed into a heat resistant plastic the size of 1 kg and then pressing and tie it closed with the use of rubber slipping cotton on top. (3) Sterilization 5 hours . After sterile, store in a clean room . (4) After a cold was inoculated with seedling (F3). F3 seedlings F3 seedling of oyster mushroom were taken from the Breeding and Development Company Oyster Mushrooms with address Siulan street and Zella alley No. 7 Denpasar. F3 seedlings using material from corn that is inserted in a bottle of beer, and it was inoculated with F2 seeds, once the seeds are fully grown mycelium , then used as F3 seedling. 2 Inhibition test of fungi contaminants against Oyster Mushrooms Each fungus contaminants tested for inhibitory against the growth of oyster mushroom with a dual culture technique. Percent inhibition can be calculated using the following formula (Dolar, 2001; Jayalal and Adikaram, 2007; Mojica-Marin et al., 2008): A – B % inhibition = x 100 A A = Oyster mushroom colony diameter in the control (mm) B = Oyster mushroom colony diameter in treated (mm). Study of air-borne fungi Study of air -borne fungus is done by placing 5 Petri dishes containing PDA (mixture of potatoes 200 g , 15 g sugar, 20 g in order to 1000 ml of distilled water) and livoploxasin (antibacterial antibiotics) with a concentration of 0.25 % (w/v). Five Petri dishes were placed openly at work ( where do the activity), and placed from 7:00 am to 13:00 noon ( note the average work activity during these hours ). Thereafter , the Petri dish was closed and incubated in a cabinet incubator for 2 days , until the fungus appear in Petri dishes , and counted the number of colonies. Furthermore , each colony was purified again by moving to a new Petri dishes containing PDA medium. Incubation of media in the dark at room temperature (27±2oC). Isolates were identified macroscopically after the age of 3 days to determine colony color and growth rates , and the identification of microscopically to determine the septa in hypha, forms spores / conidia and sporangiophore. Identification of fungi using reference books such as Samson et al, 1981; Pitt and Hocking, 1997; Barnett and Hunter, 1998; and Indrawati et al., 1999). Study of air-borne fungus done 3 times. Thereafter, air -borne fungi tested for inhibiting ability against oyster mushrooms with the formula as mentioned above. Study of fungal contaminants derived from baglog A total of 20% baglog as samples taken from 50 baglog contaminated, and repeated 3 times. Baglog contaminated characterized by a change in color at the top of baglog, This section was taken (0.1 g), then placed in Petri dishes containing PDA (mixture of potatoes 200 g, 15 g sugar, 20 g in order to 1000 ml of distilled water) and livoploxasin (antibacterial antibiotics) with a concentration of 0.25% (w/v). Furthermore, isolates identified macroscopically after 3 days old. Fungi contaminants derived from baglog tested for inhibiting ability against oyster mushroom with the formula as mentioned above. 3 RESULTS AND DISCUSSION Prevalence of air-borne fungus and fungal contaminants derived from baglog The results of the capture of spores using Petri dishes with 5 replications obtained 24±2 cfu/a Petri dish. Air-borne fungi identification such as 10 isolates of Aspergillus sp., 7 isolates of Aspergillus niger, one isolate of Brachysporium sp., one isolate of Cunninghamella sp., 19 isolates of Fusarium sp., one isolate of Geotrichum sp., 8 isolates of Neurospora sp., 18 isolates of Mucor spp., 2 isolates of Penicillium sp., one isolate of Umbelopsis sp., 5 isolates of Stachybotrys sp., and one isolate of Trichoderma sp. (Table 1, Figure 1). Fusarium sp. dominated by the prevalence (frequency isolates) i.e. 25.7 % , followed by Mucor spp. 24.3 %, Aspergillus spp. 13.5 %, Neurospora spp., 10.8 %, A. niger, 9.5%, Stachybotrys spp. by 6.7 % , while the other 1.4 % respectively (Table 1). Table 1. Number of air -borne fungus, fungal contaminants derived from baglog and prevalence No. Fungus Air-borne fungus Fungal contaminants derived from baglog Number Prevalence Number of Prevalence of (%) isolates (%) isolates 1. Aspergillus spp. 10 13.5 9 21.43 2. A. niger 7 9.4 - - 3. Brachysporium sp. 1 1.4 - - 4. Cunninghamella sp. 1 1.4 - - 5. Fusarium spp. 19 25.6 1 2.38 6. Geotrichum sp. 1 1.4 - - 7. Gliocladium sp. - - 1 2.38 8. Mucor spp 18 24.3 2 4.76 9. Neurospora spp. 8 10.8 4 9.52 10. Paecilomyces sp. - - 1 2.38 11. Penicillium spp. 2 2.7 6 14.28 12. Pythium sp. - - 1 2.38 13. Stachybotrys spp. 5 6.7 2 4.76 14. Trichoderma spp. 1 1.4 15 35.71 15. Umbelopsis sp. 1 1.4 - - 74 42 4 Trichoderma sp. Stachybotrys spp. Umbelopsis sp. Penicillium spp. Mucor spp. Neurospora spp. GeotrichumOidium spsp.. Fusarium spp. Cunninghamella sp. Brachysporium sp. A. niger Aspergillus spp. 0 5 10 15 20 25 30 Figure 1. Prevalence of air-borne fungus that could potentially be a fungal contaminant Based on Table 1, 7 of the 10 species of fungi contaminants derived from the baglog same with air-borne fungus , this means that 70% fungal contaminants derived from air-borne fungus, and the rest (30%) comes from the substrate baglog. Fungal contaminants from contaminated baglog media, including Trichoderma spp. dominate with a prevalence of 35.71%, followed by Aspergillus spp . amounted to 21.43% , Penicillium spp . amounted to 14.28% , Neurospora spp. amounted to 9.52%, Mucor spp . amounted to 4.76% , while the Fusarium sp., Gliocladium sp., and Paecilomyces sp., each with a prevalence of 2.38% (Table 1; Figure 2). Trichoderma spp., was the most virulent fungus with the ability to survive and thrive in compost media (materials baglog), which has a mechanism of inhibition , competition space and nutrients , mycoparasitic , and antibiosis. Cellulolytic fungi such as Aspergillus , Penicillium and Trichoderma associated with the composting process and can speed up the composting for re- cycle efficiency. This fungus can cause disease in oyster mushroom known as green mold disease (Sharma et al., 2007).
Recommended publications
  • Cultivation of the Oyster Mushroom (Pleurotus Sp.) on Wood Substrates in Hawaii
    CULTIVATION OF THE OYSTER MUSHROOM (PLEUROTUS SP.) ON WOOD SUBSTRATES IN HAWAII A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'IIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCE DECEMBER 2004 By Tracy E. Tisdale Thesis Committee: Susan C. Miyasaka, Chairperson Mitiku Habte Don Hemmes Acknowledgements I would first like to acknowledge Susan C. Miyasaka, my major advisor, for her generosity, thoughtfulness, patience and infinite support throughout this project. I'd like to thank Don Hemmes and Mitiku Habte for taking time out of their schedules to serve on my committee and offer valuable insight. Thanks to Jim Hollyer for the much needed advising he provided on the economic aspect of this project. Thanks also to J.B. Friday, Bernie Kratky and all the smiling faces at Beaumont, Komohana, Waiakea and Volcano Research Stations who provided constant encouragement and delight throughout my mushroom growing days in Hilo. 111 Table of Contents Acknowledgements , iii List of Tables ,,, , vi List of Figures vii Chapter 1: Introduction '" 1 Chapter 2: Literature Review , 3 Industry ,,.. ,,,,, , 3 Substrates 6 Oyster Mushroom " '" 19 Production Overview 24 Chapter 3: Research Objectives , '" 32 Chapter 4: Materials and Methods 33 Substrate Wood 33 Cultivation Methods 34 Crop Yield ,, 39 Nutrients 43 Taste 44 Fruiting Site Assessment. .46 Economic Analysis .46 Chapter 5: Results and Discussion ,, .48 Substrate Wood ,, 48 Preliminary Experiment. '" 52 IV Final Experiment.
    [Show full text]
  • Oyster Mushrooms (Pleurotus) Are Useful for Utilizing Lignocellulosic Biomass
    Vol. 14(1), pp. 52-67, 7 January, 2015 DOI: 10.5897/AJB2014.14249 Article Number: AED32D349437 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass E. A. Adebayo1,2* and D. Martínez-Carrera2 1Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria. 2Biotechnology of Edible, Functional and Medicinal Mushrooms, Colegio de Postgraduados, Apartado Postal 129, Puela 72001, Puebla, Mexico. Received 16 October, 2014; Accepted 12 December, 2014 This review shows the biotechnological potential of oyster mushrooms with lignocellulosic biomass. The bioprocessing of plant byproducts using Pleurotus species provides numerous value-added products, such as basidiocarps, animal feed, enzymes, and other useful materials. The biodegradation and bioconversion of agro wastes (lignin, cellulose and hemicellulose) could have vital implication in cleaning our environment. The bioprocessing of lignin depends on the potent lignocellulolytic enzymes such as phenol oxidases (laccase) or heme peroxidases (lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase) produced by the organism. The cellulose-hydrolysing enzymes (that is, cellulases) basically divided into endo-β-1,4-glucanase , exo-β-1,4-glucanase I and II, and β-glucosidase, they attack cellulose to release glucose, a monomers units from the cellobiose, while several enzymes acted on hemicellulose to give D-xylose from xylobiose. These enzymes have been produced by species of Pleurotus from lignocellulose and can also be used in several biotechnological applications, including detoxification, bioconversion, and bioremediation of resistant pollutants.
    [Show full text]
  • The Diversity of Basidiomycota Fungi That Have the Potential As a Source of Nutraceutical to Be Developed in the Concept of Integrated Forest Management Poisons
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S, July 2019 The Diversity of Basidiomycota Fungi that Have the Potential as a Source of Nutraceutical to be Developed in the Concept of Integrated Forest Management Mustika Dewi, I Nyoman Pugeg Aryantha, Mamat Kandar straw mushrooms, oyster mushrooms, and shiitake Abstract: The fungus Basidiomycota found in Indonesia have mushrooms. very high diversity, but have not been explored so far. The development of local Basidiomycota mushrooms that Development of fungi Basidiomycota is an alternative as a are cultivated by utilizing space on the forest floor has not source of natural nutraceuticals, especially beta glucan and been done mostly in Indonesia. In several countries such as lovastatin compounds. This compound can be used in the pharmaceutical and food fields. This study aims to obtain Japan, people have long been cultivating shitake mushrooms Basidiomycota fungi isolates that have the potential as a by utilizing forest floors. Reported by (Savoie & Largeteau, nutraceutical source. As the first stage in this research, the 2011) that mushrooms from the Basidiomycota group are activities carried out were exploration, isolation on culture widely produced in forest areas through the utilization of media, and identification of fungi based on genotypic forest floors as a place to grow these fungi which have characters. The results showed that the fungi identified based on economic value quite high by applying the concept of their genotypic characters were Pleurotusostreatus, Ganodermacf, Resinaceum, Lentinulaedodes, micosilviculture. The concept of micosilviculture is a Vanderbyliafraxinea, Auricularia delicate, Pleurotusgiganteus, concept that is applied in the management of integrated Auricularia sp.
    [Show full text]
  • Pleurotus, and Tremella
    J, Pharmaceutics and Pharmacology Research Copy rights@ Waill A. Elkhateeb et.al. AUCTORES Journal of Pharmaceutics and Pharmacology Research Waill A. Elkhateeb * Globalize your Research Open Access Research Article Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella Waill A. Elkhateeb1* and Ghoson M. Daba1 1 Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. *Corresponding Author: Waill A. Elkhateeb, Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt. Received date: February 13, 2020; Accepted date: February 26, 2021; Published date: March 06, 2021 Citation: Waill A. Elkhateeb and Ghoson M. Daba (2021) Mycotherapy of the good and the tasty medicinal mushrooms Lentinus, Pleurotus, and Tremella J. Pharmaceutics and Pharmacology Research. 4(2); DOI: 10.31579/2693-7247/29 Copyright: © 2021, Waill A. Elkhateeb, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Fungi generally and mushrooms secondary metabolites specifically represent future factories and potent biotechnological tools for the production of bioactive natural substances, which could extend the healthy life of humanity. The application of microbial secondary metabolites in general and mushrooms metabolites in particular in various fields of biotechnology has attracted the interests of many researchers. This review focused on Lentinus, Pleurotus, and Tremella as a model of edible mushrooms rich in therapeutic agents that have known medicinal applications. Keyword: lentinus; pleurotus; tremella; biological activities Introduction of several diseases such as cancer, hypertension, chronic bronchitis, asthma, and others [14, 15].
    [Show full text]
  • Antioxidant Activities of Methanolic Extracts from Ten Pleurotus Species
    Sanjit Debnath et al. Int. Res. J. Pharm. 2017, 8 (3) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM TEN PLEUROTUS SPECIES Sanjit Debnath 1*, Ramesh Chandra Upadhyay 2, Panna Das 3 and Ajay Krishna Saha 1 1Mycology and Plant Pathology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India 2Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India 3Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India *Corresponding Author Email: [email protected] Article Received on: 09/02/17 Approved for publication: 08/03/17 DOI: 10.7897/2230-8407.080335 ABSTRACT The antioxidant activities of methanolic extract from mycelia of ten Pleurotus species were investigated. The main aim of this study was to evaluate and compare the antioxidant activities of methanolic extracts of mushroom mycelium of ten Pleurotus species by three different methods. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, chelating effect on ferrous ion and phenolic content of mycelial extract of ten edible mushrooms were analyzed. P. sajor-caju showed highest free radical scavenging activity (92.05 %) and reducing power (1.082 %) at 8 mg/ml concentration. P. citrinopileatus showed highest percentage of chelating effect on ferrous ion (90.66 %). The lowest EC50 value of free radical scavenging activity was found in P. sapidus which indicated strongest ability of the mycelial extract to act as DPPH radical scavenger. The lowest chelating effect on ferrous ion was noticed in P. sajor-caju but EC50 of reducing power was much lower than the synthetic antioxidant (BHT).
    [Show full text]
  • Cultivation of Agaricus Blazei on Pleurotus Spp. Spent Substrate
    939 Vol.53, n. 4: pp. 939-944, July-August 2010 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Cultivation of Agaricus blazei on Pleurotus spp . Spent Substrate Regina Maria Miranda Gern 1*, Nelson Libardi Junior 2, Gabriela Nunes Patrício 3, Elisabeth Wisbeck 2, Mariane Bonatti Chaves 2 and Sandra Aparecida Furlan 2 1Departamento de Ciências Biológicas; Universidade da Região de Joinville; C. P.: 246; Campus Universitário s/n; 89201-972; Joinville - SC - Brasil. 2Departamento de Engenharia Ambiental; Universidade da Região de Joinville; 3Departamento de Química Industrial; Universidade da Região de Joinville; Joinville - SC - Brasil ABSTRACT The aim of this work was the use of Pleurotus ostreatus and Pleurotus sajor-caju for the previous lignocellulolytic decomposition of banana tree leaf straw and the further use of the degraded straw as substrate for the culture of Agaricus blazei. For optimising the production of A. blazei in terms of yield (Y%) and biological efficiency (BE%), adjustments to the composition of the substrate were evaluated in a 2 5 experimental design. The following components were tested in relation to % of substrate dry mass: urea (1 and 10%), rice bran (10 or 20%) or ammonium sulphate (0 or 10%), inoculum (10 or 20%) and the casing material (subsoil or burned rice husks). The best results (79.71 Y% and 6.73 BE%) were found when the substrate containing 10% of rice bran, without ammonium sulphate, inoculated with 20% and covered with subsoil was used. Key words : Agro-industrial Wastes, Basidiomycetes, Edible Mushrooms, Fungi, Lignocellulosic Degradation, Solid State Fermentation INTRODUCTION maize, sugar-cane bagasse, coffee pulp, banana leaves, agave wastes, soy pulp etc) (Patrabansh The culture of edible and medicinal mushrooms and Madan 1997; Obodai et al.
    [Show full text]
  • On Stimulating Fungi Pleurotus Ostreatus with Cortisol
    On stimulating fungi Pleurotus ostreatus with Cortisol Mohammad Mahdi Dehshibia,b, Alessandro Chiolerioa,c, Anna Nikolaidoua,d, Richard Maynea, Antoni Gandiae,f, Mona Ashtarib, Andrew Adamatzkya aUnconventional Computing Laboratory, UWE, Bristol, UK bDepartment of Computer Science, Universitat Oberta de Catalunya, Barcelona, Spain cCenter for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Torino, Italy dDepartment of Architecture, UWE, Bristol, UK eInstitute for Plant Molecular and Cell Biology, CSIC-UPV, Valencia, Spain fMogu S.r.l., Inarzo, Italy Abstract Fungi cells are capable of sensing extracellular cues through reception, transduction and response systems which allow them to communicate with their host and adapt to their environment. They display effective regulatory protein expressions which enhance and regulate their response and adaptation to a variety of triggers such as stress, hormones, light, chemicals and host factors. In our recent studies, we have shown that Pleurotus oyster fungi generate electrical potential impulses in the form of spike events as a result of their exposure to environmental, mechanical and chemical triggers, demonstrating that it is possible to discern the nature of stimuli from the fungi electrical responses. Harnessing the power of fungi sensing and intelligent capabilities, we explored the communication protocols of fungi as reporters of human chemical secretions such as hormones, addressing the question if fungi can sense human signals. We exposed Pleurotus oyster fungi to cortisol, directly applied to a surface of a hemp shavings substrate colonised by fungi, and recorded the electrical activity of fungi. The response of fungi to cortisol was also supplementary studied through the application of X-ray to identify changes in the fungi tissue, where receiving cortisol by the substrate can inhibit the flow of calcium and, in turn, reduce its physiological changes.
    [Show full text]
  • Verticillium Fungicola Cell Wall Glucogactomannan-Binding of the Lectin from the Pleurotus Ostreatus Fruit Bodies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Academica-e Verticillium fungicola Cell Wall Glucogactomannan-binding of the Lectin from the Pleurotus ostreatus Fruit bodies D. Bernardo; A. Pérez Cabo; C. García Mendoza Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain) The Verticillium fungicola mycoparasitism on Agaricus bisporus fruit bodies appears to be a complex process made up of successive steps in which the recognition and binding between complementary molecules, the A. bisporus fruit body lectin and the V. fungicola cell wall glucogalactomannan, have re- cently been demonstrated. P. ostreatus fruit bodies have been described as containing a lectin and also presenting the “dry bubble” or the Verticillium disease. The aim of the present work is to purify and characterize the P. ostreatus lectin and compare the properties of both lectins in an attempt to confirm if the specific glucogalactomannan-lectin recognition and binding is the necessary step for the V. fungicola mycoparasitism process in P. ostreatus. The characteristics and properties of the purified P. o s t r e a t u s lectin together with those also previously described by us on A. bisporus lectin show that, although both lectins present different chemical struc- tures, they behave very similarly in relation to their glucogalactomannan-binding, thus confirming the existence of the specific recognition and binding step in the Verticillium disease on P. ostreatus fruit bodies. 1. Introduction “Dry bubble” or Verticillium disease, the most serious fungal disease of the commercially grown strains of the white mushroom Agaricus bisporus, is Genetics and Cellular Biology of Basidiomycetes-VI.
    [Show full text]
  • Molecular Identification of Some Wild Nigerian Mushrooms Using Internal
    Adeniyi et al. AMB Expr (2018) 8:148 https://doi.org/10.1186/s13568-018-0661-9 ORIGINAL ARTICLE Open Access Molecular identifcation of some wild Nigerian mushrooms using internal transcribed spacer: polymerase chain reaction Mobolaji Adeniyi1,2, Yinka Titilawo3,4,5*, Anthonia Oluduro1, Olu Odeyemi1, Motebang Nakin4 and Anthony Ifeanyi Okoh5 Abstract Identifcation of fungal species based on morphological characteristics is tedious, complex, prone to errors, and thus cannot be completely relied upon. In this study, internal transcribed spacers (ITS 1 and 4)—polymerase chain reaction was employed to amplify DNA of 19 mushroom isolates collected at Environmental Pollution Science and Technology farm, Ilesa, Southwest Nigeria. The PCR amplifcation of ITS1 and 4 of the mushrooms isolates yielded approximately 850 bp. Amplicons obtained were sequenced and identifed using BLASTn in the NCBI. The BLASTn results revealed that Termitomyces aurantiacus (3), Tricholoma matsutake (8), Tricholoma robustum (2), P. ostreatus (4), Schizophyllum commune (1) and Pleurotus pulmonarius (1) were fully represented. Only Tricholoma matsutake (KT273371), Pleurotus pulmonarius (KY962469) and Tricholoma matsutake (AF438605) had 100% similarity with reference strain. However, the phylogenetic analysis of the isolates showed low genetic relatedness with reference strains. This study revealed the novelty of the mushroom strains and thus advocating the need for strict conservation measures and further investiga- tions on their potential benefts to mankind. Keywords: Mushrooms, ENPOST, Molecular identifcation, Food security, Nigeria Introduction Generally, macrofungi are regarded as important Mushrooms are regarded as visible fungi with distinc- bioresource because of their diverse ecological, nutri- tive carpophores (basidiocarps or fruiting bodies) which tional, health and medicinal benefts (Odeyemi et al.
    [Show full text]
  • Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus Djamor, Agaricus Bisporus and Ganoderma Tsugae
    Int.J.Curr.Microbiol.App.Sci (2014) 3(6): 518-526 ISSN: 2319-7706 Volume 3 Number 6 (2014) pp. 518-526 http://www.ijcmas.com Original Research Article Comparison of Nutrient Contents and Antimicrobial Properties of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae K.Dharmaraj1*, T. Kuberan2 and R. Mahalakshmi2 1Post Graduate Department of Botany, Ayya Nadar Janaki Ammal College, Sivakasi 626 124, Tamil Nadu, India 2Cybermonk Lifescience Solution, Srivilliputtur 626 125, Tamil Nadu, India *Corresponding author A B S T R A C T The edible mushrooms of pleurotus djamor, Agaricus bisporus and non-edible mushroom Ganoderma tsugae were used for in this study. The dry weight, nutrient contents and antimicrobial activity was studied in edible and non-edible mushrooms. The dry weight of the mushroom was analysed and it was found in the range of 11-16 gm/100gm.the maximum dry weight observed in Ganoderma K e y w o r d s tsugae (16.1 gm/100gm) followed by Agaricus bisporus (14.3 gm/100gm) The maximum nutrient content was observed in Agaricus bisporus and the minimum Mushroom, amount of nutrient content was observed in Ganoderma tsugae. The maximum pathogen, amount of protein (32.0 mg/gm), glucose (13.2 mg/gm) and free amino acid (5.2 inhibition, mg/gm) content was observed in the Agaricus bisporus and the trace amount of antibacterial was observed in Ganoderma tsugae. The antimicrobial activity was studied by the mushroom extracts (acetone and dimethyl sulfoxide) of Pleurotus djamor, Agaricus bisporus and Ganoderma tsugae against the pathogenic bacteria such as Escherichia coli and Pseudomonas aeruginosa.
    [Show full text]
  • Pleurotus Species Basidiomycotina with Gills - Lignicolous Mushrooms
    Biobritte Agro Solutions Private Limited, Kolhapur, (India) Jaysingpur-416101, Taluka-Shirol, District-Kolhapur, Maharashtra, INDIA. [email protected] www.biobritte.co.in Whatsapp: +91-9923806933 Phone: +91-9923806933, +91-9673510343 Biobritte English name Scientific Name Price Lead time Code Pleurotus species Basidiomycotina with gills - lignicolous mushrooms B-2000 Type A 3 Weeks Winter Oyster Mushroom Pleurotus ostreatus B-2001 Type A 3 Weeks Florida Oyster Mushroom Pleurotus ostreatus var. florida B-2002 Type A 3 Weeks Summer Oyster Mushroom Pleurotus pulmonarius B-2003 Type A 4 Weeks Indian Oyster Mushroom Pleurotus sajor-caju B-2004 Type B 4 Weeks Golden Oyster Mushroom Pleurotus citrinopileatus B-2005 Type B 3 Weeks King Oyster Mushroom Pleurotus eryngii B-2006 Type B 4 Weeks Asafetida, White Elf Pleurotus ferulae B-2007 Type B 3 Weeks Pink Oyster Mushroom Pleurotus salmoneostramineus B-2008 Type B 3 Weeks King Tuber Mushroom Pleurotus tuberregium B-2009 Type B 3 Weeks Abalone Oyster Mushroom Pleurotus cystidiosus Lentinula B-3000 Shiitake Lentinula edodes Type B 5 Weeks other lignicoles B-4000 Black Poplar Mushr. Agrocybe aegerita Type-C 5 Weeks B-4001 Changeable Agaric Kuehneromyces mutabilis Type-C 5 Weeks B-4002 Nameko Mushroom Pholiota nameko Type-C 5 Weeks B-4003 Velvet Foot Collybia Flammulina velutipes Type-C 5 Weeks B-4003-1 yellow variety 5 Weeks B-4003-2 white variety 5 Weeks B-4004 Elm Oyster Mushroom Hypsizygus ulmarius Type-C 5 Weeks B-4005 Buna-Shimeji Hypsizygus tessulatus Type-C 5 Weeks B-4005-1 beige variety
    [Show full text]
  • Collection of Group Characteristics of Pleurotus Eryngii Using Machine Vision
    Collection of Group Characteristics of Pleurotus Eryngii Using Machine Vision Yunsheng Wang1, Changzhao Wan1, Juan Yang1, Jianlin Chen1, Tao Yuan1, and Jingyin Zhao1,2,* 1 Technology & Engineering Research Center for Digital Agriculture, Shanghai Academy of Agriculture Sciences, Shanghai, P.R. China 201106 2 No.2901 Beidi Road, Shanghai, 201106, P.R. China, Tel.: +86-21-62204989 [email protected] Abstract. An information collection system which was used to group character- istics of pleurotus eryngii was introduced. The group characteristics of pleuro- tus eryngii were quantified using machine vision in order to inspect and control the pleurotus eryngii house environment by an automated system. Its main con- tents include the following: collection of pleurotus eryngii image; image proc- essing and pattern recognition. Finally, by analysing pleurotus eryngii image, the systems for group characteristics of pleurotus eryngii are proved to be greatly effective. Keywords: Pleurotus eryngii, Group characteristics, Machine vision, Collection. 1 Introduction World's edible fungi output reached 13 million tons at 2006, China is the largest pro- ducer of edible fungi, edible fungi production in China is the world's edible fungi pro- duction for more than 70%. Agricultural production in China, the sixth production of edible fungi, edible fungi have become the pillar industries in the agricultural econ- omy (Huang Chienchun, 2006; Lu Min, 2006). At present, the small-scale, extensive management production of edible fungi in China is still the main form, although this mode of production and low cost initial investment, but subject to natural risks and market risks is very weak, it is difficult to guarantee product quality, production efficiency is very low.
    [Show full text]