BFS341 Site Species List

Total Page:16

File Type:pdf, Size:1020Kb

BFS341 Site Species List Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No WOODP01 (FCT30a2) WOODP02 (FCT30a2) Wd? Acacia rostellifera Summer-scented Wattle Mimosaceae Dicot WA 3 SH/T P 341 y y Acanthocarpus preissii Prickle Lily Dasypogonaceae Monocot WA 4 H-SH P 341 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 341 y * Asparagus asparagoides Bridal Creeper Asparagaceae Monocot 4 H (CL) PAB 341 y y Austrostipa elegantissima Feather Speargrass Poaceae Monocot AUST 5 G P 341 y Caladenia latifolia Pink Fairy Orchid Orchidaceae Monocot WA 4 H PAB 341 y Calandrinia calyptrata Pink Purslane Portulacaceae Dicot AUST 4 H A 341 y Callitris preissii Rottnest Island Cypress Cupressaceae Conifer s,E WA 1 T P 341 y * Cerastium glomeratum Sticky Mouse-ear Chickweed Caryophyllaceae Dicot 4 H A 341 y Clematis linearifolia Old Man's Beard Ranunculaceae Dicot WA 4 H-SH (CL) P 341 y Clematis pubescens Old Man's Beard Ranunculaceae Dicot WA 4 H-SH (CL) P 341 y Comesperma integerrimum Vine Comesperma Polygalaceae Dicot WA 3 SH (CL) P 341 y Conostylis candicans subsp. candicans Grey Conostylis Haemodoraceae Monocot WA 4 H P 341 y Dianella revoluta var. divaricata Common Dianella Phormiaceae Monocot WA 4 H P 341 y Diplolaena dampieri Southern Diplolaena Rutaceae Dicot r,s AUST 3 SH P 341 y * Ehrharta longiflora Annual Veldtgrass Poaceae Monocot 5 G A 341 y y Eucalyptus gomphocephala var. gomphocephala Tuart Myrtaceae Dicot WA 1 T/M P 341 y * Euphorbia peplus Petty Spurge Euphorbiaceae Dicot 4 H A 341 y y * Fumaria capreolata Climbing Fumitory Fumariaceae Dicot 4 H (CL) A 341 y * Galium murale Bedstraw Rubiaceae Dicot 4 H A 341 y y Hardenbergia comptoniana Hardenbergia Papilionaceae Dicot WA 3 SH (CL) P 341 y Lepidosperma squamatum Common Lepidosperma Cyperaceae Monocot WA 6 S-C P 341 y Lomandra maritima Coast Lomandra Dasypogonaceae Monocot WA 4 H P 341 y Melaleuca systena Yellow Honeymyrtle Myrtaceae Dicot WA 3 SH P 341 y Microlaena stipoides Weeping Grass Poaceae Monocot AUST 5 G P 341 y Phyllanthus calycinus Phyllanthus Euphorbiaceae Dicot WA 4 H P 341 y Santalum acuminatum Quandong Santalaceae Dicot AUST 3 SH/T P-PAR 341 y Schoenus grandiflorus Schoenus Cyperaceae Monocot WA 6 S-C P 341 y * Sonchus oleraceus Common Sowthistle Asteraceae Dicot 4 H A 341 y y Spyridium globulosum Basket Bush Rhamnaceae Dicot AUST 3 SH P 341 y y Thysanotus arenarius Limestone Fringed Lily Anthericaceae Monocot WA 4 H PAB 341 y * Trachyandra divaricata Dune Onion Weed Asphodelaceae Monocot 4 H P 341 y y Trachymene pilosa Small Laceflower Apiaceae Dicot 4 H A 341 y Page 1 of 1.
Recommended publications
  • Partial Flora Survey Rottnest Island Golf Course
    PARTIAL FLORA SURVEY ROTTNEST ISLAND GOLF COURSE Prepared by Marion Timms Commencing 1 st Fairway travelling to 2 nd – 11 th left hand side Family Botanical Name Common Name Mimosaceae Acacia rostellifera Summer scented wattle Dasypogonaceae Acanthocarpus preissii Prickle lily Apocynaceae Alyxia Buxifolia Dysentry bush Casuarinacea Casuarina obesa Swamp sheoak Cupressaceae Callitris preissii Rottnest Is. Pine Chenopodiaceae Halosarcia indica supsp. Bidens Chenopodiaceae Sarcocornia blackiana Samphire Chenopodiaceae Threlkeldia diffusa Coast bonefruit Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Suada australis Seablite Chenopodiaceae Atriplex isatidea Coast saltbush Poaceae Sporabolis virginicus Marine couch Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Pittosporaceae Pittosporum phylliraeoides Weeping pittosporum Poaceae Stipa flavescens Tussock grass 2nd – 11 th Fairway Family Botanical Name Common Name Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Atriplex isatidea Coast saltbush Cyperaceae Gahnia trifida Coast sword sedge Pittosporaceae Pittosporum phyliraeoides Weeping pittosporum Myrtaceae Melaleuca lanceolata Rottnest Is. Teatree Chenopodiaceae Sarcocornia blackiana Samphire Central drainage wetland commencing at Vietnam sign Family Botanical Name Common Name Chenopodiaceae Halosarcia halecnomoides Chenopodiaceae Sarcocornia quinqueflora Beaded samphire Chenopodiaceae Sarcocornia blackiana Samphire Poaceae Sporobolis virginicus Cyperaceae Gahnia Trifida Coast sword sedge
    [Show full text]
  • The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract the Ov
    The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract The overwhelming majority of flowering plants reproduce through the production of hermaphroditic flowers. A small percentage of angiosperm species instead are dioecious, producing either male or female flowers on individual plants. Dioecy can be mediated at the molecular level by a sex chromosome that genetically differentiates males and females. Sex chromosomes evolve from autosomes, and this conversion is hypothesized to involve muta- tions in one or more linked genes that determine sex. Given the complexities of anther and ovule development, the full suite of sex determination genes has not been described for any dioecious plant. Here we explore the conversion from autosome to an XY sex chromosome using garden asparagus (Asparagus officinalis), an ideal model system for studying the ear- liest events in sex chromosome evolution given that it recently evolved a sex chromosome pair. Focusing first on broad trends, genomic characterization of several hermaphroditic and dioecious species across the Asparagus genus revealed an increase in retrotransposon con- tent coincident with the evolution of dioecy. To identify putative sex determination genes on this Y chromosome, we then explore the timing of male and female sterility events in garden asparagus, hypothesizing that anther sterility in females likely occurs before pollen microsporogenesis. Finally, we assemble and annotate a high quality reference genome for garden asparagus, and perform a suite of mutant analyses to identify two genes in a non- recombining region of the Y that are ultimately responsible for sex determination.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Supporting Information Appendix Pliocene Reversal of Late Neogene
    1 Supporting Information Appendix 2 Pliocene reversal of late Neogene aridification 3 4 J.M.K. Sniderman, J. Woodhead, J. Hellstrom, G.J. Jordan, R.N. Drysdale, J.J. Tyler, N. 5 Porch 6 7 8 SUPPLEMENTARY MATERIALS AND METHODS 9 10 Pollen analysis. We attempted to extract fossil pollen from 81 speleothems collected from 11 16 caves from the Western Australian portion of the Nullarbor Plain. Nullarbor speleothems 12 and caves are essentially “fossil” features that appear to have been preserved by very slow 13 rates of landscape change in a semi-arid landscape. Sample collection targeted fallen, well 14 preserved speleothems in multiple caves. U-Pb dates of these speleothems (Table S3) 15 ranged from late Miocene (8.19 Ma) to Middle Pleistocene (0.41 Ma), with an average age 16 of 4.11 Ma. 17 Fossil pollen typically is present in speleothems in very low concentrations, so pollen 18 processing techniques were developed to minimize contamination by modern pollen (1), but 19 also to maximize recovery, to accommodate the highly variable organic matter content of the 20 speleothems, and to remove a clay- to fine silt-sized mineral fraction present in many 21 samples, which was resistant to cold HF and which can become electrostatically attracted to 22 pollen grains, inhibiting their identification. Stalagmite and flowstone samples of 30-200 g 23 mass were first cut on a diamond rock saw in order to remove any obviously porous material. 24 All subsequent physical and chemical processes were carried out within a HEPA-filtered 25 exhausting clean air cabinet in an ISO Class 7 clean room.
    [Show full text]
  • RCM028 Hutt Lagoon Condition Report
    Resource Condition Report for a Significant Western Australian Wetland Hutt Lagoon 2009 Figure 1 – A view across the water body at Hutt Lagoon, coloured pink by alga. This report was prepared by: Anna Nowicki, Technical Officer, Department of Environment and Conservation, PO Box 51, Wanneroo 6946 Adrian Pinder, Senior Research Scientist, Department of Environment and Conservation, PO Box 51, Wanneroo 6946 Stephen Kern, Botanist, Department of Environment and Conservation, Locked Bag 104 Bentley Delivery Centre 6983 Glen Daniel, Environmental Officer, Department of Environment and Conservation, Locked Bag 104 Bentley Delivery Centre 6983 Invertebrate sorting and identification by: Nadine Guthrie, Research Scientist, Department of Environment and Conservation, PO Box 51, Wanneroo 6946 Ross Gordon, Project Officer, Department of Environment and Conservation, PO Box 51, Wanneroo 6946 Prepared for: Inland Aquatic Integrity Resource Condition Monitoring Project, Strategic Reserve Fund, Department of Environment and Conservation August 2009 Suggested Citation: Department of Environment and Conservation (DEC) (2009). Resource Condition Report for a Significant Western Australian Wetland: Hutt Lagoon. Department of Environment and Conservation, Perth, Western Australia. Contents 1. Introduction.........................................................................................................................1 1.1. Site Code ...............................................................................................................1 1.2.
    [Show full text]
  • Supplementary Material Spatial Analysis of Limiting Resources on An
    10.1071/WR14083_AC ©CSIRO 2014 Supplementary Material: Wildlife Research 41 , 510–521 Supplementary material Spatial analysis of limiting resources on an island: diet and shelter use reveal sites of conservation importance for the Rottnest Island quokka Holly L. Poole A, Laily Mukaromah A, Halina T. Kobryn A and Patricia A. Fleming A,B ASchool of Veterinary & Life Sciences, Murdoch University, WA 6150, Australia. BCorresponding author. Email: [email protected] Table S1. Raw data of plant fragment identification for 67 faecal samples from Rottnest Island quokkas Plant Family Plants No. No. No. field group faecal fragments validation sample quadrats sites present in present in Dicot Malvaceae Guichenotia ledifolia 52 9854 75 Dicot Fabaceae Acacia rostellifera 37 3018 37 Monocot Asphodelaceae Trachyandra divaricata 46 2702 145 Dicot Myrtaceae Melaleuca lanceolata 25 1506 28 Dicot Chenopodiaceae Tecticornia 13 1350 4 halocnemoides Monocot Poaceae Stipeae (Tribe) 34 1302 171 Monocot Asphodelaceae Asphodelus fistulosus 26 1103 22 Dicot Chenopodiaceae Rhagodia baccata 13 1002 46 Dicot Chenopodiaceae Suaeda australis 12 862 2 Dicot Chenopodiaceae Threlkeldia diffusa 15 829 0 Monocot Poaceae Rostraria cristata 27 788 71 Monocot Poaceae Sporobolus virginicus 5 617 2 Dicot Chenopodiaceae Sarcocornia sp . 10 560 0 Dicot Lamiaceae Westringia dampieri 5 383 46 Dicot Goodeniaceae Scaevola crassifolia 10 349 20 Monocot Cyperaceae Gahnia trifida 8 281 6 Other Cupressaceae Callitris preissii 3 148 18 Monocot Poaceae Poa poiformis 2 116 0 Dicot Chenopodiaceae Atriplex spp. (A. 1 40 1 paludosa ) Monocot Poaceae Polypogon maritimus 1 39 0 Dicot Myrtaceae Agonis flexuosa 1 15 0 Monocot Poaceae Brachypodium distachyon 0 0 1 Monocot Asphodelaceae Bulbine semibarbata 0 0 1 Dicot Pittosporaceae Pittosporum 0 0 1 phylliraeoides Monocot Poaceae Spinifex longifolius 0 0 1 Dicot Fabaceae Acacia saligna 0 0 2 Dicot Chenopodiaceae Atriplex cinerea 0 0 2 1 Dicot Asteraceae Centaurea sp .
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • 213Asparagus Workshop Part2.Indd
    128 Plant Protection Quarterly Vol.21(3) 2006 dioecious species examined had on aver- age twice the genome size of the South Af- Review of the current taxonomic status and rican hermaphroditic species and, based on internal transcribed spacers of nuclear authorship for Asparagus weeds in Australia ribosomal DNA, the species can be divided into two clusters, one of European species Kathryn L. Batchelor and John K. Scott, CSIRO Entomology, Private Bag 5, and the other of southern Africa species. PO Wembley, Western Australia 6913, Australia. Both Lee et al. (1997) and Stajner et al. Email: [email protected], [email protected] (2002) did not use outgroup taxa in their analyses. This issue and a larger sam- ple size (24 species) were addressed in a study by Fukuda et al. (2005) of the mo- Summary Systematic taxonomy of genera lecular phylogeny of Asparagus inferred Over the last 20 years, many scientifi c within the Asparagaceae from plastid petB intron and petD-rpoA papers and reports have been produced The debate over whether the Asparagace- intergenic spacer sequences. They found outlining the establishment, distribution ae contains one genus Asparagus with or evidence supporting a monophyletic ori- and weed status of Asparagus weeds in without subgenera, or up to 16 separate gin of Asparagus and the sub-division of Australia. Differing use of authorship genera has been going for over 200 years. Asparagus into more than three groups. and species names are present in this lit- The taxonomic history of the Asparagace- The Eurasian species of Asparagus formed erature resulting in confusion over which ae is well covered in recent papers.
    [Show full text]
  • Proclaimed Plant Policy
    Declared Plant Policy This policy relates to natural resources management under section 9(1)(d) of the Landscape South Australia Act 2019 (the Act), enabling co-ordinated implementation and promotion of sound management programs and practices for the use, development or protection of natural resources of the State. Specifically, this policy provides guidance on the use and management of natural resources relating to the prevention or control of impacts caused by pest species of plants that may have an adverse effect on the environment, primary production or the community, as per object s7(1)(f) of the Act. bridal creeper (Asparagus asparagoides) Bridal creeper is a winter-growing, summer-dormant climbing perennial. It is widespread in South Australia, invading a wide range of native vegetation communities. Two forms of bridal creeper (known as common and Western Cape) have been found in South Australia and require different management approaches. Management Plan for Bridal Creeper Outcomes • Protect the integrity of native vegetation by preventing further spread and minimising the impacts of existing bridal creeper infestations. Objectives • Contain existing infestations to prevent spread into uninvaded areas. • Control bridal creeper at sites of high conservation significance. • Control priority infestations in accordance with landscape board regional management plans. Best Practice Implementation • Redistribution of biological control agents, where required for priority sites. • Prohibition on sale of bridal creeper is to be enforced, as detected by regional landscape boards. • Identification and strategic control of outlier infestations. • Management of core infestations of bridal creeper to protect high value natural assets/areas of conservation significance. • Extension to raise awareness of the two forms of bridal creeper and the differences in management approaches.
    [Show full text]
  • And Rust Fungi Discoveries of New Increased Since These Revisions Through of Biological Control Taxa, New Incursions, and Introductions Agents
    !"· VOLUME 5 ·#$%&M#(# doi:10.5598/imafungus.2014.05.02.03 [ ) Ustilaginomycotina ARTICLE Pucciniales) Roger G. Shivas1, Dean R. Beasley1, and Alistair R. McTaggart1,2 1Plant Pathology Herbarium, Biosecurity Queensland, Department of Agriculture, Fisheries and Forestry, GPO Box 267, Brisbane 4001, Queensland, Australia; corresponding author e-mail: +N;+ 2UB B X /+ >+ U Z [ \[] ^_ !`j ^ Queensland 4001, Australia /+[BUstilaginomycotina and Pucciniomycotina, Microbotryales) and rust fungi (Pucciniomycotina, Pucciniales) are available online at http://collections. Australia ;+ < [ Key Australian smut fungi (317 species in 37 genera) and 100 rust fungi (from approximately 360 species Lucid in 37 genera). The smut and rust keys are illustrated with over 1,600 and 570 images respectively. The Morphology keys are designed to assist a wide range of end-users including mycologists, plant health diagnosticians, Uredinales biosecurity scientists, plant pathologists, and university students. The keys are dynamic and will be Taxonomy regularly updated to include taxonomic changes and incorporate new detections, taxa, distributions and Ustilaginales images. Researchers working with Australian smut and rust fungi are encouraged to participate in the on- going development and improvement of these keys. ={!j|!"#}~B{'#]!"#}~[{##@+!"#} INTRODUCTION Vánky & Shivas (2008) revised the Australian smut fungi, and a separate interactive Lucid key to 296 species with The smut fungi (Ustilaginomycotina and Pucciniomycotina, over 1000 images was developed to accompany the revision Microbotryales) and rust fungi (Pucciniomycotina, (Shivas et al. 2008). Despite the importance of rust fungi Pucciniales) in the Basidiomycota, together represent the in Australia, the most recent monograph is over a century most economically important and largest group of plant old and considered about 160 species (McAlpine 1906).
    [Show full text]
  • Asparagus Weeds Management Manual
    Weeds of National Significance Asparagus weeds Management Manual Current management and control options for asparagus weeds Asparagus spp. in Australia National Asparagus Weeds Management Committee Asparagus weeds Management Manual Current management and control options for asparagus weeds Asparagus spp. in Australia Weeds of National Significance 203 i 203 State of NSW and ffice of Environment and Heritage This publication is intended to provide information only on the subect under review. It is not intended to provide, nor does it constitute, epert advice. eaders are warned against relying solely on the information herein. Further professional advice should be sought before acting on the information supplied in this manual. While all care has been taken in the preparation of this publication, neither the ffice of Environment and Heritage NSW, nor its staff accept any responsibility for any loss or damage that may result from any inaccuracy or omission, or from the use of the information herein. Published by: This publication should be cited as: ffice of Environment and Heritage ffice of Environment and Heritage 203. 6 oulburn Street, Sydney NSW 2000 Asparagus weeds management manual: current P Bo A20, Sydney South NSW 232 management and control options for asparagus weeds Asparagus spp. in Australia. ffice of Ph: 02 000 switchboard Environment and Heritage NSW, Sydney. Ph: 3 environment information and publications requests This proect was supported by the ffice of or 300 36 6 national parks, general Environment and Heritage NSW,
    [Show full text]