Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Nutrient Composition of Selected Wild Edible Mushrooms from Two Agro‑Ecological Zones, Uganda
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Nakalembe et al. SpringerPlus (2015) 4:433 DOI 10.1186/s40064-015-1188-z RESEARCH Open Access Comparative nutrient composition of selected wild edible mushrooms from two agro‑ecological zones, Uganda Immaculate Nakalembe1*, John David Kabasa2 and Deogratias Olila3 *Correspondence: immynakalembe@covab. Abstract mak.ac.ug In Uganda, wild mushrooms are mainly collected during the rainy season and valued 1 Department of Biomolecular Resources as a traditionally nutritious food by the rural poor. However, their nutritional attributes and Biolaboratory Sciences, have not been adequately studied and documented. Comparative nutrient composi- Makerere University, P. O. tion of five wild edible mushroom species was determined, namely: P. tenucuilus, T. Box 7062, Kampala, Uganda Full list of author information tyleranus, T. clypeatus, V. speciosa and T. microcarpus of sub-humid and humid agro- is available at the end of the ecological zones. Standard analytical techniques following the AOAC were used for article proximate and mineral contents determinations. Vitamins determination followed the established standard protocols of the laboratories where the analyses were conducted. Combined use of nutrient concentration and scores were used to compare the level of the contents in the mushroom species. Significant differences (p < 0.05) in nutrient values were demonstrated between and among the mushroom species obtained from the two agro-ecological zones. On dry weight basis, all proximate compositions were high in mushroom species obtained from the humid zone with exception of the total carbohydrates and energy values. Irrespective of the source of the mushrooms, signifi- cant amounts were demonstrated in protein, dry matter, ash and total carbohydrates ranging between 11.56–27.42%, 82.34–99.76%, 10.79–16.87%, and 37.12–61.05%, respectively. -
Cultivation of the Oyster Mushroom (Pleurotus Sp.) on Wood Substrates in Hawaii
CULTIVATION OF THE OYSTER MUSHROOM (PLEUROTUS SP.) ON WOOD SUBSTRATES IN HAWAII A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'IIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCE DECEMBER 2004 By Tracy E. Tisdale Thesis Committee: Susan C. Miyasaka, Chairperson Mitiku Habte Don Hemmes Acknowledgements I would first like to acknowledge Susan C. Miyasaka, my major advisor, for her generosity, thoughtfulness, patience and infinite support throughout this project. I'd like to thank Don Hemmes and Mitiku Habte for taking time out of their schedules to serve on my committee and offer valuable insight. Thanks to Jim Hollyer for the much needed advising he provided on the economic aspect of this project. Thanks also to J.B. Friday, Bernie Kratky and all the smiling faces at Beaumont, Komohana, Waiakea and Volcano Research Stations who provided constant encouragement and delight throughout my mushroom growing days in Hilo. 111 Table of Contents Acknowledgements , iii List of Tables ,,, , vi List of Figures vii Chapter 1: Introduction '" 1 Chapter 2: Literature Review , 3 Industry ,,.. ,,,,, , 3 Substrates 6 Oyster Mushroom " '" 19 Production Overview 24 Chapter 3: Research Objectives , '" 32 Chapter 4: Materials and Methods 33 Substrate Wood 33 Cultivation Methods 34 Crop Yield ,, 39 Nutrients 43 Taste 44 Fruiting Site Assessment. .46 Economic Analysis .46 Chapter 5: Results and Discussion ,, .48 Substrate Wood ,, 48 Preliminary Experiment. '" 52 IV Final Experiment. -
Oyster Mushrooms (Pleurotus) Are Useful for Utilizing Lignocellulosic Biomass
Vol. 14(1), pp. 52-67, 7 January, 2015 DOI: 10.5897/AJB2014.14249 Article Number: AED32D349437 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Review Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass E. A. Adebayo1,2* and D. Martínez-Carrera2 1Department of Pure and Applied Biology, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Nigeria. 2Biotechnology of Edible, Functional and Medicinal Mushrooms, Colegio de Postgraduados, Apartado Postal 129, Puela 72001, Puebla, Mexico. Received 16 October, 2014; Accepted 12 December, 2014 This review shows the biotechnological potential of oyster mushrooms with lignocellulosic biomass. The bioprocessing of plant byproducts using Pleurotus species provides numerous value-added products, such as basidiocarps, animal feed, enzymes, and other useful materials. The biodegradation and bioconversion of agro wastes (lignin, cellulose and hemicellulose) could have vital implication in cleaning our environment. The bioprocessing of lignin depends on the potent lignocellulolytic enzymes such as phenol oxidases (laccase) or heme peroxidases (lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase) produced by the organism. The cellulose-hydrolysing enzymes (that is, cellulases) basically divided into endo-β-1,4-glucanase , exo-β-1,4-glucanase I and II, and β-glucosidase, they attack cellulose to release glucose, a monomers units from the cellobiose, while several enzymes acted on hemicellulose to give D-xylose from xylobiose. These enzymes have been produced by species of Pleurotus from lignocellulose and can also be used in several biotechnological applications, including detoxification, bioconversion, and bioremediation of resistant pollutants. -
First Cultivation of Agaricus Flocculosipes and a Novel Thai Strain of A
Mycosphere 5 (6): 814–820 (2014) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2014 Online Edition Doi 10.5943/mycosphere/5/6/11 First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens Thongklang N 1, 2, Sysouphanthong P 3, Callac P 4 and Hyde KD 1,2 1School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China 4UR 1264, Mycologie et Sécurité des Aliments, 33883 Villenave d’ Ornon, France Thongklang N, Sysouphanthong P, Callac P, Hyde KD 2014 – First cultivation of Agaricus flocculosipes and a novel Thai strain of A. subrufescens. Mycosphere 5(6), 814–820, Doi 10.5943/mycosphere/5/6/11 Abstract Agaricus flocculosipes and A. subrufescens are edible species that belong to section Arvenses of the genus Agaricus. Agaricus subrufescens (almond mushroom) is known to produce bioactive compounds with medicinal properties, such as anti-cancer and anti-tumor activity and fruiting bodies are also edible and nutritious. Agaricus subrufescens is presently cultivated in Brazil, China, Japan, Taiwan and some European countries for use as foods and nutraceuticals. Agaricus flocculosipes is a newly described species currently known only from Thailand, Mayotte Island and China. Species of Agaricus have high potential for cultivation as many species are edible and have medicinal properties. Herein we report the first cultivation of A. flocculosipes and a Thai strain of A. -
Antioxidant Activities of Methanolic Extracts from Ten Pleurotus Species
Sanjit Debnath et al. Int. Res. J. Pharm. 2017, 8 (3) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article ANTIOXIDANT ACTIVITIES OF METHANOLIC EXTRACTS FROM TEN PLEUROTUS SPECIES Sanjit Debnath 1*, Ramesh Chandra Upadhyay 2, Panna Das 3 and Ajay Krishna Saha 1 1Mycology and Plant Pathology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India 2Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh, India 3Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, India *Corresponding Author Email: [email protected] Article Received on: 09/02/17 Approved for publication: 08/03/17 DOI: 10.7897/2230-8407.080335 ABSTRACT The antioxidant activities of methanolic extract from mycelia of ten Pleurotus species were investigated. The main aim of this study was to evaluate and compare the antioxidant activities of methanolic extracts of mushroom mycelium of ten Pleurotus species by three different methods. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, reducing power, chelating effect on ferrous ion and phenolic content of mycelial extract of ten edible mushrooms were analyzed. P. sajor-caju showed highest free radical scavenging activity (92.05 %) and reducing power (1.082 %) at 8 mg/ml concentration. P. citrinopileatus showed highest percentage of chelating effect on ferrous ion (90.66 %). The lowest EC50 value of free radical scavenging activity was found in P. sapidus which indicated strongest ability of the mycelial extract to act as DPPH radical scavenger. The lowest chelating effect on ferrous ion was noticed in P. sajor-caju but EC50 of reducing power was much lower than the synthetic antioxidant (BHT). -
Small Scale Mushroom Production Agaricus Bisporus
Small Scale Mushroom Production Agaricus bisporus VEGETABLE CROPS PRODUCTION GUIDE FOR THE ATLANTIC PROVINCES Prepared by the ADVISORY COMMITTEE ON VEGETABLE CROPS Published by authority of the ATLANTIC PROVINCES AGRICULTURE SERVICES CO-ORDINATING COMMITTEE Introduction Successful mushroom growing involves overcoming difficulties such as temperature and humidity control, pest control and compost preparation. The amateur mushroom grower should recognize that most basements do not provide ideal conditions for good growth. Mushroom production is a difficult task at the best of times. This publication is intended to provide useful tips in order to increase the rate of success of growing mushrooms. Location For the amateur, mushrooms are usually planted in the fall and the best location is the cellar, basement or a barn or any tight, light-proof, well ventilated and insulated building. The following conditions should be met: 1.Air temperatures controlled between 13/C and 21/C. 2.Relative humidities between 80-95 %. A corner of the basement can be partitioned off by the use of a polyethylene divider. This will help to maintain proper humidity levels. A plastic hood placed over the growing bed is a second alternative. Do not place beds where direct sunlight will fall on them. Ventilation is useful to remove offensive odors. Where temperatures cannot be maintained, supplementary heat is necessary. Mushroom beds are usually 120-150 cm wide, 15-20 cm deep and as long as you wish. Boards that form the bottom should not be over 15-20 cm wide, leaving 2 cm to 4 cm cracks between them for ventilation. Several tiers can be made approximately 60 cm apart. -
Verticillium Fungicola Cell Wall Glucogactomannan-Binding of the Lectin from the Pleurotus Ostreatus Fruit Bodies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Academica-e Verticillium fungicola Cell Wall Glucogactomannan-binding of the Lectin from the Pleurotus ostreatus Fruit bodies D. Bernardo; A. Pérez Cabo; C. García Mendoza Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain) The Verticillium fungicola mycoparasitism on Agaricus bisporus fruit bodies appears to be a complex process made up of successive steps in which the recognition and binding between complementary molecules, the A. bisporus fruit body lectin and the V. fungicola cell wall glucogalactomannan, have re- cently been demonstrated. P. ostreatus fruit bodies have been described as containing a lectin and also presenting the “dry bubble” or the Verticillium disease. The aim of the present work is to purify and characterize the P. ostreatus lectin and compare the properties of both lectins in an attempt to confirm if the specific glucogalactomannan-lectin recognition and binding is the necessary step for the V. fungicola mycoparasitism process in P. ostreatus. The characteristics and properties of the purified P. o s t r e a t u s lectin together with those also previously described by us on A. bisporus lectin show that, although both lectins present different chemical struc- tures, they behave very similarly in relation to their glucogalactomannan-binding, thus confirming the existence of the specific recognition and binding step in the Verticillium disease on P. ostreatus fruit bodies. 1. Introduction “Dry bubble” or Verticillium disease, the most serious fungal disease of the commercially grown strains of the white mushroom Agaricus bisporus, is Genetics and Cellular Biology of Basidiomycetes-VI. -
FUNGAL CONTAMINANTS THREAT OYSTER MUSHROOM (Pleurotus Ostreatus (Jacq
FUNGAL CONTAMINANTS THREAT OYSTER MUSHROOM (Pleurotus ostreatus (Jacq. Ex Fr) Kummer) CULTIVATION I Made Sudarma*, Ni Made Puspawati dan Gede Wijana* *Department of Agroetechnology, Faculty of Agriculture, Udayana University, Jl. PB. Sudirman Denpasar-Bali. E-mail: [email protected]. HP. 08123639103 ABSTRACT One of the causes of failure of the cultivation of oyster mushroom (Pleurotus ostreatus (Jacq. Ex Fr) Kummer) is still much contamination baglog inhibit growth and cause failure of oyster mushroom production. For that study was conducted to determine fungal contaminants in the baglog media and inhibiting ability against oyster mushrooms in vitro. Research carried out by the observation methods, sampling randomly contaminated baglog 10-20% of the amount of contaminated baglog, repeated 3 times. Study to be implemented in venture oyster mushroom address: Jl. Siulan gang Zella no. 7 Denpasar, from April to August 2014. The results showed that air-borne fungus could potentially cause failure of oyster mushroom cultivation. The highest prevalence was found in Fusarium spp. (25.6%), while the highest inhibition was found in Mucor spp.(94.7±8.5). Fungal contaminants originating from baglog, the most dominant with the highest prevalence was Trichoderma spp (35.71%). This fungus was very dangerous for the survival of oyster mushroom cultivation. Keywords: Oyster mushroom (Pleurotus ostreatus (Jacq. ex Fr) Kummer), inhibiting ability, and the prevalence of fungal contaminants. INTRODUCTION Development of oyster mushroom cultivation particularly in Bali received threats by a number of fungal contaminants. Fungal contaminants can originate from the air and sawdust media. Green mold caused by Trichoderma spp. is a major disease that is found in oyster mushroom (Kredic et al., 2010). -
Molecular Identification of Some Wild Nigerian Mushrooms Using Internal
Adeniyi et al. AMB Expr (2018) 8:148 https://doi.org/10.1186/s13568-018-0661-9 ORIGINAL ARTICLE Open Access Molecular identifcation of some wild Nigerian mushrooms using internal transcribed spacer: polymerase chain reaction Mobolaji Adeniyi1,2, Yinka Titilawo3,4,5*, Anthonia Oluduro1, Olu Odeyemi1, Motebang Nakin4 and Anthony Ifeanyi Okoh5 Abstract Identifcation of fungal species based on morphological characteristics is tedious, complex, prone to errors, and thus cannot be completely relied upon. In this study, internal transcribed spacers (ITS 1 and 4)—polymerase chain reaction was employed to amplify DNA of 19 mushroom isolates collected at Environmental Pollution Science and Technology farm, Ilesa, Southwest Nigeria. The PCR amplifcation of ITS1 and 4 of the mushrooms isolates yielded approximately 850 bp. Amplicons obtained were sequenced and identifed using BLASTn in the NCBI. The BLASTn results revealed that Termitomyces aurantiacus (3), Tricholoma matsutake (8), Tricholoma robustum (2), P. ostreatus (4), Schizophyllum commune (1) and Pleurotus pulmonarius (1) were fully represented. Only Tricholoma matsutake (KT273371), Pleurotus pulmonarius (KY962469) and Tricholoma matsutake (AF438605) had 100% similarity with reference strain. However, the phylogenetic analysis of the isolates showed low genetic relatedness with reference strains. This study revealed the novelty of the mushroom strains and thus advocating the need for strict conservation measures and further investiga- tions on their potential benefts to mankind. Keywords: Mushrooms, ENPOST, Molecular identifcation, Food security, Nigeria Introduction Generally, macrofungi are regarded as important Mushrooms are regarded as visible fungi with distinc- bioresource because of their diverse ecological, nutri- tive carpophores (basidiocarps or fruiting bodies) which tional, health and medicinal benefts (Odeyemi et al. -
Pleurotus Species Basidiomycotina with Gills - Lignicolous Mushrooms
Biobritte Agro Solutions Private Limited, Kolhapur, (India) Jaysingpur-416101, Taluka-Shirol, District-Kolhapur, Maharashtra, INDIA. [email protected] www.biobritte.co.in Whatsapp: +91-9923806933 Phone: +91-9923806933, +91-9673510343 Biobritte English name Scientific Name Price Lead time Code Pleurotus species Basidiomycotina with gills - lignicolous mushrooms B-2000 Type A 3 Weeks Winter Oyster Mushroom Pleurotus ostreatus B-2001 Type A 3 Weeks Florida Oyster Mushroom Pleurotus ostreatus var. florida B-2002 Type A 3 Weeks Summer Oyster Mushroom Pleurotus pulmonarius B-2003 Type A 4 Weeks Indian Oyster Mushroom Pleurotus sajor-caju B-2004 Type B 4 Weeks Golden Oyster Mushroom Pleurotus citrinopileatus B-2005 Type B 3 Weeks King Oyster Mushroom Pleurotus eryngii B-2006 Type B 4 Weeks Asafetida, White Elf Pleurotus ferulae B-2007 Type B 3 Weeks Pink Oyster Mushroom Pleurotus salmoneostramineus B-2008 Type B 3 Weeks King Tuber Mushroom Pleurotus tuberregium B-2009 Type B 3 Weeks Abalone Oyster Mushroom Pleurotus cystidiosus Lentinula B-3000 Shiitake Lentinula edodes Type B 5 Weeks other lignicoles B-4000 Black Poplar Mushr. Agrocybe aegerita Type-C 5 Weeks B-4001 Changeable Agaric Kuehneromyces mutabilis Type-C 5 Weeks B-4002 Nameko Mushroom Pholiota nameko Type-C 5 Weeks B-4003 Velvet Foot Collybia Flammulina velutipes Type-C 5 Weeks B-4003-1 yellow variety 5 Weeks B-4003-2 white variety 5 Weeks B-4004 Elm Oyster Mushroom Hypsizygus ulmarius Type-C 5 Weeks B-4005 Buna-Shimeji Hypsizygus tessulatus Type-C 5 Weeks B-4005-1 beige variety -
Agaricus Bisporus): a Review
applied sciences Review Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review Muhammad Usman 1, Ghulam Murtaza 2 and Allah Ditta 3,4,* 1 Department of Botany, Government College University Lahore, Lahore 54000, Pakistan; [email protected] 2 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; [email protected] 3 Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir, Khyber Pakhtunkhwa 18000, Pakistan 4 School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia * Correspondence: [email protected] or [email protected] Abstract: Fungi are vital to numerous industrial and household processes, especially producing cheeses, beer, wine, and bread, and they are accountable for breaking down organic matter. The remarkable medicinal and nutritional values of the mushrooms have increased their consumption. Agaricus bisporus belongs to the Agaricaceae family, and it is a top-ranked cultivated mushroom that is well known for its edibility. A. bisporus is rich in nutrients such as carbohydrates, amino acids, fats, and minerals and has potential anticancer, antioxidant, anti-obesity, and anti-inflammation properties. The bioactive compounds extracted from this mushroom can be used for the treatment of several Citation: Usman, M.; Murtaza, G.; common human diseases including cancer, bacterial and fungal infections, diabetes, heart disorder, Ditta, A. Nutritional, Medicinal, and and skin problems. A. bisporus has opened new horizons for the world to explore mushrooms as far Cosmetic Value of Bioactive Compounds in Button Mushroom as their culinary and medicinal values are concerned. -
Amanita Muscaria (“Fly Agaric”)
WILD MUSHROOMS An Introductory Presentation by Pam McElroy and Anna Russo Lincoln County Mycological Society FIELD GUIDES • Mushrooms Demystified by David Arora • All That the Rain Promises, and More by David Arora • Field Guide to Mushrooms from National Audubon Society • Mushrooms of the Pacific Northwest by Steven Trudell & Joe Ammirati Mushroom Identification Traits • Gills/Pores/Teeth: What sort of spore- producing structures do you see? How are they attached? • Stalk description: Note the size, shape, color of stalk, and whether it is solid or hollow. • Spore color: Extremely important for ID. Identification Characteristics • Bruising when touched: Does the mushroom change color or bleed any liquid when it is sliced in half or grasped firmly? • Habitat: Anything about the surrounding area, including trees, temperature, soil, moisture. • Time of year: certain mushrooms fruit during certain times of the year • Cap description: Like the stalk, note all physical characteristics of the cap. • Smell and taste: Great amount of information The Good Guys……….. Edible, delicious, delectable…….what’s not to love? The bad guys………. • Like the little girl with the curl, when mushrooms are good, they are very, very good……….and when they are bad, they are dreadful! • There are some DEADLY mushrooms….and you can’t tell which ones unless you educate yourself. Let’s take a look at some of the “bad boys” of the mushroom world. • Before you even consider eating a wild mushroom that you have picked, you MUST know the poisonous ones. • In mycological circles,